File: neural.lua

package info (click to toggle)
rspamd 3.14.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 35,064 kB
  • sloc: ansic: 247,728; cpp: 107,741; javascript: 31,385; perl: 3,089; asm: 2,512; pascal: 1,625; python: 1,510; sh: 589; sql: 313; makefile: 195; xml: 74
file content (1260 lines) | stat: -rw-r--r-- 42,252 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
--[[
Copyright (c) 2022, Vsevolod Stakhov <vsevolod@rspamd.com>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]] --

local fun = require "fun"
local lua_redis = require "lua_redis"
local lua_settings = require "lua_settings"
local lua_util = require "lua_util"
local meta_functions = require "lua_meta"
local rspamd_kann = require "rspamd_kann"
local rspamd_logger = require "rspamd_logger"
local rspamd_tensor = require "rspamd_tensor"
local rspamd_util = require "rspamd_util"
local ucl = require "ucl"

local N = 'neural'

-- Used in prefix to avoid wrong ANN to be loaded
local plugin_ver = '3'

-- Module vars
local default_options = {
  train = {
    max_trains = 1000,
    max_epoch = 1000,
    max_usages = 10,
    max_iterations = 25, -- Torch style
    mse = 0.001,
    autotrain = true,
    train_prob = 1.0,
    learn_threads = 1,
    learn_mode = 'balanced', -- Possible values: balanced, proportional
    learning_rate = 0.01,
    classes_bias = 0.0,      -- balanced mode: what difference is allowed between classes (1:1 proportion means 0 bias)
    spam_skip_prob = 0.0,    -- proportional mode: spam skip probability (0-1)
    ham_skip_prob = 0.0,     -- proportional mode: ham skip probability
    store_pool_only = false, -- store tokens in cache only (disables autotrain);
    -- neural_vec_mpack stores vector of training data in messagepack neural_profile_digest stores profile digest
  },
  watch_interval = 60.0,
  lock_expire = 600,
  learning_spawned = false,
  ann_expire = 60 * 60 * 24 * 2,    -- 2 days
  hidden_layer_mult = 1.5,          -- number of neurons in the hidden layer
  roc_enabled = false,              -- Use ROC to find the best possible thresholds for ham and spam. If spam_score_threshold or ham_score_threshold is defined, it takes precedence over ROC thresholds.
  roc_misclassification_cost = 0.5, -- Cost of misclassifying a spam message (must be 0..1).
  spam_score_threshold = nil,       -- neural score threshold for spam (must be 0..1 or nil to disable)
  ham_score_threshold = nil,        -- neural score threshold for ham (must be 0..1 or nil to disable)
  flat_threshold_curve = false,     -- use binary classification 0/1 when threshold is reached
  symbol_spam = 'NEURAL_SPAM',
  symbol_ham = 'NEURAL_HAM',
  max_inputs = nil,              -- when PCA is used
  blacklisted_symbols = {},      -- list of symbols skipped in neural processing
  -- Phase 0 additions (scaffolding for feature providers)
  providers = nil,               -- list of provider configs; if nil, fallback to symbols-only provider
  fusion = {
    normalization = 'none',      -- none|unit|zscore (zscore requires stats)
    per_provider_pca = false,    -- if true, apply PCA per provider before fusion (not active yet)
  },
  disable_symbols_input = false, -- when true, do not use symbols provider unless explicitly listed
}

-- Rule structure:
-- * static config fields (see `default_options`)
-- * prefix - name or defined prefix
-- * settings - table of settings indexed by settings id, -1 is used when no settings defined

-- Rule settings element defines elements for specific settings id:
-- * symbols - static symbols profile (defined by config or extracted from symcache)
-- * name - name of settings id
-- * digest - digest of all symbols
-- * ann - dynamic ANN configuration loaded from Redis
-- * train - train data for ANN (e.g. the currently trained ANN)

-- Settings ANN table is loaded from Redis and represents dynamic profile for ANN
-- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically
-- * version - version of ANN loaded from redis
-- * redis_key - name of ANN key in Redis
-- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols)
-- * distance - distance between set.symbols and set.ann.symbols
-- * ann - kann object

local settings = {
  rules = {},
  prefix = 'rn',    -- Neural network default prefix
  max_profiles = 3, -- Maximum number of NN profiles stored
}

-- Get module & Redis configuration
local module_config = rspamd_config:get_all_opt(N)
settings = lua_util.override_defaults(settings, module_config)
local redis_params = lua_redis.parse_redis_server('neural')

local redis_lua_script_vectors_len = "neural_train_size.lua"
local redis_lua_script_maybe_invalidate = "neural_maybe_invalidate.lua"
local redis_lua_script_maybe_lock = "neural_maybe_lock.lua"
local redis_lua_script_save_unlock = "neural_save_unlock.lua"

local redis_script_id = {}

-- Provider registry (Phase 0 scaffolding)
local registered_providers = {}

--- Registers a feature provider implementation
-- @param name string
-- @param provider table with function collect(task, ctx) -> vector(table of numbers), meta(table)
local function register_provider(name, provider)
  registered_providers[name] = provider
end

local function get_provider(name)
  return registered_providers[name]
end

-- Forward declaration
local result_to_vector

-- Built-in symbols provider (compatibility path)
register_provider('symbols', {
  collect = function(task, ctx)
    local vec = result_to_vector(task, ctx.profile)
    return vec, { name = 'symbols', type = 'symbols', dim = #vec, weight = ctx.weight or 1.0 }
  end,
  collect_async = function(task, ctx, cont)
    local vec = result_to_vector(task, ctx.profile)
    cont(vec, { name = 'symbols', type = 'symbols', dim = #vec, weight = ctx.weight or 1.0 })
  end,
})

-- Metatokens-only provider for contexts where symbols are not available
register_provider('metatokens', {
  collect = function(task, ctx)
    local mt = meta_functions.rspamd_gen_metatokens(task)
    -- Convert to table of numbers
    local vec = {}
    for i = 1, #mt do
      vec[i] = tonumber(mt[i]) or 0.0
    end
    return vec, { name = 'metatokens', type = 'metatokens', dim = #vec, weight = ctx.weight or 1.0 }
  end,
  collect_async = function(task, ctx, cont)
    local mt = meta_functions.rspamd_gen_metatokens(task)
    -- Convert to table of numbers
    local vec = {}
    for i = 1, #mt do
      vec[i] = tonumber(mt[i]) or 0.0
    end
    cont(vec, { name = 'metatokens', type = 'metatokens', dim = #vec, weight = ctx.weight or 1.0 })
  end,
})

local function load_scripts()
  redis_script_id.vectors_len = lua_redis.load_redis_script_from_file(redis_lua_script_vectors_len,
    redis_params)
  redis_script_id.maybe_invalidate = lua_redis.load_redis_script_from_file(redis_lua_script_maybe_invalidate,
    redis_params)
  redis_script_id.maybe_lock = lua_redis.load_redis_script_from_file(redis_lua_script_maybe_lock,
    redis_params)
  redis_script_id.save_unlock = lua_redis.load_redis_script_from_file(redis_lua_script_save_unlock,
    redis_params)
end

local function create_ann(n, nlayers, rule)
  -- We ignore number of layers so far when using kann
  local nhidden = math.floor(n * (rule.hidden_layer_mult or 1.0) + 1.0)
  local t = rspamd_kann.layer.input(n)
  t = rspamd_kann.transform.relu(t)
  t = rspamd_kann.layer.dense(t, nhidden);
  t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.ceb_neg)
  return rspamd_kann.new.kann(t)
end

-- Fills ANN data for a specific settings element
local function fill_set_ann(set, ann_key)
  if not set.ann then
    set.ann = {
      symbols = set.symbols,
      distance = 0,
      digest = set.digest,
      redis_key = ann_key,
      version = 0,
    }
  end
end

-- This function takes all inputs, applies PCA transformation and returns the final
-- PCA matrix as rspamd_tensor
local function learn_pca(inputs, max_inputs)
  local scatter_matrix = rspamd_tensor.scatter_matrix(rspamd_tensor.fromtable(inputs))
  local eigenvals = scatter_matrix:eigen()
  -- scatter matrix is not filled with eigenvectors
  lua_util.debugm(N, 'eigenvalues: %s', eigenvals)
  local w = rspamd_tensor.new(2, max_inputs, #scatter_matrix[1])
  for i = 1, max_inputs do
    w[i] = scatter_matrix[#scatter_matrix - i + 1]
  end

  lua_util.debugm(N, 'pca matrix: %s', w)

  return w
end

-- Build providers metadata for storage alongside ANN
local function build_providers_meta(metas)
  if not metas or #metas == 0 then return nil end
  local out = {}
  for i, m in ipairs(metas) do
    out[i] = {
      name = m.name,
      type = m.type,
      dim = m.dim,
      weight = m.weight,
      model = m.model,
      provider = m.provider,
    }
  end
  return out
end

-- Normalization helpers
local function l2_normalize_vector(vec)
  local sumsq = 0.0
  for i = 1, #vec do
    local v = vec[i]
    sumsq = sumsq + v * v
  end
  if sumsq > 0 then
    local inv = 1.0 / math.sqrt(sumsq)
    for i = 1, #vec do
      vec[i] = vec[i] * inv
    end
  end
  return vec
end

local function compute_zscore_stats(inputs)
  local n = #inputs
  if n == 0 then return nil end
  local d = #inputs[1]
  local mean = {}
  local m2 = {}
  for j = 1, d do
    mean[j] = 0.0
    m2[j] = 0.0
  end
  for i = 1, n do
    local x = inputs[i]
    for j = 1, d do
      local delta = x[j] - mean[j]
      mean[j] = mean[j] + delta / i
      m2[j] = m2[j] + delta * (x[j] - mean[j])
    end
  end
  local std = {}
  for j = 1, d do
    std[j] = math.sqrt((n > 1 and (m2[j] / (n - 1))) or 0.0)
    if std[j] == 0 or std[j] ~= std[j] then
      std[j] = 1.0 -- avoid division by zero and NaN
    end
  end
  return { mode = 'zscore', mean = mean, std = std }
end

local function apply_normalization(vec, norm_stats_or_mode)
  if not norm_stats_or_mode then return vec end
  if type(norm_stats_or_mode) == 'string' then
    if norm_stats_or_mode == 'unit' then
      return l2_normalize_vector(vec)
    else
      return vec
    end
  else
    if norm_stats_or_mode.mode == 'unit' then
      return l2_normalize_vector(vec)
    elseif norm_stats_or_mode.mode == 'zscore' and norm_stats_or_mode.mean and norm_stats_or_mode.std then
      local mean = norm_stats_or_mode.mean
      local std = norm_stats_or_mode.std
      for i = 1, math.min(#vec, #mean) do
        vec[i] = (vec[i] - (mean[i] or 0.0)) / (std[i] or 1.0)
      end
      return vec
    else
      return vec
    end
  end
end

-- This function computes optimal threshold using ROC for the given set of inputs.
-- Returns a threshold that minimizes:
--        alpha * (false_positive_rate)  +  beta * (false_negative_rate)
--        Where alpha is cost of false positive result
--              beta is cost of false negative result
local function get_roc_thresholds(ann, inputs, outputs, alpha, beta)
  -- Sorts list x and list y based on the values in list x.
  local sort_relative = function(x, y)
    local r = {}

    assert(#x == #y)
    local n = #x

    local a = {}
    local b = {}
    for i = 1, n do
      r[i] = i
    end

    local cmp = function(p, q)
      return p < q
    end

    table.sort(r, function(p, q)
      return cmp(x[p], x[q])
    end)

    for i = 1, n do
      a[i] = x[r[i]]
      b[i] = y[r[i]]
    end

    return a, b
  end

  local function get_scores(nn, input_vectors)
    local scores = {}
    for i = 1, #inputs do
      local score = nn:apply1(input_vectors[i], nn.pca)[1]
      scores[#scores + 1] = score
    end

    return scores
  end

  local fpr = {}
  local fnr = {}
  local scores = get_scores(ann, inputs)

  scores, outputs = sort_relative(scores, outputs)

  local n_samples = #outputs
  local n_spam = 0
  local n_ham = 0
  local ham_count_ahead = {}
  local spam_count_ahead = {}
  local ham_count_behind = {}
  local spam_count_behind = {}

  ham_count_ahead[n_samples + 1] = 0
  spam_count_ahead[n_samples + 1] = 0

  for i = n_samples, 1, -1 do
    if outputs[i][1] == 0 then
      n_ham = n_ham + 1
      ham_count_ahead[i] = 1
      spam_count_ahead[i] = 0
    else
      n_spam = n_spam + 1
      ham_count_ahead[i] = 0
      spam_count_ahead[i] = 1
    end

    ham_count_ahead[i] = ham_count_ahead[i] + ham_count_ahead[i + 1]
    spam_count_ahead[i] = spam_count_ahead[i] + spam_count_ahead[i + 1]
  end

  for i = 1, n_samples do
    if outputs[i][1] == 0 then
      ham_count_behind[i] = 1
      spam_count_behind[i] = 0
    else
      ham_count_behind[i] = 0
      spam_count_behind[i] = 1
    end

    if i ~= 1 then
      ham_count_behind[i] = ham_count_behind[i] + ham_count_behind[i - 1]
      spam_count_behind[i] = spam_count_behind[i] + spam_count_behind[i - 1]
    end
  end

  for i = 1, n_samples do
    fpr[i] = 0
    fnr[i] = 0

    if (ham_count_ahead[i + 1] + ham_count_behind[i]) ~= 0 then
      fpr[i] = ham_count_ahead[i + 1] / (ham_count_ahead[i + 1] + ham_count_behind[i])
    end

    if (spam_count_behind[i] + spam_count_ahead[i + 1]) ~= 0 then
      fnr[i] = spam_count_behind[i] / (spam_count_behind[i] + spam_count_ahead[i + 1])
    end
  end

  local p = n_spam / (n_spam + n_ham)

  local cost = {}
  local min_cost_idx = 0
  local min_cost = math.huge
  for i = 1, n_samples do
    cost[i] = ((1 - p) * alpha * fpr[i]) + (p * beta * fnr[i])
    if min_cost >= cost[i] then
      min_cost = cost[i]
      min_cost_idx = i
    end
  end

  return scores[min_cost_idx]
end

-- This function is intended to extend lock for ANN during training
-- It registers periodic that increases locked key each 30 seconds unless
-- `set.learning_spawned` is set to `true`
local function register_lock_extender(rule, set, ev_base, ann_key)
  rspamd_config:add_periodic(ev_base, 30.0,
    function()
      local function redis_lock_extend_cb(err, _)
        if err then
          rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s',
            ann_key, err)
        else
          rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds',
            ann_key)
        end
      end

      if set.learning_spawned then
        lua_redis.redis_make_request_taskless(ev_base,
          rspamd_config,
          rule.redis,
          nil,
          true,                 -- is write
          redis_lock_extend_cb, --callback
          'HINCRBY',            -- command
          { ann_key, 'lock', '30' }
        )
      else
        lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false")
        return false -- do not plan any more updates
      end

      return true
    end
  )
end

local function can_push_train_vector(rule, task, learn_type, nspam, nham)
  local train_opts = rule.train
  local coin = math.random()

  if train_opts.train_prob and coin < 1.0 - train_opts.train_prob then
    rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin)
    return false
  end

  if train_opts.learn_mode == 'balanced' then
    -- Keep balanced training set based on number of spam and ham samples
    if learn_type == 'spam' then
      if nspam <= train_opts.max_trains then
        if nspam > nham then
          -- Apply sampling
          local skip_rate = 1.0 - nham / (nspam + 1)
          if coin < skip_rate - train_opts.classes_bias then
            rspamd_logger.infox(task,
              'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored',
              learn_type,
              skip_rate - train_opts.classes_bias,
              nspam, nham)
            return false
          end
        end
        return true
      else
        -- Enough learns
        rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many spam samples: %s',
          learn_type,
          nspam)
      end
    else
      if nham <= train_opts.max_trains then
        if nham > nspam then
          -- Apply sampling
          local skip_rate = 1.0 - nspam / (nham + 1)
          if coin < skip_rate - train_opts.classes_bias then
            rspamd_logger.infox(task,
              'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored',
              learn_type,
              skip_rate - train_opts.classes_bias,
              nspam, nham)
            return false
          end
        end
        return true
      else
        rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many ham samples: %s', learn_type,
          nham)
      end
    end
  else
    -- Probabilistic learn mode, we just skip learn if we already have enough samples or
    -- if our coin drop is less than desired probability
    if learn_type == 'spam' then
      if nspam <= train_opts.max_trains then
        if train_opts.spam_skip_prob then
          if coin <= train_opts.spam_skip_prob then
            rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type,
              coin, train_opts.spam_skip_prob)
            return false
          end

          return true
        end
      else
        rspamd_logger.infox(task, 'skip %s sample; too many spam samples: %s (%s limit)', learn_type,
          nspam, train_opts.max_trains)
      end
    else
      if nham <= train_opts.max_trains then
        if train_opts.ham_skip_prob then
          if coin <= train_opts.ham_skip_prob then
            rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type,
              coin, train_opts.ham_skip_prob)
            return false
          end

          return true
        end
      else
        rspamd_logger.infox(task, 'skip %s sample; too many ham samples: %s (%s limit)', learn_type,
          nham, train_opts.max_trains)
      end
    end
  end

  return false
end

-- Closure generator for unlock function
local function gen_unlock_cb(rule, set, ann_key)
  return function(err)
    if err then
      rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s',
        rule.prefix, set.name, ann_key, err)
    else
      lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s',
        rule.prefix, set.name, ann_key)
    end
  end
end

-- Used to generate new ANN key for specific profile
local function new_ann_key(rule, set, version)
  local ann_key = string.format('%s_%s_%s_%s_%d', settings.prefix,
    rule.prefix, set.name, set.digest:sub(1, 8), version)

  return ann_key
end

local function redis_ann_prefix(rule, settings_name)
  -- We also need to count metatokens:
  -- Note: meta_functions.version represents the metatoken format version
  local n = meta_functions.version
  return string.format('%s%d_%s_%d_%s',
    settings.prefix, plugin_ver, rule.prefix, n, settings_name)
end

-- Compute a stable digest for providers configuration
local function providers_config_digest(providers_cfg)
  if not providers_cfg then return nil end
  -- Normalize minimal subset of fields to keep digest stable across equivalent configs
  local norm = {}
  for i, p in ipairs(providers_cfg) do
    norm[i] = {
      type = p.type,
      name = p.name,
      weight = p.weight or 1.0,
      dim = p.dim,
    }
  end
  return lua_util.table_digest(norm)
end

-- If no providers configured, fallback to symbols provider unless disabled
-- phase: 'infer' | 'train'
-- Removed synchronous collect_features; use collect_features_async instead

-- Async version: runs providers in parallel and calls cb(fused, meta) when done
local function collect_features_async(task, rule, profile_or_set, phase, cb)
  local providers_cfg = rule.providers
  if not providers_cfg or #providers_cfg == 0 then
    if rule.disable_symbols_input then
      cb(nil, { providers = {}, total_dim = 0, digest = providers_config_digest(providers_cfg) })
      return
    end
    local prov = get_provider('symbols')
    if prov and prov.collect_async then
      prov.collect_async(task, { profile = profile_or_set, weight = 1.0, phase = phase }, function(vec, meta)
        local metas = {}
        if vec then
          metas[1] = meta
        end
        local fused = {}
        if vec then
          local w = (meta and meta.weight) or 1.0
          local norm_mode = (rule.fusion and rule.fusion.normalization) or 'none'
          if norm_mode ~= 'none' then
            vec = apply_normalization(vec, norm_mode)
          end
          for _, x in ipairs(vec) do
            fused[#fused + 1] = x * w
          end
        end
        cb(#fused > 0 and fused or nil, {
          providers = build_providers_meta(metas) or metas,
          total_dim = #fused,
          digest = providers_config_digest(providers_cfg),
        })
      end)
      return
    end
    -- Fallback: direct symbols compute
    local vec = result_to_vector(task, profile_or_set)
    local meta = { name = 'symbols', type = 'symbols', dim = #vec, weight = 1.0 }
    local fused = {}
    local w = 1.0
    local norm_mode = (rule.fusion and rule.fusion.normalization) or 'none'
    if norm_mode ~= 'none' then
      vec = apply_normalization(vec, norm_mode)
    end
    for _, x in ipairs(vec) do
      fused[#fused + 1] = x * w
    end
    cb(fused,
      {
        providers = build_providers_meta({ meta }) or { meta },
        total_dim = #fused,
        digest = providers_config_digest(
          providers_cfg)
      })
    return
  end

  local vectors = {}
  local metas = {}
  local remaining = 0

  local function maybe_finish()
    remaining = remaining - 1
    if remaining == 0 then
      -- Fuse
      local fused = {}
      for i, v in ipairs(vectors) do
        if v then
          local w = (metas[i] and metas[i].weight) or 1.0
          local norm_mode = (rule.fusion and rule.fusion.normalization) or 'none'
          if norm_mode ~= 'none' then
            v = apply_normalization(v, norm_mode)
          end
          for _, x in ipairs(v) do
            fused[#fused + 1] = x * w
          end
        end
      end
      local meta = {
        providers = build_providers_meta(metas) or metas,
        total_dim = #fused,
        digest = providers_config_digest(providers_cfg),
      }
      if #fused == 0 then
        cb(nil, meta)
      else
        cb(fused, meta)
      end
    end
  end

  local function start_provider(i, pcfg)
    local prov = get_provider(pcfg.type or pcfg.name)
    if not prov or not prov.collect_async then
      maybe_finish()
      return
    end
    prov.collect_async(task, {
      profile = profile_or_set,
      set = profile_or_set,
      rule = rule,
      config = pcfg,
      weight = pcfg.weight or 1.0,
      phase = phase,
    }, function(vec, meta)
      if vec then
        metas[i] = meta or { name = pcfg.name or pcfg.type, type = pcfg.type, dim = #vec, weight = pcfg.weight or 1.0 }
        vectors[i] = vec
      end
      maybe_finish()
    end)
  end

  -- Include symbols provider (which includes both symbols AND metatokens) as an extra provider
  -- The name 'include_meta' is historical but it actually includes the full symbols provider
  -- For backward compatibility, include symbols by default unless explicitly disabled
  local include_meta = false
  if not providers_cfg or #providers_cfg == 0 then
    -- No providers, always use symbols (which includes metatokens)
    include_meta = true
  elseif rule.fusion then
    -- Explicit fusion config takes precedence
    include_meta = rule.fusion.include_meta
    if include_meta == nil then
      -- Default to true for backward compatibility when fusion is configured but include_meta not specified
      include_meta = true
    end
  else
    -- Providers configured but no fusion settings - default to including symbols+metatokens
    include_meta = true
  end

  local meta_weight = (rule.fusion and rule.fusion.meta_weight) or 1.0

  remaining = #providers_cfg + (include_meta and 1 or 0)

  -- Start all configured providers
  for i, pcfg in ipairs(providers_cfg) do
    start_provider(i, pcfg)
  end

  if include_meta then
    -- Always use metatokens provider for consistency
    -- This ensures same dimensions whether called from controller or full scan
    local prov = get_provider('metatokens')

    if prov and prov.collect_async then
      local meta_index = #providers_cfg + 1 -- Metatokens always come after providers
      prov.collect_async(task, { profile = profile_or_set, set = profile_or_set, weight = meta_weight, phase = phase },
        function(vec, meta)
          if vec then
            metas[meta_index] = meta
            vectors[meta_index] = vec
          end
          maybe_finish()
        end)
    else
      maybe_finish()
    end
  end
end

-- This function receives training vectors, checks them, spawn learning and saves ANN in Redis
local function spawn_train(params)
  -- Check training data sanity
  -- Now we need to join inputs and create the appropriate test vectors
  local n

  -- When using providers, derive dimension from actual vectors
  if params.rule.providers and #params.rule.providers > 0 and
      (#params.spam_vec > 0 or #params.ham_vec > 0) then
    -- Use dimension from stored vectors
    if #params.spam_vec > 0 then
      n = #params.spam_vec[1]
    else
      n = #params.ham_vec[1]
    end
    lua_util.debugm(N, rspamd_config, 'spawn_train: using vector dimension %s from stored vectors', n)
  else
    -- Traditional symbol-based dimension
    n = #params.set.symbols + meta_functions.rspamd_count_metatokens()
    lua_util.debugm(N, rspamd_config, 'spawn_train: using symbol dimension %s symbols + %s metatokens = %s',
      #params.set.symbols, meta_functions.rspamd_count_metatokens(), n)
  end

  -- Now we can train ann
  local train_ann = create_ann(params.rule.max_inputs or n, 3, params.rule)

  if #params.ham_vec + #params.spam_vec < params.rule.train.max_trains / 2 then
    -- Invalidate ANN as it is definitely invalid
    -- TODO: add invalidation
    assert(false)
  else
    local inputs, outputs = {}, {}

    -- Used to show parsed vectors in a convenient format (for debugging only)
    local function debug_vec(t)
      local ret = {}
      for i, v in ipairs(t) do
        if v ~= 0 then
          ret[#ret + 1] = string.format('%d=%.2f', i, v)
        end
      end

      return ret
    end

    -- Make training set by joining vectors
    -- KANN automatically shuffles those samples
    -- 1.0 is used for spam and -1.0 is used for ham
    -- It implies that output layer can express that (e.g. tanh output)
    for _, e in ipairs(params.spam_vec) do
      inputs[#inputs + 1] = e
      outputs[#outputs + 1] = { 1.0 }
      --rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e))
    end
    for _, e in ipairs(params.ham_vec) do
      inputs[#inputs + 1] = e
      outputs[#outputs + 1] = { -1.0 }
      --rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e))
    end

    -- Called in child process
    local function train()
      local log_thresh = params.rule.train.max_iterations / 10
      local seen_nan = false

      local function train_cb(iter, train_cost, value_cost)
        if (iter * (params.rule.train.max_iterations / log_thresh)) % (params.rule.train.max_iterations) == 0 then
          if train_cost ~= train_cost and not seen_nan then
            -- We have nan :( try to log lot's of stuff to dig into a problem
            seen_nan = true
            rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s',
              params.rule.prefix, params.set.name,
              value_cost)
            for i, e in ipairs(inputs) do
              lua_util.debugm(N, rspamd_config, 'train vector %s -> %s',
                debug_vec(e), outputs[i][1])
            end
          end

          rspamd_logger.infox(rspamd_config,
            "ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s",
            params.rule.prefix, params.set.name,
            params.ann_key,
            iter,
            train_cost,
            value_cost)
        end
      end

      lua_util.debugm(N, rspamd_config, "subprocess to learn ANN %s:%s has been started",
        params.rule.prefix, params.set.name)

      local pca
      if params.rule.max_inputs then
        -- Train PCA in the main process, presumably it is not that long
        lua_util.debugm(N, rspamd_config, "start PCA train for ANN %s:%s",
          params.rule.prefix, params.set.name)
        pca = learn_pca(inputs, params.rule.max_inputs)
      end

      -- Compute normalization stats if requested
      local norm_stats
      if params.rule.fusion and params.rule.fusion.normalization == 'zscore' then
        norm_stats = compute_zscore_stats(inputs)
      elseif params.rule.fusion and params.rule.fusion.normalization == 'unit' then
        norm_stats = { mode = 'unit' }
      end

      if norm_stats then
        for i = 1, #inputs do
          inputs[i] = apply_normalization(inputs[i], norm_stats)
        end
      end

      lua_util.debugm(N, rspamd_config, "start neural train for ANN %s:%s",
        params.rule.prefix, params.set.name)
      local ret, err = pcall(train_ann.train1, train_ann,
        inputs, outputs, {
          lr = params.rule.train.learning_rate,
          max_epoch = params.rule.train.max_iterations,
          cb = train_cb,
          pca = pca
        })

      if not ret then
        rspamd_logger.errx(rspamd_config, "cannot train ann %s:%s: %s",
          params.rule.prefix, params.set.name, err)

        return nil
      else
        lua_util.debugm(N, rspamd_config, "finished neural train for ANN %s:%s",
          params.rule.prefix, params.set.name)
      end

      local roc_thresholds = {}
      if params.rule.roc_enabled then
        local spam_threshold = get_roc_thresholds(train_ann,
          inputs,
          outputs,
          1 - params.rule.roc_misclassification_cost,
          params.rule.roc_misclassification_cost)
        local ham_threshold = get_roc_thresholds(train_ann,
          inputs,
          outputs,
          params.rule.roc_misclassification_cost,
          1 - params.rule.roc_misclassification_cost)
        roc_thresholds = { spam_threshold, ham_threshold }

        rspamd_logger.messagex("ROC thresholds: (spam_threshold: %s, ham_threshold: %s)",
          roc_thresholds[1], roc_thresholds[2])
      end

      if not seen_nan then
        -- Convert to strings as ucl cannot rspamd_text properly
        local pca_data
        if pca then
          pca_data = tostring(pca:save())
        end
        local out = {
          ann_data = tostring(train_ann:save()),
          pca_data = pca_data,
          roc_thresholds = roc_thresholds,
          norm_stats = norm_stats,
        }

        local final_data = ucl.to_format(out, 'msgpack')
        lua_util.debugm(N, rspamd_config, "subprocess for ANN %s:%s returned %s bytes",
          params.rule.prefix, params.set.name, #final_data)
        return final_data
      else
        return nil
      end
    end

    params.set.learning_spawned = true

    local function redis_save_cb(err)
      if err then
        rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s',
          params.rule.prefix, params.set.name, params.ann_key, err)
        lua_redis.redis_make_request_taskless(params.ev_base,
          rspamd_config,
          params.rule.redis,
          nil,
          false,                                                  -- is write
          gen_unlock_cb(params.rule, params.set, params.ann_key), --callback
          'HDEL',                                                 -- command
          { params.ann_key, 'lock' }
        )
      else
        rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s',
          params.rule.prefix, params.set.name, params.set.ann.redis_key)
      end
    end

    local function ann_trained(err, data)
      params.set.learning_spawned = false
      if err then
        rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s',
          params.rule.prefix, params.set.name, err)
        lua_redis.redis_make_request_taskless(params.ev_base,
          rspamd_config,
          params.rule.redis,
          nil,
          true,                                                   -- is write
          gen_unlock_cb(params.rule, params.set, params.ann_key), --callback
          'HDEL',                                                 -- command
          { params.ann_key, 'lock' }
        )
      else
        local parser = ucl.parser()
        local ok, parse_err = parser:parse_text(data, 'msgpack')
        assert(ok, parse_err)
        local parsed = parser:get_object()
        local ann_data = rspamd_util.zstd_compress(parsed.ann_data)
        local pca_data = parsed.pca_data
        local roc_thresholds = parsed.roc_thresholds
        local norm_stats = parsed.norm_stats

        fill_set_ann(params.set, params.ann_key)
        if pca_data then
          params.set.ann.pca = rspamd_tensor.load(pca_data)
          pca_data = rspamd_util.zstd_compress(pca_data)
        end

        if roc_thresholds then
          params.set.ann.roc_thresholds = roc_thresholds
        end


        -- Deserialise ANN from the child process
        ann_trained = rspamd_kann.load(parsed.ann_data)
        local version = (params.set.ann.version or 0) + 1
        params.set.ann.version = version
        params.set.ann.ann = ann_trained
        params.set.ann.symbols = params.set.symbols
        params.set.ann.redis_key = new_ann_key(params.rule, params.set, version)

        local profile = {
          symbols = params.set.symbols,
          digest = params.set.digest,
          redis_key = params.set.ann.redis_key,
          version = version,
          providers_digest = providers_config_digest(params.rule.providers),
        }

        local profile_serialized = ucl.to_format(profile, 'json-compact', true)
        local roc_thresholds_serialized = ucl.to_format(roc_thresholds, 'json-compact', true)
        local providers_meta_serialized
        if params.rule.providers then
          providers_meta_serialized = ucl.to_format(
            build_providers_meta(params.set.ann.providers or params.rule.providers), 'json-compact', true)
        end

        rspamd_logger.infox(rspamd_config,
          'trained ANN %s:%s, %s bytes (%s compressed); %s rows in pca (%sb compressed); redis key: %s (old key %s)',
          params.rule.prefix, params.set.name,
          #data, #ann_data,
          #(params.set.ann.pca or {}), #(pca_data or {}),
          params.set.ann.redis_key, params.ann_key)

        -- Ensure all arguments are non-nil for Lua 5.4 compatibility
        -- (nil values in tables cause length/iteration issues)
        lua_redis.exec_redis_script(redis_script_id.save_unlock,
          { ev_base = params.ev_base, is_write = true },
          redis_save_cb,
          { profile.redis_key,
            redis_ann_prefix(params.rule, params.set.name),
            ann_data,
            profile_serialized,
            tostring(params.rule.ann_expire),
            tostring(os.time()),
            params.ann_key, -- old key to unlock...
            roc_thresholds_serialized or '',
            pca_data or '',
            providers_meta_serialized or '',
            ucl.to_format(norm_stats, 'json-compact', true) or '',
          })
      end
    end

    if params.rule.max_inputs then
      fill_set_ann(params.set, params.ann_key)
    end

    params.worker:spawn_process {
      func = train,
      on_complete = ann_trained,
      proctitle = string.format("ANN train for %s/%s", params.rule.prefix, params.set.name),
    }
    -- Spawn learn and register lock extension
    params.set.learning_spawned = true
    register_lock_extender(params.rule, params.set, params.ev_base, params.ann_key)
    return
  end
end

-- This function is used to adjust profiles and allowed setting ids for each rule
-- It must be called when all settings are already registered (e.g. at post-init for config)
local function process_rules_settings()
  local function process_settings_elt(rule, selt)
    local profile = rule.profile[selt.name]
    if profile then
      -- Use static user defined profile
      -- Ensure that we have an array...
      lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s",
        rule.prefix, selt.name, profile)
      if not profile[1] then
        profile = lua_util.keys(profile)
      end
      selt.symbols = profile
    else
      lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)",
        rule.prefix, selt.name)
    end

    local function filter_symbols_predicate(sname)
      if settings.blacklisted_symbols and settings.blacklisted_symbols[sname] then
        return false
      end
      local fl = rspamd_config:get_symbol_flags(sname)
      if fl then
        fl = lua_util.list_to_hash(fl)

        return not (fl.nostat or fl.idempotent or fl.skip or fl.composite)
      end

      return true
    end

    -- Generic stuff
    if not profile then
      -- Do filtering merely if we are using a dynamic profile
      selt.symbols = fun.totable(fun.filter(filter_symbols_predicate, selt.symbols))
    end

    table.sort(selt.symbols)

    selt.digest = lua_util.table_digest(selt.symbols)
    selt.prefix = redis_ann_prefix(rule, selt.name)

    rspamd_logger.messagex(rspamd_config,
      'use NN prefix for rule %s; settings id "%s"; symbols digest: "%s"',
      selt.prefix, selt.name, selt.digest)

    lua_redis.register_prefix(selt.prefix, N,
      string.format('NN prefix for rule "%s"; settings id "%s"',
        selt.prefix, selt.name), {
        persistent = true,
        type = 'zlist',
      })
    -- Versions
    lua_redis.register_prefix(selt.prefix .. '_\\d+', N,
      string.format('NN storage for rule "%s"; settings id "%s"',
        selt.prefix, selt.name), {
        persistent = true,
        type = 'hash',
      })
    lua_redis.register_prefix(selt.prefix .. '_\\d+_spam_set', N,
      string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
        selt.prefix, selt.name), {
        persistent = true,
        type = 'set',
      })
    lua_redis.register_prefix(selt.prefix .. '_\\d+_ham_set', N,
      string.format('NN learning set (ham) for rule "%s"; settings id "%s"',
        rule.prefix, selt.name), {
        persistent = true,
        type = 'set',
      })
  end

  for k, rule in pairs(settings.rules) do
    if not rule.allowed_settings then
      rule.allowed_settings = {}
    elseif rule.allowed_settings == 'all' then
      -- Extract all settings ids
      rule.allowed_settings = lua_util.keys(lua_settings.all_settings())
    end

    -- Convert to a map <setting_id> -> true
    rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings)

    -- Check if we can work without settings
    if k == 'default' or type(rule.default) ~= 'boolean' then
      rule.default = true
    end

    rule.settings = {}

    if rule.default then
      local default_settings = {
        symbols = lua_settings.default_symbols(),
        name = 'default'
      }

      process_settings_elt(rule, default_settings)
      rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32
    end

    -- Now, for each allowed settings, we store sorted symbols + digest
    -- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest }
    for s, _ in pairs(rule.allowed_settings) do
      -- Here, we have a name, set of symbols and
      local settings_id = s
      if type(settings_id) ~= 'number' then
        settings_id = lua_settings.numeric_settings_id(s)
      end
      local selt = lua_settings.settings_by_id(settings_id)

      local nelt = {
        symbols = selt.symbols, -- Already sorted
        name = selt.name
      }

      process_settings_elt(rule, nelt)
      for id, ex in pairs(rule.settings) do
        if type(ex) == 'table' then
          if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then
            -- Equal symbols, add reference
            lua_util.debugm(N, rspamd_config,
              'added reference from settings id %s to %s; same symbols',
              nelt.name, ex.name)
            rule.settings[settings_id] = id
            nelt = nil
          end
        end
      end

      if nelt then
        rule.settings[settings_id] = nelt
        lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s',
          nelt.name, settings_id, rule.prefix)
      end
    end
  end
end

-- Extract settings element for a specific settings id
local function get_rule_settings(task, rule)
  local sid = task:get_settings_id() or -1
  local set = rule.settings[sid]

  if not set then
    return nil
  end

  while type(set) == 'number' do
    -- Reference to another settings!
    set = rule.settings[set]
  end

  return set
end

result_to_vector = function(task, profile)
  if not profile.zeros then
    -- Fill zeros vector
    local zeros = {}
    for i = 1, meta_functions.rspamd_count_metatokens() do
      zeros[i] = 0.0
    end
    for _, _ in ipairs(profile.symbols) do
      zeros[#zeros + 1] = 0.0
    end
    profile.zeros = zeros
  end

  local vec = lua_util.shallowcopy(profile.zeros)
  local mt = meta_functions.rspamd_gen_metatokens(task)

  for i, v in ipairs(mt) do
    vec[i] = v
  end

  task:process_ann_tokens(profile.symbols, vec, #mt, 0.1)

  return vec
end

return {
  can_push_train_vector = can_push_train_vector,
  collect_features_async = collect_features_async,
  create_ann = create_ann,
  default_options = default_options,
  build_providers_meta = build_providers_meta,
  apply_normalization = apply_normalization,
  gen_unlock_cb = gen_unlock_cb,
  get_rule_settings = get_rule_settings,
  load_scripts = load_scripts,
  module_config = module_config,
  new_ann_key = new_ann_key,
  providers_config_digest = providers_config_digest,
  register_provider = register_provider,
  plugin_ver = plugin_ver,
  process_rules_settings = process_rules_settings,
  redis_ann_prefix = redis_ann_prefix,
  redis_params = redis_params,
  redis_script_id = redis_script_id,
  result_to_vector = result_to_vector,
  settings = settings,
  spawn_train = spawn_train,
}