1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
--[[
Copyright (c) 2022, Vsevolod Stakhov <vsevolod@rspamd.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]] --
local neural_common = require "plugins/neural"
local ts = require("tableshape").types
local ucl = require "ucl"
local lua_util = require "lua_util"
local rspamd_util = require "rspamd_util"
local lua_redis = require "lua_redis"
local rspamd_logger = require "rspamd_logger"
local E = {}
local N = 'neural'
-- Controller neural plugin
local learn_request_schema = ts.shape {
ham_vec = ts.array_of(ts.array_of(ts.number)),
rule = ts.string:is_optional(),
spam_vec = ts.array_of(ts.array_of(ts.number)),
}
local function handle_learn(task, conn)
lua_util.debugm(N, task, 'controller.neural: learn called')
local parser = ucl.parser()
local ok, err = parser:parse_text(task:get_rawbody())
if not ok then
conn:send_error(400, err)
return
end
local req_params = parser:get_object()
ok, err = learn_request_schema:transform(req_params)
if not ok then
conn:send_error(400, err)
return
end
local rule_name = req_params.rule or 'default'
local rule = neural_common.settings.rules[rule_name]
local set = neural_common.get_rule_settings(task, rule)
local version = ((set.ann or E).version or 0) + 1
neural_common.spawn_train {
ev_base = task:get_ev_base(),
ann_key = neural_common.new_ann_key(rule, set, version),
set = set,
rule = rule,
ham_vec = req_params.ham_vec,
spam_vec = req_params.spam_vec,
worker = task:get_worker(),
}
lua_util.debugm(N, task, 'controller.neural: learn scheduled for rule=%s', rule_name)
conn:send_string('{"success" : true}')
end
local function handle_status(task, conn, req_params)
lua_util.debugm(N, task, 'controller.neural: status called')
local out = {
rules = {},
}
for name, rule in pairs(neural_common.settings.rules) do
local r = {
providers = rule.providers,
fusion = rule.fusion,
max_inputs = rule.max_inputs,
settings = {},
requires_scan = false,
}
-- Default: if no providers configured, assume symbols (full scan required)
local has_providers = type(rule.providers) == 'table' and #rule.providers > 0
if not has_providers then
r.requires_scan = true
else
for _, p in ipairs(rule.providers) do
if p.type == 'symbols' then
r.requires_scan = true
break
end
end
end
for sid, set in pairs(rule.settings or {}) do
if type(set) == 'table' then
local s = {
name = set.name,
symbols_digest = set.digest,
}
if set.ann then
s.ann = {
version = set.ann.version,
redis_key = set.ann.redis_key,
providers_digest = set.ann.providers_digest,
has_pca = set.ann.pca ~= nil,
}
end
r.settings[sid] = s
end
end
out.rules[name] = r
end
conn:send_ucl({ success = true, data = out })
end
-- Return compact configuration for clients (e.g. rspamc) to plan learning
local function handle_config(task, conn, req_params)
lua_util.debugm(N, task, 'controller.neural: config called')
local out = {
rules = {},
}
for name, rule in pairs(neural_common.settings.rules) do
local requires_scan = false
local has_providers = type(rule.providers) == 'table' and #rule.providers > 0
if not has_providers then
requires_scan = true
else
for _, p in ipairs(rule.providers) do
if p.type == 'symbols' then
requires_scan = true
break
end
end
end
local r = {
requires_scan = requires_scan,
providers = {},
recommended_path = requires_scan and '/checkv2' or '/controller/neural/learn_message',
settings = {},
}
if has_providers then
for _, p in ipairs(rule.providers) do
r.providers[#r.providers + 1] = { type = p.type }
end
end
for _, set in pairs(rule.settings or {}) do
if type(set) == 'table' then
r.settings[#r.settings + 1] = set.name
end
end
out.rules[name] = r
end
conn:send_ucl({ success = true, data = out })
end
-- Train directly from a message for providers that don't require full /checkv2
-- Headers:
-- - ANN-Train or Class: 'spam' | 'ham'
-- - Rule: rule name (optional, default 'default')
local function handle_learn_message(task, conn)
lua_util.debugm(N, task, 'controller.neural: learn_message called')
-- Ensure the message is parsed so LLM providers can access text parts
local ok_parse = task:process_message()
if not ok_parse then
lua_util.debugm(N, task, 'controller.neural: cannot process message MIME, abort')
conn:send_error(400, 'cannot parse message for learning')
return
end
local cls = task:get_request_header('ANN-Train') or task:get_request_header('Class')
if not cls then
conn:send_error(400, 'missing class header (ANN-Train or Class)')
return
end
local learn_type = tostring(cls):lower()
if learn_type ~= 'spam' and learn_type ~= 'ham' then
conn:send_error(400, 'unsupported class (expected spam or ham)')
return
end
local rule_name = task:get_request_header('Rule') or 'default'
local rule = neural_common.settings.rules[rule_name]
if not rule then
conn:send_error(400, 'unknown rule')
return
end
-- Check if this configuration requires full scan
-- Only symbols collection requires full scan; metatokens can be computed directly
local has_providers = type(rule.providers) == 'table' and #rule.providers > 0
if not has_providers and not rule.disable_symbols_input then
-- No providers means full symbols will be used (not just metatokens)
lua_util.debugm(N, task,
'controller.neural: learn_message refused: no providers configured, symbols collection requires full scan for rule=%s',
rule_name)
conn:send_error(400, 'rule requires full /checkv2 scan (no providers configured, full symbols collection required)')
return
end
-- Check if any provider requires full scan (only symbols provider does)
if has_providers then
for _, p in ipairs(rule.providers) do
if p.type == 'symbols' then
lua_util.debugm(N, task,
'controller.neural: learn_message refused due to symbols provider requiring full scan for rule=%s',
rule_name)
conn:send_error(400, 'rule requires full /checkv2 scan (symbols provider present)')
return
end
end
end
-- At this point:
-- - We have providers that don't require full scan (e.g., LLM)
-- - Metatokens can be computed directly from the message
-- - Controller training is allowed
local set = neural_common.get_rule_settings(task, rule)
if not set then
lua_util.debugm(N, task, 'controller.neural: no settings resolved for rule=%s; falling back to first available set',
rule_name)
for sid, s in pairs(rule.settings or {}) do
if type(s) == 'table' then
set = s
set.name = set.name or sid
break
end
end
end
if set then
lua_util.debugm(N, task, 'controller.neural: set found for rule=%s, symbols=%s, name=%s',
rule_name, set.symbols and #set.symbols or "nil", set.name)
end
-- Derive redis base key even if ANN not yet initialized
local redis_base
if set and set.ann and set.ann.redis_key then
redis_base = set.ann.redis_key
elseif set then
local ok, prefix = pcall(neural_common.redis_ann_prefix, rule, set.name)
if ok and prefix then
redis_base = prefix
lua_util.debugm(N, task, 'controller.neural: derived redis base key for rule=%s set=%s -> %s', rule_name, set.name,
redis_base)
end
end
if not set or not redis_base then
lua_util.debugm(N, task, 'controller.neural: invalid set or redis key for learning; set=%s ann=%s',
tostring(set ~= nil), set and tostring(set.ann ~= nil) or 'nil')
conn:send_error(400, 'invalid rule settings for learning')
return
end
-- Ensure profile exists for this set
if not set.ann then
local version = 0
local ann_key = neural_common.new_ann_key(rule, set, version)
local profile = {
symbols = set.symbols,
redis_key = ann_key,
version = version,
digest = set.digest,
distance = 0,
providers_digest = neural_common.providers_config_digest(rule.providers),
}
local profile_serialized = ucl.to_format(profile, 'json-compact', true)
lua_util.debugm(N, task, 'controller.neural: creating new profile for %s:%s at %s',
rule.prefix, set.name, ann_key)
-- Store the profile in Redis sorted set
lua_redis.redis_make_request(task,
rule.redis,
nil,
true, -- is write
function(err, _)
if err then
rspamd_logger.errx(task, 'cannot store ANN profile for %s:%s at %s : %s',
rule.prefix, set.name, profile.redis_key, err)
else
lua_util.debugm(N, task, 'created new ANN profile for %s:%s, data stored at prefix %s',
rule.prefix, set.name, profile.redis_key)
end
end,
'ZADD', -- command
{ set.prefix, tostring(rspamd_util.get_time()), profile_serialized }
)
-- Update redis_base to use the new ann_key
redis_base = ann_key
end
local function after_collect(vec)
lua_util.debugm(N, task, 'controller.neural: learn_message after_collect, vector=%s', type(vec))
if not vec then
lua_util.debugm(N, task,
'controller.neural: no vector collected; skip training')
conn:send_error(400, 'no vector collected')
return
end
if type(vec) ~= 'table' then
conn:send_error(500, 'failed to build training vector')
return
end
-- Preview vector for debugging
local function preview_vector(v)
local n = #v
local limit = math.min(n, 8)
local parts = {}
for i = 1, limit do
parts[#parts + 1] = string.format('%.4f', tonumber(v[i]) or 0)
end
return n, table.concat(parts, ',')
end
local vlen, vhead = preview_vector(vec)
lua_util.debugm(N, task, 'controller.neural: vector size=%s head=[%s]', vlen, vhead)
local compressed = rspamd_util.zstd_compress(table.concat(vec, ';'))
local target_key = string.format('%s_%s_set', redis_base, learn_type)
local function learn_vec_cb(redis_err)
if redis_err then
rspamd_logger.errx(task, 'cannot store train vector for %s:%s: %s',
rule.prefix, set.name, redis_err)
conn:send_error(500, 'cannot store train vector')
else
lua_util.debugm(N, task, 'controller.neural: stored train vector for rule=%s key=%s bytes=%s', rule_name,
target_key, #compressed)
conn:send_ucl({ success = true, stored = #compressed, key = target_key })
end
end
lua_redis.redis_make_request(task,
rule.redis,
nil,
true,
learn_vec_cb,
'SADD',
{ target_key, compressed }
)
end
if rule.providers and #rule.providers > 0 then
lua_util.debugm(N, task, 'controller.neural: collecting features for rule=%s', rule_name)
neural_common.collect_features_async(task, rule, set, 'train', after_collect)
else
-- Should not reach here due to early return
conn:send_error(400, 'rule requires full /checkv2 scan (no providers configured)')
end
end
local function handle_train(task, conn, req_params)
local rule_name = req_params.rule or 'default'
local rule = neural_common.settings.rules[rule_name]
if not rule then
conn:send_error(400, 'unknown rule')
return
end
-- Trigger check_anns to evaluate training conditions
rspamd_config:add_periodic(task:get_ev_base(), 0.0, function()
return 0.0
end)
conn:send_ucl({ success = true, message = 'training scheduled check' })
end
return {
learn = {
handler = handle_learn,
enable = true,
need_task = true,
},
config = {
handler = handle_config,
enable = true,
need_task = false,
},
learn_message = {
handler = handle_learn_message,
enable = true,
need_task = true,
},
status = {
handler = handle_status,
enable = false,
need_task = false,
},
train = {
handler = handle_train,
enable = true,
need_task = false,
},
}
|