1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
__doc__="""
peng 20131009
Data structure copied from RSEM, made some name changes
"""
class Transcript:
def __init__(self):
self.transcript_id = None
self.gene_id = None
self.gene = None
self.transcript_group = None
self.chrom = None ## RSEM Transcript's string seqname
self.strand = None
self.length = None
self.exon_ranges = []; ## RSEM Transcript's vector<Interval> structure
self.gtf_attr = {}; ## RSEM Transcript's string left
self.gtf_additional_info = None;
self.start = None; ## genomic starting postion,
## regardless of strand direction
## always have a number smaller than self.end
self.end = None; ## genomic ending postion
self.tss = None; ## genomic coordinate of transcription starting site
self.tes = None; ## genomic coordinate of transcription ending site
## mappability
self.ave_mpp_around_TSS = None ## [TSS-flanking_width, TSS+flanking_width]
self.ave_mpp_around_body = None ## (TSS+flanking_width, TES-flanking_width)
self.ave_mpp_around_TES = None ## [TES-flanking_width, TES+flanking_width]
def __str__(self):
s = "%s\n%s\n%s\n%s %d\n" % (self.transcript_id, self.gene_id, self.chrom,
self.strand, self.length);
s += "%d" % len(self.exon_ranges);
for (start, end) in self.exon_ranges:
s += " %d %d" % (start, end);
s += "\n";
for key in list(self.gtf_attr.keys()):
for val in self.gtf_attr[key]:
s += '%s "%s"; ' % (key, val);
s = s.rstrip();
return s;
def constructFromRSEMTI(self, ti_lines):
"""
construct Transcript from the 6 lines from RSEM .TI file
"""
self.quicklyConstructFromRSEMTI(ti_lines);
feature_words = ti_lines[5].rstrip(';').split(';');
for feature_word in feature_words:
feature_word.lstrip();
(key, val) = feature_word.split();
if key not in self.gtf_attr:
self.gtf_attr[key] = [];
self.gtf_attr[key].append(val.strip('"'));
def quicklyConstructFromRSEMTI(self, ti_lines):
"""
quickly construct Transcript from the 6 lines from RSEM .TI file, the last
line won't be parsed.
"""
self.transcript_id = ti_lines[0].split("\t")[0]
self.gene_id = ti_lines[1].split("\t")[0]
self.chrom = ti_lines[2];
(self.strand, self.length) = ti_lines[3].split();
self.length = int(self.length);
words = ti_lines[4].split();
for j in range(0, int(words[0])):
start = int(words[j*2+1]);
end = int(words[j*2+2]);
self.exon_ranges.append( (start, end) );
self.start = self.exon_ranges[0][0];
self.end = self.exon_ranges[-1][-1];
if self.strand == '+':
self.tss = self.start
self.tes = self.end
elif self.strand == '-':
self.tss = self.end
self.tes = self.start
self.gtf_additional_info = ti_lines[5];
def defineTSSAndTES(self):
"""
define TSS and TES
"""
if (self.tss is None) or (self.tes is None):
if self.strand == '+':
self.tss = self.start;
self.tes = self.end;
elif self.strand == '-':
self.tss = self.end;
self.tes = self.start;
def calculateMappability(self, bin_bigwigsummary, fbigwig, width=500,
quiet=True):
"""
calculate average mappability for a transcript's
TSS region: [TSS-width, TSS+width],
body region: [start+width+1, end-width-1],
TES region: [TES-width, TES+width]
if start+width+1 > end-width-1, then define body region as
[end-width-1, start+width+1]
assign the values for
self.ave_mpp_around_TSS, self.max_mpp_around_TSS
self.ave_mpp_around_body, self.max_mpp_around_body
self.ave_mpp_around_TES, self.max_mpp_around_TES
"""
import Util
if (self.tss is None) or (self.tes is None):
self.defineTSSAndTES()
self.ave_mpp_around_TSS = Util.calculateMappability('mean', self.chrom,
self.tss - width, self.tss + width,
bin_bigwigsummary, fbigwig, quiet)
if (self.start + width + 1) < (self.end - width - 1):
self.ave_mpp_around_body = Util.calculateMappability('mean', self.chrom,
self.start+width+1, self.end-width-1,
bin_bigwigsummary, fbigwig, quiet)
elif (self.start + width + 1) > (self.end - width - 1):
self.ave_mpp_around_body = Util.calculateMappability('mean', self.chrom,
self.end-width-1, self.start+width+1,
bin_bigwigsummary, fbigwig, quiet)
elif (self.start + width + 1) == (self.end - width - 1):
self.ave_mpp_around_body = 1.0
self.ave_mpp_around_TES = Util.calculateMappability('mean', self.chrom,
self.tes - width, self.tes + width,
bin_bigwigsummary, fbigwig, quiet)
def readRSEMTI(fin):
"""
read RSEM's .ti file, return a list of Transcripts objects
"""
import Util
lines = Util.readFile(fin);
(ntranscripts, foo) = lines[0].split();
ntranscripts = int(ntranscripts);
transcripts = [];
for i in range(0, ntranscripts):
tr = Transcript();
tr.constructFromRSEMTI(lines[i*6+1:i*6+7]);
transcripts.append(tr);
if (i > 0) and (i % 20000 == 0):
print("processed %d transcripts" % i);
return transcripts;
def quicklyReadRSEMTI(fin):
"""
read RSEM's .ti file without parsing the additional information line (the last
line in a transcript's block
return a list of Transcripts objects
"""
import Util
lines = Util.readFile(fin);
(ntranscripts, foo) = lines[0].split();
ntranscripts = int(ntranscripts);
transcripts = [];
for i in range(0, ntranscripts):
tr = Transcript();
tr.quicklyConstructFromRSEMTI(lines[i*6+1:i*6+7]);
transcripts.append(tr);
if (i > 0) and (i % 20000 == 0):
print("processed %d transcripts" % i);
return transcripts;
|