1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#!/usr/bin/python3
__doc__="""
pliu 20150304
python function for pRSEM
"""
import os
import sys
import Util
def genChIPSeqSignalFilesFromBed(param):
import ChIPSeqReplicate
fbeds = param.chipseq_bed_files_multi_targets.split(',')
for fbed in fbeds:
csr = ChIPSeqReplicate.initFromBedFile(fbed)
ta = csr.tagalign
param.targetid2fchipseq_alignment[ta.basename] = ta.fullname
def genChIPSeqSignalFilesFromReads(param):
import ChIPSeqExperiment
cse_target = ChIPSeqExperiment.initFromParam(param, 'multi-targets')
cse_target.getFastqEncoding()
cse_target.alignReadByBowtie()
param.chipseqexperiment_target = cse_target
for rep in cse_target.reps:
ta = rep.tagalign
param.targetid2fchipseq_alignment[ta.basename] = ta.fullname
def genChIPSeqPeakFileBySPPIDR(param):
import ChIPSeqExperiment
cse_target = ChIPSeqExperiment.initFromParam(param, 'target')
cse_target.getFastqEncoding()
cse_target.alignReadByBowtie()
cse_target.poolTagAlign()
param.chipseqexperiment_target = cse_target
if param.chipseq_control_read_files is not None:
cse_control = ChIPSeqExperiment.initFromParam(param, 'control')
cse_control.getFastqEncoding()
cse_control.alignReadByBowtie()
cse_control.poolTagAlign()
cse_target.callPeaksBySPP(cse_control.pooled_tagalign)
cse_target.getPeaksByIDR(cse_control.pooled_tagalign)
param.chipseq_peak_file = cse_target.final_peaks.fullname
param.chipseqexperiment_control = cse_control
else:
pass ## to-be-implemented, call peaks by MOSAiCS without ChIP-seq control
def buildTrainingSet(prm):
"""
write training set in file Param.ftraining_tr_crd
transcript as listed in the same order as RSEM's .ti file
The order is required by rsem-run-gibbs so that prior can be assigned to
transcript correctly
"""
ogot_genes = [g for g in prm.genes if len(g.transcripts) == 1 and
(g.end - g.start + 1) >=
prm.TRAINING_GENE_MIN_LEN]
trs = [tr for g in ogot_genes for tr in g.transcripts]
trid2mpps = Util.runMPOverAList(prm.num_threads, calTSSBodyTESMappability,
[trs, prm])
with open(prm.fall_tr_crd, 'w') as f_fout:
f_fout.write("geneid\ttrid\tchrom\tstrand\tstart\tend\t")
f_fout.write("tss_mpp\tbody_mpp\ttes_mpp\n")
for tr in prm.transcripts: ## in the same order as RSEM's .ti file
f_fout.write("%s\t%s\t%s\t%s\t%d\t%d\t" % ( tr.gene_id,
tr.transcript_id, tr.chrom, tr.strand, tr.start, tr.end))
if tr.transcript_id in trid2mpps:
mpps = trid2mpps[tr.transcript_id]
f_fout.write("%5.3f\t%5.3f\t%5.3f\n" % mpps)
else:
f_fout.write("NA\tNA\tNA\n")
with open(prm.fall_exon_crd, 'w') as f_fexon:
f_fexon.write("trid\texon_index\tchrom\tstrand\tstart\tend\n")
for tr in prm.transcripts:
for (i, (exon_start, exon_end)) in enumerate(tr.exon_ranges):
f_fexon.write("%s\t%d\t%s\t%s\t%d\t%d\n" % (tr.transcript_id, i+1,
tr.chrom, tr.strand, exon_start, exon_end))
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript, 'selTrainingTr',
prm.prsem_rlib_dir, prm.fall_tr_crd, prm.fall_exon_crd,
prm.TRAINING_MIN_MAPPABILITY, prm.FLANKING_WIDTH,
prm.ftraining_tr_crd, quiet=prm.quiet)
if not os.path.exists(prm.ftraining_tr_crd):
sys.exit("Failed to generate file: %s\n" % prm.ftraining_tr_crd)
def calTSSBodyTESMappability(trs, prm, out_q):
"""
calculate average mappability around TSS, body, and TES for all transcripts of
given list of genes
save results in transcript's attribute
"""
outdict = {}
for tr in trs:
tr.calculateMappability(prm.bigwigsummary_bin, prm.mappability_bigwig_file,
prm.FLANKING_WIDTH, prm.quiet)
outdict[tr.transcript_id] = (tr.ave_mpp_around_TSS, tr.ave_mpp_around_body,
tr.ave_mpp_around_TES)
out_q.put(outdict)
def genPriorByCombinedTSSSignals(prm):
"""
calculate TSS signals for all external data sets
compute informative p-value, LL for individual data set and combined one
learn prior from training set partitioned by combined TSS signals
derive priors for all isoforms
"""
f_fout = open(prm.finfo_multi_targets, 'w')
f_fout.write("targetid\tfaln\tfftrs\n")
for (tgtid, faln) in list(prm.targetid2fchipseq_alignment.items()):
fftrs = prm.imd_name + '_prsem.' + tgtid + '.all_tr_features'
f_fout.write("%s\t%s\t%s\n" % (tgtid, faln, fftrs))
f_fout.close()
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
'prepMultiTargetsFeatures', prm.prsem_rlib_dir,
prm.fall_tr_crd, prm.ftraining_tr_crd,
prm.fisoforms_results, prm.FLANKING_WIDTH,
prm.cap_stacked_chipseq_reads,
prm.n_max_stacked_chipseq_reads,
prm.finfo_multi_targets, prm.num_threads, quiet=prm.quiet)
## learn prior from partitioning by combined external data set
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
'genPriorByCombinedTSSSignals', prm.prsem_rlib_dir,
prm.finfo_multi_targets, prm.flgt_model_multi_targets,
prm.fall_tr_features, prm.fpvalLL, prm.fall_tr_prior,
quiet=prm.quiet)
pval = float(Util.readFile(prm.fpvalLL)[1].split("\t")[0])
if pval > prm.INFORMATIVE_DATA_MAX_P_VALUE:
err_msg = "\nError: current external data is NOT informative for RNA-seq quantification\n" + \
"\tp-value %.10e > %.3f\n" % (pval, prm.INFORMATIVE_DATA_MAX_P_VALUE) + \
"pRSEM STOPs here. Please use other external data set(s)\n\n"
sys.stderr.write(err_msg)
sys.exit(0)
if not os.path.exists(prm.fall_tr_prior):
sys.exit("Failed to generate file: %s\n" % prm.fall_tr_prior)
def genPriorByPeakSignalGCLen(prm):
"""
calculate peaks/signals for the TSS, body, and TES regions
calculate GC contenct and effective length
learn prior from training set and derived priors for all isoforms
"""
## calculate GC contect for isoforms
trid2seq = Util.getFastaID2Seq(prm.ffasta)
with open(prm.fall_tr_gc, 'w') as f_fall_tr_gc:
f_fall_tr_gc.write("trid\tGC_fraction\n")
for tr in prm.transcripts:
gc_frac = Util.getGCFraction(trid2seq[tr.transcript_id])
f_fall_tr_gc.write("%s\t%.2f\n" % (tr.transcript_id, gc_frac) )
with open(prm.fsppout_target, 'r') as f_fsppout_target:
words = f_fsppout_target.read().split("\t")
prm.chipseq_target_fraglen = int(words[2])
## prepare a feature file of peaks and signals for all isoforms,
## isoforms in training set will be labeled
if not os.path.exists(prm.fchipseq_peaks):
sys.exit("File not exists: %s\n" % prm.fchipseq_peaks)
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
'prepPeakSignalGCLenFeatures', prm.prsem_rlib_dir,
prm.fall_tr_crd, prm.ftraining_tr_crd, prm.fall_tr_features,
prm.fisoforms_results, prm.FLANKING_WIDTH,
prm.partition_model, prm.fchipseq_peaks,
prm.fchipseq_target_signals, prm.fall_tr_gc, prm.num_threads,
prm.chipseq_target_fraglen, quiet=prm.quiet)
if not os.path.exists(prm.fall_tr_gc):
sys.exit("Failed to generate file: %s\n" % prm.fall_tr_gc)
## learn and generate prior for all transcripts
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
'genPriorByPeakSignalGCLen', prm.prsem_rlib_dir,
prm.fall_tr_features, prm.partition_model, prm.fall_tr_prior,
quiet=prm.quiet)
if not os.path.exists(prm.fall_tr_prior):
sys.exit("Failed to generate file: %s\n" % prm.fall_tr_prior)
def genPriorByTSSPeak(prm):
"""
determine if isoform have TSS peak or not
learn priors from training set and derived priors for all isoforms
"""
## prepare a feature file of TSS peaks for all isoforms,
## isoforms in training set will be labeled
if not os.path.exists(prm.fchipseq_peaks):
sys.exit("File not exists: %s\n" % prm.fchipseq_peaks)
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
'prepTSSPeakFeatures', prm.prsem_rlib_dir,
prm.fall_tr_crd, prm.ftraining_tr_crd, prm.fall_tr_features,
prm.fisoforms_results, prm.FLANKING_WIDTH,
prm.fchipseq_peaks, quiet=prm.quiet)
if not os.path.exists(prm.fall_tr_features):
sys.exit("Failed to generate file: %s\n" % prm.fall_tr_features)
Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
'genPriorByTSSPeak', prm.prsem_rlib_dir,
prm.fall_tr_features, prm.fpvalLL, prm.fall_tr_prior,
quiet=prm.quiet)
pval = float(Util.readFile(prm.fpvalLL)[1].split("\t")[0])
if pval > prm.INFORMATIVE_DATA_MAX_P_VALUE:
err_msg = "\nError: current external data is NOT informative for RNA-seq quantification\n" + \
"\tp-value %.10e > %.3f\n" % (pval, prm.INFORMATIVE_DATA_MAX_P_VALUE) + \
"pRSEM STOPs here. Please use other external data set(s)\n\n"
sys.stderr.write(err_msg)
sys.exit(0)
if not os.path.exists(prm.fall_tr_prior):
sys.exit("Failed to generate file: %s\n" % prm.fall_tr_prior)
def runGibbsSampling(prm):
if prm.quiet:
run_gibbs_quiet = '-q'
else:
run_gibbs_quiet = ''
Util.runCommand("%s/../rsem-run-gibbs" % prm.prsem_scr_dir,
prm.ref_name, prm.imd_name, prm.stat_name, prm.gibbs_burnin,
prm.gibbs_number_of_samples, prm.gibbs_sampling_gap,
'-p', prm.num_threads, run_gibbs_quiet,
'--prior', prm.fall_tr_prior,
quiet=prm.quiet)
|