File: Prsem.py

package info (click to toggle)
rsem 1.3.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,700 kB
  • sloc: cpp: 19,230; perl: 1,326; python: 1,245; ansic: 547; makefile: 186; sh: 154
file content (253 lines) | stat: -rw-r--r-- 9,851 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/python3

__doc__="""

  pliu 20150304

  python function for pRSEM
"""

import os
import sys
import Util


def genChIPSeqSignalFilesFromBed(param):
  import ChIPSeqReplicate
  fbeds = param.chipseq_bed_files_multi_targets.split(',')
  for fbed in fbeds:
    csr = ChIPSeqReplicate.initFromBedFile(fbed)
    ta = csr.tagalign
    param.targetid2fchipseq_alignment[ta.basename] = ta.fullname


def genChIPSeqSignalFilesFromReads(param):
  import ChIPSeqExperiment
  cse_target = ChIPSeqExperiment.initFromParam(param, 'multi-targets')
  cse_target.getFastqEncoding()
  cse_target.alignReadByBowtie()

  param.chipseqexperiment_target = cse_target
  for rep in cse_target.reps:
    ta = rep.tagalign
    param.targetid2fchipseq_alignment[ta.basename] = ta.fullname



def genChIPSeqPeakFileBySPPIDR(param):
  import ChIPSeqExperiment

  cse_target = ChIPSeqExperiment.initFromParam(param, 'target')
  cse_target.getFastqEncoding()
  cse_target.alignReadByBowtie()
  cse_target.poolTagAlign()

  param.chipseqexperiment_target = cse_target

  if param.chipseq_control_read_files is not None:
    cse_control = ChIPSeqExperiment.initFromParam(param, 'control')
    cse_control.getFastqEncoding()
    cse_control.alignReadByBowtie()
    cse_control.poolTagAlign()
    cse_target.callPeaksBySPP(cse_control.pooled_tagalign)
    cse_target.getPeaksByIDR(cse_control.pooled_tagalign)

    param.chipseq_peak_file = cse_target.final_peaks.fullname
    param.chipseqexperiment_control = cse_control
  else:
    pass  ## to-be-implemented, call peaks by MOSAiCS without ChIP-seq control


def buildTrainingSet(prm):
  """
  write training set in file Param.ftraining_tr_crd
  transcript as listed in the same order as RSEM's .ti file
  The order is required by rsem-run-gibbs so that prior can be assigned to
  transcript correctly
  """
  ogot_genes = [g for g in prm.genes if len(g.transcripts) == 1 and
                                (g.end - g.start + 1) >=
                                prm.TRAINING_GENE_MIN_LEN]

  trs = [tr for g in ogot_genes for tr in g.transcripts]

  trid2mpps = Util.runMPOverAList(prm.num_threads, calTSSBodyTESMappability,
                                  [trs, prm])

  with open(prm.fall_tr_crd, 'w') as f_fout:
    f_fout.write("geneid\ttrid\tchrom\tstrand\tstart\tend\t")
    f_fout.write("tss_mpp\tbody_mpp\ttes_mpp\n")
    for tr in prm.transcripts: ## in the same order as RSEM's .ti file
      f_fout.write("%s\t%s\t%s\t%s\t%d\t%d\t" % ( tr.gene_id,
                   tr.transcript_id, tr.chrom, tr.strand, tr.start, tr.end))
      if tr.transcript_id in trid2mpps:
        mpps = trid2mpps[tr.transcript_id]
        f_fout.write("%5.3f\t%5.3f\t%5.3f\n" % mpps)
      else:
        f_fout.write("NA\tNA\tNA\n")

  with open(prm.fall_exon_crd, 'w') as f_fexon:
    f_fexon.write("trid\texon_index\tchrom\tstrand\tstart\tend\n")
    for tr in prm.transcripts:
      for (i, (exon_start, exon_end)) in enumerate(tr.exon_ranges):
        f_fexon.write("%s\t%d\t%s\t%s\t%d\t%d\n" % (tr.transcript_id, i+1,
                      tr.chrom, tr.strand, exon_start, exon_end))

  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript, 'selTrainingTr',
                  prm.prsem_rlib_dir, prm.fall_tr_crd, prm.fall_exon_crd,
                  prm.TRAINING_MIN_MAPPABILITY, prm.FLANKING_WIDTH,
                  prm.ftraining_tr_crd, quiet=prm.quiet)

  if not os.path.exists(prm.ftraining_tr_crd):
    sys.exit("Failed to generate file: %s\n" % prm.ftraining_tr_crd)


def calTSSBodyTESMappability(trs, prm, out_q):
  """
  calculate average mappability around TSS, body, and TES for all transcripts of
  given list of genes

  save results in transcript's attribute
  """
  outdict = {}
  for tr in trs:
    tr.calculateMappability(prm.bigwigsummary_bin, prm.mappability_bigwig_file,
                            prm.FLANKING_WIDTH, prm.quiet)
    outdict[tr.transcript_id] = (tr.ave_mpp_around_TSS, tr.ave_mpp_around_body,
                                 tr.ave_mpp_around_TES)
  out_q.put(outdict)


def genPriorByCombinedTSSSignals(prm):
  """
  calculate TSS signals for all external data sets
  compute informative p-value, LL for individual data set and combined one
  learn prior from training set partitioned by combined TSS signals
  derive priors for all isoforms
  """
  f_fout = open(prm.finfo_multi_targets, 'w')
  f_fout.write("targetid\tfaln\tfftrs\n")
  for (tgtid, faln) in list(prm.targetid2fchipseq_alignment.items()):
    fftrs = prm.imd_name + '_prsem.' + tgtid + '.all_tr_features'
    f_fout.write("%s\t%s\t%s\n" % (tgtid, faln, fftrs))
  f_fout.close()

  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
                  'prepMultiTargetsFeatures', prm.prsem_rlib_dir,
                  prm.fall_tr_crd, prm.ftraining_tr_crd,
                  prm.fisoforms_results, prm.FLANKING_WIDTH,
                  prm.cap_stacked_chipseq_reads,
                  prm.n_max_stacked_chipseq_reads,
                  prm.finfo_multi_targets, prm.num_threads, quiet=prm.quiet)

  ## learn prior from partitioning by combined external data set
  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
                  'genPriorByCombinedTSSSignals', prm.prsem_rlib_dir,
                  prm.finfo_multi_targets, prm.flgt_model_multi_targets,
                  prm.fall_tr_features, prm.fpvalLL, prm.fall_tr_prior,
                  quiet=prm.quiet)

  pval = float(Util.readFile(prm.fpvalLL)[1].split("\t")[0])

  if pval > prm.INFORMATIVE_DATA_MAX_P_VALUE:
    err_msg = "\nError: current external data is NOT informative for RNA-seq quantification\n" + \
      "\tp-value %.10e > %.3f\n" % (pval, prm.INFORMATIVE_DATA_MAX_P_VALUE) + \
      "pRSEM STOPs here. Please use other external data set(s)\n\n"
    sys.stderr.write(err_msg)
    sys.exit(0)

  if not os.path.exists(prm.fall_tr_prior):
    sys.exit("Failed to generate file: %s\n" % prm.fall_tr_prior)



def genPriorByPeakSignalGCLen(prm):
  """
  calculate peaks/signals for the TSS, body, and TES regions
  calculate GC contenct and effective length
  learn prior from training set and derived priors for all isoforms
  """
  ## calculate GC contect for isoforms
  trid2seq = Util.getFastaID2Seq(prm.ffasta)
  with open(prm.fall_tr_gc, 'w') as f_fall_tr_gc:
    f_fall_tr_gc.write("trid\tGC_fraction\n")
    for tr in prm.transcripts:
      gc_frac = Util.getGCFraction(trid2seq[tr.transcript_id])
      f_fall_tr_gc.write("%s\t%.2f\n" % (tr.transcript_id, gc_frac) )

  with open(prm.fsppout_target, 'r') as f_fsppout_target:
    words = f_fsppout_target.read().split("\t")
    prm.chipseq_target_fraglen = int(words[2])

  ## prepare a feature file of peaks and signals for all isoforms,
  ## isoforms in training set will be labeled
  if not os.path.exists(prm.fchipseq_peaks):
    sys.exit("File not exists: %s\n" % prm.fchipseq_peaks)
  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
                  'prepPeakSignalGCLenFeatures', prm.prsem_rlib_dir,
                  prm.fall_tr_crd, prm.ftraining_tr_crd, prm.fall_tr_features,
                  prm.fisoforms_results, prm.FLANKING_WIDTH,
                  prm.partition_model, prm.fchipseq_peaks,
                  prm.fchipseq_target_signals, prm.fall_tr_gc, prm.num_threads,
                  prm.chipseq_target_fraglen, quiet=prm.quiet)

  if not os.path.exists(prm.fall_tr_gc):
    sys.exit("Failed to generate file: %s\n" % prm.fall_tr_gc)

  ## learn and generate prior for all transcripts
  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
                  'genPriorByPeakSignalGCLen', prm.prsem_rlib_dir,
                  prm.fall_tr_features, prm.partition_model, prm.fall_tr_prior,
                  quiet=prm.quiet)

  if not os.path.exists(prm.fall_tr_prior):
    sys.exit("Failed to generate file: %s\n" % prm.fall_tr_prior)


def genPriorByTSSPeak(prm):
  """
  determine if isoform have TSS peak or not
  learn priors from training set and derived priors for all isoforms
  """
  ## prepare a feature file of TSS peaks for all isoforms,
  ## isoforms in training set will be labeled
  if not os.path.exists(prm.fchipseq_peaks):
    sys.exit("File not exists: %s\n" % prm.fchipseq_peaks)
  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
                  'prepTSSPeakFeatures', prm.prsem_rlib_dir,
                  prm.fall_tr_crd, prm.ftraining_tr_crd, prm.fall_tr_features,
                  prm.fisoforms_results, prm.FLANKING_WIDTH,
                  prm.fchipseq_peaks, quiet=prm.quiet)

  if not os.path.exists(prm.fall_tr_features):
    sys.exit("Failed to generate file: %s\n" % prm.fall_tr_features)

  Util.runCommand('/bin/env', 'Rscript', prm.rnaseq_rscript,
                  'genPriorByTSSPeak', prm.prsem_rlib_dir,
                  prm.fall_tr_features,  prm.fpvalLL, prm.fall_tr_prior,
                  quiet=prm.quiet)

  pval = float(Util.readFile(prm.fpvalLL)[1].split("\t")[0])

  if pval > prm.INFORMATIVE_DATA_MAX_P_VALUE:
    err_msg = "\nError: current external data is NOT informative for RNA-seq quantification\n" + \
      "\tp-value %.10e > %.3f\n" % (pval, prm.INFORMATIVE_DATA_MAX_P_VALUE) + \
      "pRSEM STOPs here. Please use other external data set(s)\n\n"
    sys.stderr.write(err_msg)
    sys.exit(0)

  if not os.path.exists(prm.fall_tr_prior):
    sys.exit("Failed to generate file: %s\n" % prm.fall_tr_prior)


def runGibbsSampling(prm):
  if prm.quiet:
    run_gibbs_quiet = '-q'
  else:
    run_gibbs_quiet = ''
  Util.runCommand("%s/../rsem-run-gibbs" % prm.prsem_scr_dir,
                  prm.ref_name, prm.imd_name, prm.stat_name, prm.gibbs_burnin,
                  prm.gibbs_number_of_samples, prm.gibbs_sampling_gap,
                  '-p', prm.num_threads, run_gibbs_quiet,
                  '--prior', prm.fall_tr_prior,
                  quiet=prm.quiet)