
aafigure README

Overview
The original idea was to parse ASCII art images, embedded in reST documents and output an image. This
would mean that simple illustrations could be embedded as ASCII art in the reST source and still look nice
when converted to e.g. HTML.

Since then the aafigure application also grew into a standalone application providing a command line tool
for ASCII art to image conversion.

Installation

The package
To install aafigure, you need to have administrator rights on your system (be root). Type
python setup.py install to install aafigure.

This installs a package that can be used from python (import aafigure) and a command line script
called aafigure.

The Python Imaging Library (PIL) needs to be installed when support for bitmap formats is desired and it
will need ReportLab for PDF output.

The docutils plugin
The docutils-aafigure extension depends on the aafigure package also requires setuptools (often
packaged as python-setuptools) and docutils itself (0.5 or newer) must be installed.

After that, the aafigure directive will be available.

Implementation
Files in the aafigure package:

aafigure.py

ASCII art parser. This is the main module.

aa.py

ASCII art output backend. Intended for tests, not for the end user.

pdf.py

PDF output backend. Depends on reportlab.

pil.py

Bitmap output backend. Using PIL, it can write PNG, JPEG and more formats.

svg.py

SVG output backend.

Files in the docutils directory:

aafigure_directive.py

Implements the aafigure Docutils directive that takes these ASCII art figures and generates a
drawing.

The aafigure module contains code to parse ASCII art figures and create a list of of shapes. The
different output modules can walk through a list of shapes and write image files.



Usage

Command line tool

aafigure test.txt -t png -o test.png

The tool can also read from standard in and supports many options. Please look at the command's help:

aafigure --help

Within reStructured text

./rst2html.py README.txt >README.html

This results in the README.html file and a .svg file for each aafigure.

Display the resulting README.html file in a SVG capable browser. It has been tested with Firefox 1.5, 2.0
and 3.0.

Short introduction
This code in a reST document that is processed with the enhanced rst2html.py looks like this:

.. aafigure::

    -->

Which results in an image like this:

The aafigure directive has the following options:

• :scale: <float> enlarge or shrink image

• :line_width: <float> change line with (svg only currently)

• :format: <str> choose backend/output format: 'svg', 'png', all bitmap formats that PIL supports
can be used but only few make sense. Line drawings have a good compression and better quality
when saved as PNG rather than a JPEG. The best quality will be achieved with SVG, tough not all
browsers support this vector image format at this time.

• :foreground: <str> foreground color in the form #rgb or #rrggbb

• :background: <str> background color in the form #rgb or #rrggbb (not for SVG output)

• :fill: <str> fill color in the form #rgb or #rrggbb

• :name: <str> use this as filename instead of the automatic generated name

• :aspect: <float> change aspect ratio. Effectively it is the width of the image that is multiplied by
this factor. The default setting 1 is useful when shapes must have the same look when drawn
horizontally or vertically. However, :aspect: 0.5 looks more like the original ASCII and even
smaller factors may be useful for timing diagrams and such. But there is a risk that text is cropped or
is draw over an object beside it.

The stretching is done before drawing arrows or circles, so that they are still good looking.

• :proportional: <flag> use a proportional font instead of a mono-spaced one.



Lines
The - and | are normally used for lines. _ and ~ can also be used. They are slightly longer lines than the
-. _ is drawn a bit lower and ~ a bit upper. = gives a thicker line. The later three line types can only be
drawn horizontally.

---- |         ___  ~~~|
     | --  ___|        |    ===
                       ~~~

It is also possible to draw diagonal lines. Their use is somewhat restricted tough. Not all cases work as
expected.

And drawing longer diagonal lines with different angles looks ugly...

Arrows
Arrow styles are:

--->   | | | | | |
---<   | | | | | |
---o   ^ V v o O #
---O
---#

Boxes
Boxes are automatically draw when the edges are made with +, filled boxes are made with X (must be at
least two units high or wide). It is also possible to make rounded edges in two ways:

+-----+   XXX  /--\     --   |
|     |   XXX  |  |    /    /
+-----+   XXX  \--/   |   --

Fills
Upper case characters generate shapes with borders, lower case without border. Fills must be at least two
characters wide or high. (This reduces the chance that it is detected as Fill instead of a string)



?
? ?
?

?
? ?
?

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Complex shapes can be filled:

Text
The images may contain text too. There are different styles to enter text:

direct

By default are repeated characters detected as fill:

Hello World  dd d
                d

He o World

quoted

Text between quotes has priority over any graphical meaning:

"Hello World"  dd d
                  d

Hello World

", ' and ` are all valid quotation marks. The quotes are not visible in the resulting image. This not only
disables fills (see below), it also treats -, | etc. as text.

textual option

The :textual: option disables horizontal fill detection. Fills are only detected when they are vertically at
least 2 characters high:

Hello World  dd d
                d

Hello World dd

Other

* { }

TODO



• Symbol detection: scan for predefined shapes in the ASCII image and output them as symbol from a
library

• Symbol libraries for UML, flowchart, electronic schematics, ...

• The way the image is embedded is a hack (inserting a tag trough a raw node...)

• Search for ways to bring in color. Ideas:

• have an :option: to set color tags. Shapes that touch such a tag inherit it's color. The tag
would be visible in the ASCII source tough:

.. aafigure::
    :colortag: 1:red, 2:blue

    1--->  --->2

• :color: x,y,color but counting coordinates is no so fun

drawback: both are complex to implement, searching for shapes that belong together. It's also
not always wanted that e.g. when a line touches a box, both have the same color

• aafigure probably needs arguments like font-family, ...

• Punctuation not included in strings (now a bit improved but if it has a graphical meaning , then that is
chooses, even if it makes no sense), underlines in strings are tricky to detect...

• Dotted lines? ...

• Group shapes that belong to an object, so that it's easier to import and change the graphics in a
vector drawing program.

• Path optimizer, it happens that many small lines are output where a long line could be used.

Authors and Contact

• Chris Liechti: original author

• Leandro Lucarella: provided many patches

The project page is at https://launchpad.net/aafigure It should be used to report bugs and feature requests.

License
BSD

Tests

Simple tests
Different arrow types:

Boxes and shapes:

A box with text

https://launchpad.net/aafigure


box ..
Xenophon

Flow chart

Start

Init

Process

yes
more?

no

End

UML
No not really, yet. But you get the idea.
Object 1 Object 2 Object 3

Shape Line Point
2

draw start x
move end y

Circle

center
radius

yes
then this and this

no

First this

or that Done

Electronics
It would be cool if it could display simple schematics.



Iin Iout
R1

Vin 100k C1 Vout
100n

• Capacitor not good, would prefer --||-- -> symbol detection
e

b

c

c e

b

• Diodes OK

• Caps not optimal. Too far apart in image, not very good recognisable in ASCII. Space cannot be
removed as the two + signs would be connected otherwise. The schematic below uses an other style.

• Arrows in transistor symbols can not be drawn

Here is a complete circuit with different parts:
Q1 8MHz

XIN XOUT

P3.3
SDA/I2C P2.0

e
MSP430F123 b V1

SCL/I2C P2.1 P3.4 R1 PNP

IC1 1k c
R3 TXD/RS232

VCC GND
1k

R2 RXD/RS232

10k
GND/I2C GND/RS232

C1 C2
1u 10u
5V 16V

GND D1
out in RTS/RS232

3V

IC2 D2
DTR/RS232

Timing diagrams

A

B

t

Here is one with descriptions:

sh_in sh_in sh_in  
sh_out sh_out sh_out

SDA edge
start stop

SDA
...
...

SCL

SCL edge



Statistical diagrams
Benfords distribution of the sizes of files on my hard drive:

1 31.59%
2 16.80%
3 12.40%
4 9.31%
5 7.89%
6 6.10%
7 5.20%
8 4.90%
9 4.53%

0 5 10 15 20 25 30

Just some bars:
2

1 4
3

Schedules
Week

Task 1
Task 2
Task 3
Task 4

1 2 3 4 5

http://en.wikipedia.org/wiki/Benfords_law

	Overview
	Installation
	The package
	The docutils plugin

	Implementation
	Usage
	Command line tool
	Within reStructured text

	Short introduction
	Lines
	Arrows
	Boxes
	Fills
	Text
	Other

	TODO
	Authors and Contact
	License
	Tests
	Simple tests
	Flow chart
	UML
	Electronics
	Timing diagrams
	Statistical diagrams
	Schedules


