1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
--[[
Copyright (c) 2022, Vsevolod Stakhov <vsevolod@rspamd.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]
-- This file contains functions to support Bayes statistics in Redis
local exports = {}
local lua_redis = require "lua_redis"
local logger = require "rspamd_logger"
local lua_util = require "lua_util"
local ucl = require "ucl"
local N = "bayes"
local function gen_classify_functor(redis_params, classify_script_id)
return function(task, expanded_key, id, class_labels, stat_tokens, callback)
local function classify_redis_cb(err, data)
lua_util.debugm(N, task, 'classify redis cb: %s, %s', err, data)
if err then
callback(task, false, err)
else
-- Pass the raw data table to the C++ callback for processing
-- The C++ callback will handle both binary and multi-class formats
callback(task, true, data)
end
end
-- Determine class labels to send to Redis script
local script_class_labels
if type(class_labels) == "table" then
-- Use simple comma-separated string instead of messagepack
script_class_labels = "TABLE:" .. table.concat(class_labels, ",")
else
-- Single class label or boolean compatibility
if class_labels == true or class_labels == "true" then
script_class_labels = "S" -- spam
elseif class_labels == false or class_labels == "false" then
script_class_labels = "H" -- ham
else
script_class_labels = class_labels -- string class label
end
end
lua_redis.exec_redis_script(classify_script_id,
{ task = task, is_write = false, key = expanded_key },
classify_redis_cb, { expanded_key, script_class_labels, stat_tokens })
end
end
local function gen_learn_functor(redis_params, learn_script_id)
return function(task, expanded_key, id, class_label, symbol, is_unlearn, stat_tokens, callback, maybe_text_tokens)
local function learn_redis_cb(err, data)
lua_util.debugm(N, task, 'learn redis cb: %s, %s for class %s', err, data, class_label)
if err then
callback(task, false, err)
else
callback(task, true)
end
end
-- Convert class_label for backward compatibility
local script_class_label = class_label
if class_label == true or class_label == "true" then
script_class_label = "S" -- spam
elseif class_label == false or class_label == "false" then
script_class_label = "H" -- ham
end
if maybe_text_tokens then
lua_redis.exec_redis_script(learn_script_id,
{ task = task, is_write = true, key = expanded_key },
learn_redis_cb,
{ expanded_key, script_class_label, symbol, tostring(is_unlearn), stat_tokens, maybe_text_tokens })
else
lua_redis.exec_redis_script(learn_script_id,
{ task = task, is_write = true, key = expanded_key },
learn_redis_cb, { expanded_key, script_class_label, symbol, tostring(is_unlearn), stat_tokens })
end
end
end
local function load_redis_params(classifier_ucl, statfile_ucl)
local redis_params
-- Try load from statfile options
if statfile_ucl.redis then
redis_params = lua_redis.try_load_redis_servers(statfile_ucl.redis, rspamd_config, true)
end
if not redis_params then
if statfile_ucl then
redis_params = lua_redis.try_load_redis_servers(statfile_ucl, rspamd_config, true)
end
end
-- Try load from classifier config
if not redis_params and classifier_ucl.backend then
redis_params = lua_redis.try_load_redis_servers(classifier_ucl.backend, rspamd_config, true)
end
if not redis_params and classifier_ucl.redis then
redis_params = lua_redis.try_load_redis_servers(classifier_ucl.redis, rspamd_config, true)
end
if not redis_params then
redis_params = lua_redis.try_load_redis_servers(classifier_ucl, rspamd_config, true)
end
-- Try load global options
if not redis_params then
redis_params = lua_redis.try_load_redis_servers(rspamd_config:get_all_opt('redis'), rspamd_config, true)
end
if not redis_params then
logger.err(rspamd_config, "cannot load Redis parameters for the classifier")
return nil
end
return redis_params
end
---
--- Init bayes classifier
--- @param classifier_ucl ucl of the classifier config
--- @param statfile_ucl ucl of the statfile config
--- @return a pair of (classify_functor, learn_functor) or `nil` in case of error
exports.lua_bayes_init_statfile = function(classifier_ucl, statfile_ucl, symbol, class_label, ev_base, stat_periodic_cb)
local redis_params = load_redis_params(classifier_ucl, statfile_ucl)
if not redis_params then
return nil
end
local classify_script_id = lua_redis.load_redis_script_from_file("bayes_classify.lua", redis_params)
local learn_script_id = lua_redis.load_redis_script_from_file("bayes_learn.lua", redis_params)
local stat_script_id = lua_redis.load_redis_script_from_file("bayes_stat.lua", redis_params)
local max_users = classifier_ucl.max_users or 1000
local current_data = {
users = 0,
revision = 0,
}
local final_data = {
users = 0,
revision = 0, -- number of learns
}
local cursor = 0
if ev_base then
rspamd_config:add_periodic(ev_base, 0.0, function(cfg, _)
local function stat_redis_cb(err, data)
lua_util.debugm(N, cfg, 'stat redis cb: %s, %s', err, data)
if err then
logger.warn(cfg, 'cannot get bayes statistics for %s: %s', symbol, err)
else
local new_cursor = data[1]
current_data.users = current_data.users + data[2]
current_data.revision = current_data.revision + data[3]
if new_cursor == 0 then
-- Done iteration
final_data = lua_util.shallowcopy(current_data)
current_data = {
users = 0,
revision = 0,
}
lua_util.debugm(N, cfg, 'final data: %s', final_data)
stat_periodic_cb(cfg, final_data)
end
cursor = new_cursor
end
end
-- Convert class_label to learn key
local learn_key
if class_label == true or class_label == "true" or class_label == "S" then
learn_key = "learns_spam"
elseif class_label == false or class_label == "false" or class_label == "H" then
learn_key = "learns_ham"
else
-- For other class labels, use learns_<class_label>
learn_key = "learns_" .. string.lower(tostring(class_label))
end
lua_redis.exec_redis_script(stat_script_id,
{ ev_base = ev_base, cfg = cfg, is_write = false },
stat_redis_cb, { tostring(cursor),
symbol,
learn_key,
tostring(max_users) })
return statfile_ucl.monitor_timeout or classifier_ucl.monitor_timeout or 30.0
end)
end
return gen_classify_functor(redis_params, classify_script_id), gen_learn_functor(redis_params, learn_script_id)
end
local function gen_cache_check_functor(redis_params, check_script_id, conf)
local packed_conf = ucl.to_format(conf, 'msgpack')
return function(task, cache_id, callback)
local function classify_redis_cb(err, data)
lua_util.debugm(N, task, 'check cache redis cb: %s, %s (%s)', err, data, type(data))
if err then
callback(task, false, err)
else
if type(data) == 'number' then
callback(task, true, data)
else
callback(task, false, 'not found')
end
end
end
lua_util.debugm(N, task, 'checking cache: %s', cache_id)
lua_redis.exec_redis_script(check_script_id,
{ task = task, is_write = false, key = cache_id },
classify_redis_cb, { cache_id, packed_conf })
end
end
local function gen_cache_learn_functor(redis_params, learn_script_id, conf)
local packed_conf = ucl.to_format(conf, 'msgpack')
return function(task, cache_id, class_name, class_id)
local function learn_redis_cb(err, data)
lua_util.debugm(N, task, 'learn_cache redis cb: %s, %s', err, data)
end
lua_util.debugm(N, task, 'try to learn cache: %s as %s (id=%s)', cache_id, class_name, class_id)
lua_redis.exec_redis_script(learn_script_id,
{ task = task, is_write = true, key = cache_id },
learn_redis_cb,
{ cache_id, tostring(class_id), packed_conf })
end
end
exports.lua_bayes_init_cache = function(classifier_ucl, statfile_ucl)
local redis_params = load_redis_params(classifier_ucl, statfile_ucl)
if not redis_params then
return nil
end
local default_conf = {
cache_prefix = "learned_ids",
cache_max_elt = 10000, -- Maximum number of elements in the cache key
cache_max_keys = 5, -- Maximum number of keys in the cache
cache_elt_len = 32, -- Length of the element in the cache (will trim id to that value)
}
local conf = lua_util.override_defaults(default_conf, classifier_ucl)
-- Clean all not known configurations
for k, _ in pairs(conf) do
if default_conf[k] == nil then
conf[k] = nil
end
end
local check_script_id = lua_redis.load_redis_script_from_file("bayes_cache_check.lua", redis_params)
local learn_script_id = lua_redis.load_redis_script_from_file("bayes_cache_learn.lua", redis_params)
return gen_cache_check_functor(redis_params, check_script_id, conf), gen_cache_learn_functor(redis_params,
learn_script_id, conf)
end
return exports
|