1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
|
--[[
Copyright (c) 2022, Vsevolod Stakhov <vsevolod@rspamd.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]] --
local fun = require "fun"
local lua_redis = require "lua_redis"
local lua_settings = require "lua_settings"
local lua_util = require "lua_util"
local meta_functions = require "lua_meta"
local rspamd_kann = require "rspamd_kann"
local rspamd_logger = require "rspamd_logger"
local rspamd_tensor = require "rspamd_tensor"
local rspamd_util = require "rspamd_util"
local ucl = require "ucl"
local N = 'neural'
-- Used in prefix to avoid wrong ANN to be loaded
local plugin_ver = '3'
-- Module vars
local default_options = {
train = {
max_trains = 1000,
max_epoch = 1000,
max_usages = 10,
max_iterations = 25, -- Torch style
mse = 0.001,
autotrain = true,
train_prob = 1.0,
learn_threads = 1,
learn_mode = 'balanced', -- Possible values: balanced, proportional
learning_rate = 0.01,
classes_bias = 0.0, -- balanced mode: what difference is allowed between classes (1:1 proportion means 0 bias)
spam_skip_prob = 0.0, -- proportional mode: spam skip probability (0-1)
ham_skip_prob = 0.0, -- proportional mode: ham skip probability
store_pool_only = false, -- store tokens in cache only (disables autotrain);
-- neural_vec_mpack stores vector of training data in messagepack neural_profile_digest stores profile digest
},
watch_interval = 60.0,
lock_expire = 600,
learning_spawned = false,
ann_expire = 60 * 60 * 24 * 2, -- 2 days
hidden_layer_mult = 1.5, -- number of neurons in the hidden layer
roc_enabled = false, -- Use ROC to find the best possible thresholds for ham and spam. If spam_score_threshold or ham_score_threshold is defined, it takes precedence over ROC thresholds.
roc_misclassification_cost = 0.5, -- Cost of misclassifying a spam message (must be 0..1).
spam_score_threshold = nil, -- neural score threshold for spam (must be 0..1 or nil to disable)
ham_score_threshold = nil, -- neural score threshold for ham (must be 0..1 or nil to disable)
flat_threshold_curve = false, -- use binary classification 0/1 when threshold is reached
symbol_spam = 'NEURAL_SPAM',
symbol_ham = 'NEURAL_HAM',
max_inputs = nil, -- when PCA is used
blacklisted_symbols = {}, -- list of symbols skipped in neural processing
-- Phase 0 additions (scaffolding for feature providers)
providers = nil, -- list of provider configs; if nil, fallback to symbols-only provider
fusion = {
normalization = 'none', -- none|unit|zscore (zscore requires stats)
per_provider_pca = false, -- if true, apply PCA per provider before fusion (not active yet)
},
disable_symbols_input = false, -- when true, do not use symbols provider unless explicitly listed
}
-- Rule structure:
-- * static config fields (see `default_options`)
-- * prefix - name or defined prefix
-- * settings - table of settings indexed by settings id, -1 is used when no settings defined
-- Rule settings element defines elements for specific settings id:
-- * symbols - static symbols profile (defined by config or extracted from symcache)
-- * name - name of settings id
-- * digest - digest of all symbols
-- * ann - dynamic ANN configuration loaded from Redis
-- * train - train data for ANN (e.g. the currently trained ANN)
-- Settings ANN table is loaded from Redis and represents dynamic profile for ANN
-- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically
-- * version - version of ANN loaded from redis
-- * redis_key - name of ANN key in Redis
-- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols)
-- * distance - distance between set.symbols and set.ann.symbols
-- * ann - kann object
local settings = {
rules = {},
prefix = 'rn', -- Neural network default prefix
max_profiles = 3, -- Maximum number of NN profiles stored
}
-- Get module & Redis configuration
local module_config = rspamd_config:get_all_opt(N)
settings = lua_util.override_defaults(settings, module_config)
local redis_params = lua_redis.parse_redis_server('neural')
local redis_lua_script_vectors_len = "neural_train_size.lua"
local redis_lua_script_maybe_invalidate = "neural_maybe_invalidate.lua"
local redis_lua_script_maybe_lock = "neural_maybe_lock.lua"
local redis_lua_script_save_unlock = "neural_save_unlock.lua"
local redis_script_id = {}
-- Provider registry (Phase 0 scaffolding)
local registered_providers = {}
--- Registers a feature provider implementation
-- @param name string
-- @param provider table with function collect(task, ctx) -> vector(table of numbers), meta(table)
local function register_provider(name, provider)
registered_providers[name] = provider
end
local function get_provider(name)
return registered_providers[name]
end
-- Forward declaration
local result_to_vector
-- Built-in symbols provider (compatibility path)
register_provider('symbols', {
collect = function(task, ctx)
local vec = result_to_vector(task, ctx.profile)
return vec, { name = 'symbols', type = 'symbols', dim = #vec, weight = ctx.weight or 1.0 }
end,
collect_async = function(task, ctx, cont)
local vec = result_to_vector(task, ctx.profile)
cont(vec, { name = 'symbols', type = 'symbols', dim = #vec, weight = ctx.weight or 1.0 })
end,
})
-- Metatokens-only provider for contexts where symbols are not available
register_provider('metatokens', {
collect = function(task, ctx)
local mt = meta_functions.rspamd_gen_metatokens(task)
-- Convert to table of numbers
local vec = {}
for i = 1, #mt do
vec[i] = tonumber(mt[i]) or 0.0
end
return vec, { name = 'metatokens', type = 'metatokens', dim = #vec, weight = ctx.weight or 1.0 }
end,
collect_async = function(task, ctx, cont)
local mt = meta_functions.rspamd_gen_metatokens(task)
-- Convert to table of numbers
local vec = {}
for i = 1, #mt do
vec[i] = tonumber(mt[i]) or 0.0
end
cont(vec, { name = 'metatokens', type = 'metatokens', dim = #vec, weight = ctx.weight or 1.0 })
end,
})
local function load_scripts()
redis_script_id.vectors_len = lua_redis.load_redis_script_from_file(redis_lua_script_vectors_len,
redis_params)
redis_script_id.maybe_invalidate = lua_redis.load_redis_script_from_file(redis_lua_script_maybe_invalidate,
redis_params)
redis_script_id.maybe_lock = lua_redis.load_redis_script_from_file(redis_lua_script_maybe_lock,
redis_params)
redis_script_id.save_unlock = lua_redis.load_redis_script_from_file(redis_lua_script_save_unlock,
redis_params)
end
local function create_ann(n, nlayers, rule)
-- We ignore number of layers so far when using kann
local nhidden = math.floor(n * (rule.hidden_layer_mult or 1.0) + 1.0)
local t = rspamd_kann.layer.input(n)
t = rspamd_kann.transform.relu(t)
t = rspamd_kann.layer.dense(t, nhidden);
t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.ceb_neg)
return rspamd_kann.new.kann(t)
end
-- Fills ANN data for a specific settings element
local function fill_set_ann(set, ann_key)
if not set.ann then
set.ann = {
symbols = set.symbols,
distance = 0,
digest = set.digest,
redis_key = ann_key,
version = 0,
}
end
end
-- This function takes all inputs, applies PCA transformation and returns the final
-- PCA matrix as rspamd_tensor
local function learn_pca(inputs, max_inputs)
local scatter_matrix = rspamd_tensor.scatter_matrix(rspamd_tensor.fromtable(inputs))
local eigenvals = scatter_matrix:eigen()
-- scatter matrix is not filled with eigenvectors
lua_util.debugm(N, 'eigenvalues: %s', eigenvals)
local w = rspamd_tensor.new(2, max_inputs, #scatter_matrix[1])
for i = 1, max_inputs do
w[i] = scatter_matrix[#scatter_matrix - i + 1]
end
lua_util.debugm(N, 'pca matrix: %s', w)
return w
end
-- Build providers metadata for storage alongside ANN
local function build_providers_meta(metas)
if not metas or #metas == 0 then return nil end
local out = {}
for i, m in ipairs(metas) do
out[i] = {
name = m.name,
type = m.type,
dim = m.dim,
weight = m.weight,
model = m.model,
provider = m.provider,
}
end
return out
end
-- Normalization helpers
local function l2_normalize_vector(vec)
local sumsq = 0.0
for i = 1, #vec do
local v = vec[i]
sumsq = sumsq + v * v
end
if sumsq > 0 then
local inv = 1.0 / math.sqrt(sumsq)
for i = 1, #vec do
vec[i] = vec[i] * inv
end
end
return vec
end
local function compute_zscore_stats(inputs)
local n = #inputs
if n == 0 then return nil end
local d = #inputs[1]
local mean = {}
local m2 = {}
for j = 1, d do
mean[j] = 0.0
m2[j] = 0.0
end
for i = 1, n do
local x = inputs[i]
for j = 1, d do
local delta = x[j] - mean[j]
mean[j] = mean[j] + delta / i
m2[j] = m2[j] + delta * (x[j] - mean[j])
end
end
local std = {}
for j = 1, d do
std[j] = math.sqrt((n > 1 and (m2[j] / (n - 1))) or 0.0)
if std[j] == 0 or std[j] ~= std[j] then
std[j] = 1.0 -- avoid division by zero and NaN
end
end
return { mode = 'zscore', mean = mean, std = std }
end
local function apply_normalization(vec, norm_stats_or_mode)
if not norm_stats_or_mode then return vec end
if type(norm_stats_or_mode) == 'string' then
if norm_stats_or_mode == 'unit' then
return l2_normalize_vector(vec)
else
return vec
end
else
if norm_stats_or_mode.mode == 'unit' then
return l2_normalize_vector(vec)
elseif norm_stats_or_mode.mode == 'zscore' and norm_stats_or_mode.mean and norm_stats_or_mode.std then
local mean = norm_stats_or_mode.mean
local std = norm_stats_or_mode.std
for i = 1, math.min(#vec, #mean) do
vec[i] = (vec[i] - (mean[i] or 0.0)) / (std[i] or 1.0)
end
return vec
else
return vec
end
end
end
-- This function computes optimal threshold using ROC for the given set of inputs.
-- Returns a threshold that minimizes:
-- alpha * (false_positive_rate) + beta * (false_negative_rate)
-- Where alpha is cost of false positive result
-- beta is cost of false negative result
local function get_roc_thresholds(ann, inputs, outputs, alpha, beta)
-- Sorts list x and list y based on the values in list x.
local sort_relative = function(x, y)
local r = {}
assert(#x == #y)
local n = #x
local a = {}
local b = {}
for i = 1, n do
r[i] = i
end
local cmp = function(p, q)
return p < q
end
table.sort(r, function(p, q)
return cmp(x[p], x[q])
end)
for i = 1, n do
a[i] = x[r[i]]
b[i] = y[r[i]]
end
return a, b
end
local function get_scores(nn, input_vectors)
local scores = {}
for i = 1, #inputs do
local score = nn:apply1(input_vectors[i], nn.pca)[1]
scores[#scores + 1] = score
end
return scores
end
local fpr = {}
local fnr = {}
local scores = get_scores(ann, inputs)
scores, outputs = sort_relative(scores, outputs)
local n_samples = #outputs
local n_spam = 0
local n_ham = 0
local ham_count_ahead = {}
local spam_count_ahead = {}
local ham_count_behind = {}
local spam_count_behind = {}
ham_count_ahead[n_samples + 1] = 0
spam_count_ahead[n_samples + 1] = 0
for i = n_samples, 1, -1 do
if outputs[i][1] == 0 then
n_ham = n_ham + 1
ham_count_ahead[i] = 1
spam_count_ahead[i] = 0
else
n_spam = n_spam + 1
ham_count_ahead[i] = 0
spam_count_ahead[i] = 1
end
ham_count_ahead[i] = ham_count_ahead[i] + ham_count_ahead[i + 1]
spam_count_ahead[i] = spam_count_ahead[i] + spam_count_ahead[i + 1]
end
for i = 1, n_samples do
if outputs[i][1] == 0 then
ham_count_behind[i] = 1
spam_count_behind[i] = 0
else
ham_count_behind[i] = 0
spam_count_behind[i] = 1
end
if i ~= 1 then
ham_count_behind[i] = ham_count_behind[i] + ham_count_behind[i - 1]
spam_count_behind[i] = spam_count_behind[i] + spam_count_behind[i - 1]
end
end
for i = 1, n_samples do
fpr[i] = 0
fnr[i] = 0
if (ham_count_ahead[i + 1] + ham_count_behind[i]) ~= 0 then
fpr[i] = ham_count_ahead[i + 1] / (ham_count_ahead[i + 1] + ham_count_behind[i])
end
if (spam_count_behind[i] + spam_count_ahead[i + 1]) ~= 0 then
fnr[i] = spam_count_behind[i] / (spam_count_behind[i] + spam_count_ahead[i + 1])
end
end
local p = n_spam / (n_spam + n_ham)
local cost = {}
local min_cost_idx = 0
local min_cost = math.huge
for i = 1, n_samples do
cost[i] = ((1 - p) * alpha * fpr[i]) + (p * beta * fnr[i])
if min_cost >= cost[i] then
min_cost = cost[i]
min_cost_idx = i
end
end
return scores[min_cost_idx]
end
-- This function is intended to extend lock for ANN during training
-- It registers periodic that increases locked key each 30 seconds unless
-- `set.learning_spawned` is set to `true`
local function register_lock_extender(rule, set, ev_base, ann_key)
rspamd_config:add_periodic(ev_base, 30.0,
function()
local function redis_lock_extend_cb(err, _)
if err then
rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s',
ann_key, err)
else
rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds',
ann_key)
end
end
if set.learning_spawned then
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
true, -- is write
redis_lock_extend_cb, --callback
'HINCRBY', -- command
{ ann_key, 'lock', '30' }
)
else
lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false")
return false -- do not plan any more updates
end
return true
end
)
end
local function can_push_train_vector(rule, task, learn_type, nspam, nham)
local train_opts = rule.train
local coin = math.random()
if train_opts.train_prob and coin < 1.0 - train_opts.train_prob then
rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin)
return false
end
if train_opts.learn_mode == 'balanced' then
-- Keep balanced training set based on number of spam and ham samples
if learn_type == 'spam' then
if nspam <= train_opts.max_trains then
if nspam > nham then
-- Apply sampling
local skip_rate = 1.0 - nham / (nspam + 1)
if coin < skip_rate - train_opts.classes_bias then
rspamd_logger.infox(task,
'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored',
learn_type,
skip_rate - train_opts.classes_bias,
nspam, nham)
return false
end
end
return true
else
-- Enough learns
rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many spam samples: %s',
learn_type,
nspam)
end
else
if nham <= train_opts.max_trains then
if nham > nspam then
-- Apply sampling
local skip_rate = 1.0 - nspam / (nham + 1)
if coin < skip_rate - train_opts.classes_bias then
rspamd_logger.infox(task,
'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored',
learn_type,
skip_rate - train_opts.classes_bias,
nspam, nham)
return false
end
end
return true
else
rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many ham samples: %s', learn_type,
nham)
end
end
else
-- Probabilistic learn mode, we just skip learn if we already have enough samples or
-- if our coin drop is less than desired probability
if learn_type == 'spam' then
if nspam <= train_opts.max_trains then
if train_opts.spam_skip_prob then
if coin <= train_opts.spam_skip_prob then
rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type,
coin, train_opts.spam_skip_prob)
return false
end
return true
end
else
rspamd_logger.infox(task, 'skip %s sample; too many spam samples: %s (%s limit)', learn_type,
nspam, train_opts.max_trains)
end
else
if nham <= train_opts.max_trains then
if train_opts.ham_skip_prob then
if coin <= train_opts.ham_skip_prob then
rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type,
coin, train_opts.ham_skip_prob)
return false
end
return true
end
else
rspamd_logger.infox(task, 'skip %s sample; too many ham samples: %s (%s limit)', learn_type,
nham, train_opts.max_trains)
end
end
end
return false
end
-- Closure generator for unlock function
local function gen_unlock_cb(rule, set, ann_key)
return function(err)
if err then
rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s',
rule.prefix, set.name, ann_key, err)
else
lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s',
rule.prefix, set.name, ann_key)
end
end
end
-- Used to generate new ANN key for specific profile
local function new_ann_key(rule, set, version)
local ann_key = string.format('%s_%s_%s_%s_%d', settings.prefix,
rule.prefix, set.name, set.digest:sub(1, 8), version)
return ann_key
end
local function redis_ann_prefix(rule, settings_name)
-- We also need to count metatokens:
-- Note: meta_functions.version represents the metatoken format version
local n = meta_functions.version
return string.format('%s%d_%s_%d_%s',
settings.prefix, plugin_ver, rule.prefix, n, settings_name)
end
-- Compute a stable digest for providers configuration
local function providers_config_digest(providers_cfg)
if not providers_cfg then return nil end
-- Normalize minimal subset of fields to keep digest stable across equivalent configs
local norm = {}
for i, p in ipairs(providers_cfg) do
norm[i] = {
type = p.type,
name = p.name,
weight = p.weight or 1.0,
dim = p.dim,
}
end
return lua_util.table_digest(norm)
end
-- If no providers configured, fallback to symbols provider unless disabled
-- phase: 'infer' | 'train'
-- Removed synchronous collect_features; use collect_features_async instead
-- Async version: runs providers in parallel and calls cb(fused, meta) when done
local function collect_features_async(task, rule, profile_or_set, phase, cb)
local providers_cfg = rule.providers
if not providers_cfg or #providers_cfg == 0 then
if rule.disable_symbols_input then
cb(nil, { providers = {}, total_dim = 0, digest = providers_config_digest(providers_cfg) })
return
end
local prov = get_provider('symbols')
if prov and prov.collect_async then
prov.collect_async(task, { profile = profile_or_set, weight = 1.0, phase = phase }, function(vec, meta)
local metas = {}
if vec then
metas[1] = meta
end
local fused = {}
if vec then
local w = (meta and meta.weight) or 1.0
local norm_mode = (rule.fusion and rule.fusion.normalization) or 'none'
if norm_mode ~= 'none' then
vec = apply_normalization(vec, norm_mode)
end
for _, x in ipairs(vec) do
fused[#fused + 1] = x * w
end
end
cb(#fused > 0 and fused or nil, {
providers = build_providers_meta(metas) or metas,
total_dim = #fused,
digest = providers_config_digest(providers_cfg),
})
end)
return
end
-- Fallback: direct symbols compute
local vec = result_to_vector(task, profile_or_set)
local meta = { name = 'symbols', type = 'symbols', dim = #vec, weight = 1.0 }
local fused = {}
local w = 1.0
local norm_mode = (rule.fusion and rule.fusion.normalization) or 'none'
if norm_mode ~= 'none' then
vec = apply_normalization(vec, norm_mode)
end
for _, x in ipairs(vec) do
fused[#fused + 1] = x * w
end
cb(fused,
{
providers = build_providers_meta({ meta }) or { meta },
total_dim = #fused,
digest = providers_config_digest(
providers_cfg)
})
return
end
local vectors = {}
local metas = {}
local remaining = 0
local function maybe_finish()
remaining = remaining - 1
if remaining == 0 then
-- Fuse
local fused = {}
for i, v in ipairs(vectors) do
if v then
local w = (metas[i] and metas[i].weight) or 1.0
local norm_mode = (rule.fusion and rule.fusion.normalization) or 'none'
if norm_mode ~= 'none' then
v = apply_normalization(v, norm_mode)
end
for _, x in ipairs(v) do
fused[#fused + 1] = x * w
end
end
end
local meta = {
providers = build_providers_meta(metas) or metas,
total_dim = #fused,
digest = providers_config_digest(providers_cfg),
}
if #fused == 0 then
cb(nil, meta)
else
cb(fused, meta)
end
end
end
local function start_provider(i, pcfg)
local prov = get_provider(pcfg.type or pcfg.name)
if not prov or not prov.collect_async then
maybe_finish()
return
end
prov.collect_async(task, {
profile = profile_or_set,
set = profile_or_set,
rule = rule,
config = pcfg,
weight = pcfg.weight or 1.0,
phase = phase,
}, function(vec, meta)
if vec then
metas[i] = meta or { name = pcfg.name or pcfg.type, type = pcfg.type, dim = #vec, weight = pcfg.weight or 1.0 }
vectors[i] = vec
end
maybe_finish()
end)
end
-- Include symbols provider (which includes both symbols AND metatokens) as an extra provider
-- The name 'include_meta' is historical but it actually includes the full symbols provider
-- For backward compatibility, include symbols by default unless explicitly disabled
local include_meta = false
if not providers_cfg or #providers_cfg == 0 then
-- No providers, always use symbols (which includes metatokens)
include_meta = true
elseif rule.fusion then
-- Explicit fusion config takes precedence
include_meta = rule.fusion.include_meta
if include_meta == nil then
-- Default to true for backward compatibility when fusion is configured but include_meta not specified
include_meta = true
end
else
-- Providers configured but no fusion settings - default to including symbols+metatokens
include_meta = true
end
local meta_weight = (rule.fusion and rule.fusion.meta_weight) or 1.0
remaining = #providers_cfg + (include_meta and 1 or 0)
-- Start all configured providers
for i, pcfg in ipairs(providers_cfg) do
start_provider(i, pcfg)
end
if include_meta then
-- Always use metatokens provider for consistency
-- This ensures same dimensions whether called from controller or full scan
local prov = get_provider('metatokens')
if prov and prov.collect_async then
local meta_index = #providers_cfg + 1 -- Metatokens always come after providers
prov.collect_async(task, { profile = profile_or_set, set = profile_or_set, weight = meta_weight, phase = phase },
function(vec, meta)
if vec then
metas[meta_index] = meta
vectors[meta_index] = vec
end
maybe_finish()
end)
else
maybe_finish()
end
end
end
-- This function receives training vectors, checks them, spawn learning and saves ANN in Redis
local function spawn_train(params)
-- Check training data sanity
-- Now we need to join inputs and create the appropriate test vectors
local n
-- When using providers, derive dimension from actual vectors
if params.rule.providers and #params.rule.providers > 0 and
(#params.spam_vec > 0 or #params.ham_vec > 0) then
-- Use dimension from stored vectors
if #params.spam_vec > 0 then
n = #params.spam_vec[1]
else
n = #params.ham_vec[1]
end
lua_util.debugm(N, rspamd_config, 'spawn_train: using vector dimension %s from stored vectors', n)
else
-- Traditional symbol-based dimension
n = #params.set.symbols + meta_functions.rspamd_count_metatokens()
lua_util.debugm(N, rspamd_config, 'spawn_train: using symbol dimension %s symbols + %s metatokens = %s',
#params.set.symbols, meta_functions.rspamd_count_metatokens(), n)
end
-- Now we can train ann
local train_ann = create_ann(params.rule.max_inputs or n, 3, params.rule)
if #params.ham_vec + #params.spam_vec < params.rule.train.max_trains / 2 then
-- Invalidate ANN as it is definitely invalid
-- TODO: add invalidation
assert(false)
else
local inputs, outputs = {}, {}
-- Used to show parsed vectors in a convenient format (for debugging only)
local function debug_vec(t)
local ret = {}
for i, v in ipairs(t) do
if v ~= 0 then
ret[#ret + 1] = string.format('%d=%.2f', i, v)
end
end
return ret
end
-- Make training set by joining vectors
-- KANN automatically shuffles those samples
-- 1.0 is used for spam and -1.0 is used for ham
-- It implies that output layer can express that (e.g. tanh output)
for _, e in ipairs(params.spam_vec) do
inputs[#inputs + 1] = e
outputs[#outputs + 1] = { 1.0 }
--rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e))
end
for _, e in ipairs(params.ham_vec) do
inputs[#inputs + 1] = e
outputs[#outputs + 1] = { -1.0 }
--rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e))
end
-- Called in child process
local function train()
local log_thresh = params.rule.train.max_iterations / 10
local seen_nan = false
local function train_cb(iter, train_cost, value_cost)
if (iter * (params.rule.train.max_iterations / log_thresh)) % (params.rule.train.max_iterations) == 0 then
if train_cost ~= train_cost and not seen_nan then
-- We have nan :( try to log lot's of stuff to dig into a problem
seen_nan = true
rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s',
params.rule.prefix, params.set.name,
value_cost)
for i, e in ipairs(inputs) do
lua_util.debugm(N, rspamd_config, 'train vector %s -> %s',
debug_vec(e), outputs[i][1])
end
end
rspamd_logger.infox(rspamd_config,
"ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s",
params.rule.prefix, params.set.name,
params.ann_key,
iter,
train_cost,
value_cost)
end
end
lua_util.debugm(N, rspamd_config, "subprocess to learn ANN %s:%s has been started",
params.rule.prefix, params.set.name)
local pca
if params.rule.max_inputs then
-- Train PCA in the main process, presumably it is not that long
lua_util.debugm(N, rspamd_config, "start PCA train for ANN %s:%s",
params.rule.prefix, params.set.name)
pca = learn_pca(inputs, params.rule.max_inputs)
end
-- Compute normalization stats if requested
local norm_stats
if params.rule.fusion and params.rule.fusion.normalization == 'zscore' then
norm_stats = compute_zscore_stats(inputs)
elseif params.rule.fusion and params.rule.fusion.normalization == 'unit' then
norm_stats = { mode = 'unit' }
end
if norm_stats then
for i = 1, #inputs do
inputs[i] = apply_normalization(inputs[i], norm_stats)
end
end
lua_util.debugm(N, rspamd_config, "start neural train for ANN %s:%s",
params.rule.prefix, params.set.name)
local ret, err = pcall(train_ann.train1, train_ann,
inputs, outputs, {
lr = params.rule.train.learning_rate,
max_epoch = params.rule.train.max_iterations,
cb = train_cb,
pca = pca
})
if not ret then
rspamd_logger.errx(rspamd_config, "cannot train ann %s:%s: %s",
params.rule.prefix, params.set.name, err)
return nil
else
lua_util.debugm(N, rspamd_config, "finished neural train for ANN %s:%s",
params.rule.prefix, params.set.name)
end
local roc_thresholds = {}
if params.rule.roc_enabled then
local spam_threshold = get_roc_thresholds(train_ann,
inputs,
outputs,
1 - params.rule.roc_misclassification_cost,
params.rule.roc_misclassification_cost)
local ham_threshold = get_roc_thresholds(train_ann,
inputs,
outputs,
params.rule.roc_misclassification_cost,
1 - params.rule.roc_misclassification_cost)
roc_thresholds = { spam_threshold, ham_threshold }
rspamd_logger.messagex("ROC thresholds: (spam_threshold: %s, ham_threshold: %s)",
roc_thresholds[1], roc_thresholds[2])
end
if not seen_nan then
-- Convert to strings as ucl cannot rspamd_text properly
local pca_data
if pca then
pca_data = tostring(pca:save())
end
local out = {
ann_data = tostring(train_ann:save()),
pca_data = pca_data,
roc_thresholds = roc_thresholds,
norm_stats = norm_stats,
}
local final_data = ucl.to_format(out, 'msgpack')
lua_util.debugm(N, rspamd_config, "subprocess for ANN %s:%s returned %s bytes",
params.rule.prefix, params.set.name, #final_data)
return final_data
else
return nil
end
end
params.set.learning_spawned = true
local function redis_save_cb(err)
if err then
rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s',
params.rule.prefix, params.set.name, params.ann_key, err)
lua_redis.redis_make_request_taskless(params.ev_base,
rspamd_config,
params.rule.redis,
nil,
false, -- is write
gen_unlock_cb(params.rule, params.set, params.ann_key), --callback
'HDEL', -- command
{ params.ann_key, 'lock' }
)
else
rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s',
params.rule.prefix, params.set.name, params.set.ann.redis_key)
end
end
local function ann_trained(err, data)
params.set.learning_spawned = false
if err then
rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s',
params.rule.prefix, params.set.name, err)
lua_redis.redis_make_request_taskless(params.ev_base,
rspamd_config,
params.rule.redis,
nil,
true, -- is write
gen_unlock_cb(params.rule, params.set, params.ann_key), --callback
'HDEL', -- command
{ params.ann_key, 'lock' }
)
else
local parser = ucl.parser()
local ok, parse_err = parser:parse_text(data, 'msgpack')
assert(ok, parse_err)
local parsed = parser:get_object()
local ann_data = rspamd_util.zstd_compress(parsed.ann_data)
local pca_data = parsed.pca_data
local roc_thresholds = parsed.roc_thresholds
local norm_stats = parsed.norm_stats
fill_set_ann(params.set, params.ann_key)
if pca_data then
params.set.ann.pca = rspamd_tensor.load(pca_data)
pca_data = rspamd_util.zstd_compress(pca_data)
end
if roc_thresholds then
params.set.ann.roc_thresholds = roc_thresholds
end
-- Deserialise ANN from the child process
ann_trained = rspamd_kann.load(parsed.ann_data)
local version = (params.set.ann.version or 0) + 1
params.set.ann.version = version
params.set.ann.ann = ann_trained
params.set.ann.symbols = params.set.symbols
params.set.ann.redis_key = new_ann_key(params.rule, params.set, version)
local profile = {
symbols = params.set.symbols,
digest = params.set.digest,
redis_key = params.set.ann.redis_key,
version = version,
providers_digest = providers_config_digest(params.rule.providers),
}
local profile_serialized = ucl.to_format(profile, 'json-compact', true)
local roc_thresholds_serialized = ucl.to_format(roc_thresholds, 'json-compact', true)
local providers_meta_serialized
if params.rule.providers then
providers_meta_serialized = ucl.to_format(
build_providers_meta(params.set.ann.providers or params.rule.providers), 'json-compact', true)
end
rspamd_logger.infox(rspamd_config,
'trained ANN %s:%s, %s bytes (%s compressed); %s rows in pca (%sb compressed); redis key: %s (old key %s)',
params.rule.prefix, params.set.name,
#data, #ann_data,
#(params.set.ann.pca or {}), #(pca_data or {}),
params.set.ann.redis_key, params.ann_key)
-- Ensure all arguments are non-nil for Lua 5.4 compatibility
-- (nil values in tables cause length/iteration issues)
lua_redis.exec_redis_script(redis_script_id.save_unlock,
{ ev_base = params.ev_base, is_write = true },
redis_save_cb,
{ profile.redis_key,
redis_ann_prefix(params.rule, params.set.name),
ann_data,
profile_serialized,
tostring(params.rule.ann_expire),
tostring(os.time()),
params.ann_key, -- old key to unlock...
roc_thresholds_serialized or '',
pca_data or '',
providers_meta_serialized or '',
ucl.to_format(norm_stats, 'json-compact', true) or '',
})
end
end
if params.rule.max_inputs then
fill_set_ann(params.set, params.ann_key)
end
params.worker:spawn_process {
func = train,
on_complete = ann_trained,
proctitle = string.format("ANN train for %s/%s", params.rule.prefix, params.set.name),
}
-- Spawn learn and register lock extension
params.set.learning_spawned = true
register_lock_extender(params.rule, params.set, params.ev_base, params.ann_key)
return
end
end
-- This function is used to adjust profiles and allowed setting ids for each rule
-- It must be called when all settings are already registered (e.g. at post-init for config)
local function process_rules_settings()
local function process_settings_elt(rule, selt)
local profile = rule.profile[selt.name]
if profile then
-- Use static user defined profile
-- Ensure that we have an array...
lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s",
rule.prefix, selt.name, profile)
if not profile[1] then
profile = lua_util.keys(profile)
end
selt.symbols = profile
else
lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)",
rule.prefix, selt.name)
end
local function filter_symbols_predicate(sname)
if settings.blacklisted_symbols and settings.blacklisted_symbols[sname] then
return false
end
local fl = rspamd_config:get_symbol_flags(sname)
if fl then
fl = lua_util.list_to_hash(fl)
return not (fl.nostat or fl.idempotent or fl.skip or fl.composite)
end
return true
end
-- Generic stuff
if not profile then
-- Do filtering merely if we are using a dynamic profile
selt.symbols = fun.totable(fun.filter(filter_symbols_predicate, selt.symbols))
end
table.sort(selt.symbols)
selt.digest = lua_util.table_digest(selt.symbols)
selt.prefix = redis_ann_prefix(rule, selt.name)
rspamd_logger.messagex(rspamd_config,
'use NN prefix for rule %s; settings id "%s"; symbols digest: "%s"',
selt.prefix, selt.name, selt.digest)
lua_redis.register_prefix(selt.prefix, N,
string.format('NN prefix for rule "%s"; settings id "%s"',
selt.prefix, selt.name), {
persistent = true,
type = 'zlist',
})
-- Versions
lua_redis.register_prefix(selt.prefix .. '_\\d+', N,
string.format('NN storage for rule "%s"; settings id "%s"',
selt.prefix, selt.name), {
persistent = true,
type = 'hash',
})
lua_redis.register_prefix(selt.prefix .. '_\\d+_spam_set', N,
string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
selt.prefix, selt.name), {
persistent = true,
type = 'set',
})
lua_redis.register_prefix(selt.prefix .. '_\\d+_ham_set', N,
string.format('NN learning set (ham) for rule "%s"; settings id "%s"',
rule.prefix, selt.name), {
persistent = true,
type = 'set',
})
end
for k, rule in pairs(settings.rules) do
if not rule.allowed_settings then
rule.allowed_settings = {}
elseif rule.allowed_settings == 'all' then
-- Extract all settings ids
rule.allowed_settings = lua_util.keys(lua_settings.all_settings())
end
-- Convert to a map <setting_id> -> true
rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings)
-- Check if we can work without settings
if k == 'default' or type(rule.default) ~= 'boolean' then
rule.default = true
end
rule.settings = {}
if rule.default then
local default_settings = {
symbols = lua_settings.default_symbols(),
name = 'default'
}
process_settings_elt(rule, default_settings)
rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32
end
-- Now, for each allowed settings, we store sorted symbols + digest
-- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest }
for s, _ in pairs(rule.allowed_settings) do
-- Here, we have a name, set of symbols and
local settings_id = s
if type(settings_id) ~= 'number' then
settings_id = lua_settings.numeric_settings_id(s)
end
local selt = lua_settings.settings_by_id(settings_id)
local nelt = {
symbols = selt.symbols, -- Already sorted
name = selt.name
}
process_settings_elt(rule, nelt)
for id, ex in pairs(rule.settings) do
if type(ex) == 'table' then
if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then
-- Equal symbols, add reference
lua_util.debugm(N, rspamd_config,
'added reference from settings id %s to %s; same symbols',
nelt.name, ex.name)
rule.settings[settings_id] = id
nelt = nil
end
end
end
if nelt then
rule.settings[settings_id] = nelt
lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s',
nelt.name, settings_id, rule.prefix)
end
end
end
end
-- Extract settings element for a specific settings id
local function get_rule_settings(task, rule)
local sid = task:get_settings_id() or -1
local set = rule.settings[sid]
if not set then
return nil
end
while type(set) == 'number' do
-- Reference to another settings!
set = rule.settings[set]
end
return set
end
result_to_vector = function(task, profile)
if not profile.zeros then
-- Fill zeros vector
local zeros = {}
for i = 1, meta_functions.rspamd_count_metatokens() do
zeros[i] = 0.0
end
for _, _ in ipairs(profile.symbols) do
zeros[#zeros + 1] = 0.0
end
profile.zeros = zeros
end
local vec = lua_util.shallowcopy(profile.zeros)
local mt = meta_functions.rspamd_gen_metatokens(task)
for i, v in ipairs(mt) do
vec[i] = v
end
task:process_ann_tokens(profile.symbols, vec, #mt, 0.1)
return vec
end
return {
can_push_train_vector = can_push_train_vector,
collect_features_async = collect_features_async,
create_ann = create_ann,
default_options = default_options,
build_providers_meta = build_providers_meta,
apply_normalization = apply_normalization,
gen_unlock_cb = gen_unlock_cb,
get_rule_settings = get_rule_settings,
load_scripts = load_scripts,
module_config = module_config,
new_ann_key = new_ann_key,
providers_config_digest = providers_config_digest,
register_provider = register_provider,
plugin_ver = plugin_ver,
process_rules_settings = process_rules_settings,
redis_ann_prefix = redis_ann_prefix,
redis_params = redis_params,
redis_script_id = redis_script_id,
result_to_vector = result_to_vector,
settings = settings,
spawn_train = spawn_train,
}
|