File: simd-checksum-x86_64.cpp

package info (click to toggle)
rsync 3.2.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 4,612 kB
  • sloc: ansic: 42,277; sh: 5,922; perl: 930; python: 825; asm: 665; makefile: 349; cpp: 289; awk: 191
file content (543 lines) | stat: -rw-r--r-- 24,513 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 * SSE2/SSSE3/AVX2-optimized routines to support checksumming of bytes.
 *
 * Copyright (C) 1996 Andrew Tridgell
 * Copyright (C) 1996 Paul Mackerras
 * Copyright (C) 2004-2020 Wayne Davison
 * Copyright (C) 2020 Jorrit Jongma
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, visit the http://fsf.org website.
 */
/*
 * Optimization target for get_checksum1() was the Intel Atom D2700, the
 * slowest CPU in the test set and the most likely to be CPU limited during
 * transfers. The combination of intrinsics was chosen specifically for the
 * most gain on that CPU, other combinations were occasionally slightly
 * faster on the others.
 *
 * While on more modern CPUs transfers are less likely to be CPU limited
 * (at least by this specific function), lower CPU usage is always better.
 * Improvements may still be seen when matching chunks from NVMe storage
 * even on newer CPUs.
 *
 * Benchmarks (in MB/s)            C    SSE2   SSSE3    AVX2
 * - Intel Atom D2700            550     750    1000     N/A
 * - Intel i7-7700hq            1850    2550    4050    6200
 * - AMD ThreadRipper 2950x     2900    5600    8950    8100
 *
 * Curiously the AMD is slower with AVX2 than SSSE3, while the Intel is
 * significantly faster. AVX2 is kept because it's more likely to relieve
 * the bottleneck on the slower CPU.
 *
 * This optimization for get_checksum1() is intentionally limited to x86-64
 * as no 32-bit CPU was available for testing. As 32-bit CPUs only have half
 * the available xmm registers, this optimized version may not be faster than
 * the pure C version anyway. Note that all x86-64 CPUs support at least SSE2.
 *
 * This file is compiled using GCC 4.8+/clang 6+'s C++ front end to allow the
 * use of the target attribute, selecting the fastest code path based on
 * dispatch priority (GCC 5) or runtime detection of CPU capabilities (GCC 6+).
 * GCC 4.x are not supported to ease configure.ac logic.
 */

#ifdef __x86_64__
#ifdef __cplusplus

#include "rsync.h"

#ifdef HAVE_SIMD

#include <immintrin.h>

/* Some clang versions don't like it when you use static with multi-versioned functions: linker errors */
#ifdef __clang__
#define MVSTATIC
#else
#define MVSTATIC static
#endif

// Missing from the headers on gcc 6 and older, clang 8 and older
typedef long long __m128i_u __attribute__((__vector_size__(16), __may_alias__, __aligned__(1)));
typedef long long __m256i_u __attribute__((__vector_size__(32), __may_alias__, __aligned__(1)));

/* Compatibility macros to let our SSSE3 algorithm run with only SSE2.
   These used to be neat individual functions with target attributes switching between SSE2 and SSSE3 implementations
   as needed, but though this works perfectly with GCC, clang fails to inline those properly leading to a near 50%
   performance drop - combined with static and inline modifiers gets you linker errors and even compiler crashes...
*/

#define SSE2_INTERLEAVE_ODD_EPI16(a, b) _mm_packs_epi32(_mm_srai_epi32(a, 16), _mm_srai_epi32(b, 16))
#define SSE2_INTERLEAVE_EVEN_EPI16(a, b) SSE2_INTERLEAVE_ODD_EPI16(_mm_slli_si128(a, 2), _mm_slli_si128(b, 2))
#define SSE2_MULU_ODD_EPI8(a, b) _mm_mullo_epi16(_mm_srli_epi16(a, 8), _mm_srai_epi16(b, 8))
#define SSE2_MULU_EVEN_EPI8(a, b) _mm_mullo_epi16(_mm_and_si128(a, _mm_set1_epi16(0xFF)), _mm_srai_epi16(_mm_slli_si128(b, 1), 8))

#define SSE2_HADDS_EPI16(a, b) _mm_adds_epi16(SSE2_INTERLEAVE_EVEN_EPI16(a, b), SSE2_INTERLEAVE_ODD_EPI16(a, b))
#define SSE2_MADDUBS_EPI16(a, b) _mm_adds_epi16(SSE2_MULU_EVEN_EPI8(a, b), SSE2_MULU_ODD_EPI8(a, b))

__attribute__ ((target("default"))) MVSTATIC int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { return i; }
__attribute__ ((target("default"))) MVSTATIC int32 get_checksum1_ssse3_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { return i; }
__attribute__ ((target("default"))) MVSTATIC int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) { return i; }

/*
  Original loop per 4 bytes:
    s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
    s1 += buf[i] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET;

  SSE2/SSSE3 loop per 32 bytes:
    int16 t1[8];
    int16 t2[8];
    for (int j = 0; j < 8; j++) {
      t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
      t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
    }
    s2 += 32*s1 + (uint32)(
              28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6] +
              t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
          ) + 528*CHAR_OFFSET;
    s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]) +
          32*CHAR_OFFSET;
 */
__attribute__ ((target("ssse3"))) MVSTATIC int32 get_checksum1_ssse3_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
    if (len > 32) {
        int aligned = ((uintptr_t)buf & 15) == 0;

        uint32 x[4] = {0};
        x[0] = *ps1;
        __m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
        x[0] = *ps2;
        __m128i ss2 = _mm_loadu_si128((__m128i_u*)x);

        const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
        __m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);

        for (; i < (len-32); i+=32) {
            // Load ... 2*[int8*16]
            __m128i in8_1, in8_2;
            if (!aligned) {
                // Synonymous with _mm_loadu_si128 on all but a handful of old CPUs
                in8_1 = _mm_lddqu_si128((__m128i_u*)&buf[i]);
                in8_2 = _mm_lddqu_si128((__m128i_u*)&buf[i + 16]);
            } else {
                in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
                in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
            }

            // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
            // Fastest, even though multiply by 1
            __m128i mul_one = _mm_set1_epi8(1);
            __m128i add16_1 = _mm_maddubs_epi16(mul_one, in8_1);
            __m128i add16_2 = _mm_maddubs_epi16(mul_one, in8_2);

            // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
            __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
            __m128i mul_add16_1 = _mm_maddubs_epi16(mul_const, in8_1);
            __m128i mul_add16_2 = _mm_maddubs_epi16(mul_const, in8_2);

            // s2 += 32*s1
            ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));

            // [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
            // Shifting left, then shifting right again and shuffling (rather than just
            // shifting right as with mul32 below) to cheaply end up with the correct sign
            // extension as we go from int16 to int32.
            __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
            sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
            sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
            sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
            sum_add32 = _mm_srai_epi32(sum_add32, 16);
            sum_add32 = _mm_shuffle_epi32(sum_add32, 3);

            // [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
            __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
            sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
            sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
            sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
            sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
            sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);

            // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
            ss1 = _mm_add_epi32(ss1, sum_add32);

            // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
            ss2 = _mm_add_epi32(ss2, sum_mul_add32);

            // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
            // We could've combined this with generating sum_add32 above and
            // save an instruction but benchmarking shows that as being slower
            __m128i add16 = _mm_hadds_epi16(add16_1, add16_2);

            // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
            __m128i mul32 = _mm_madd_epi16(add16, mul_t1);

            // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
            mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
            mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));

            // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
            ss2 = _mm_add_epi32(ss2, mul32);

#if CHAR_OFFSET != 0
            // s1 += 32*CHAR_OFFSET
            __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
            ss1 = _mm_add_epi32(ss1, char_offset_multiplier);

            // s2 += 528*CHAR_OFFSET
            char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
            ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
#endif
        }

        _mm_store_si128((__m128i_u*)x, ss1);
        *ps1 = x[0];
        _mm_store_si128((__m128i_u*)x, ss2);
        *ps2 = x[0];
    }
    return i;
}

/*
  Same as SSSE3 version, but using macros defined above to emulate SSSE3 calls that are not available with SSE2.
  For GCC-only the SSE2 and SSSE3 versions could be a single function calling other functions with the right
  target attributes to emulate SSSE3 calls on SSE2 if needed, but clang doesn't inline those properly leading
  to a near 50% performance drop.
 */
__attribute__ ((target("sse2"))) MVSTATIC int32 get_checksum1_sse2_32(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
    if (len > 32) {
        int aligned = ((uintptr_t)buf & 15) == 0;

        uint32 x[4] = {0};
        x[0] = *ps1;
        __m128i ss1 = _mm_loadu_si128((__m128i_u*)x);
        x[0] = *ps2;
        __m128i ss2 = _mm_loadu_si128((__m128i_u*)x);

        const int16 mul_t1_buf[8] = {28, 24, 20, 16, 12, 8, 4, 0};
        __m128i mul_t1 = _mm_loadu_si128((__m128i_u*)mul_t1_buf);

        for (; i < (len-32); i+=32) {
            // Load ... 2*[int8*16]
            __m128i in8_1, in8_2;
            if (!aligned) {
                in8_1 = _mm_loadu_si128((__m128i_u*)&buf[i]);
                in8_2 = _mm_loadu_si128((__m128i_u*)&buf[i + 16]);
            } else {
                in8_1 = _mm_load_si128((__m128i_u*)&buf[i]);
                in8_2 = _mm_load_si128((__m128i_u*)&buf[i + 16]);
            }

            // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*8]
            // Fastest, even though multiply by 1
            __m128i mul_one = _mm_set1_epi8(1);
            __m128i add16_1 = SSE2_MADDUBS_EPI16(mul_one, in8_1);
            __m128i add16_2 = SSE2_MADDUBS_EPI16(mul_one, in8_2);

            // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*8]
            __m128i mul_const = _mm_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
            __m128i mul_add16_1 = SSE2_MADDUBS_EPI16(mul_const, in8_1);
            __m128i mul_add16_2 = SSE2_MADDUBS_EPI16(mul_const, in8_2);

            // s2 += 32*s1
            ss2 = _mm_add_epi32(ss2, _mm_slli_epi32(ss1, 5));

            // [sum(t1[0]..t1[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
            // Shifting left, then shifting right again and shuffling (rather than just
            // shifting right as with mul32 below) to cheaply end up with the correct sign
            // extension as we go from int16 to int32.
            __m128i sum_add32 = _mm_add_epi16(add16_1, add16_2);
            sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 2));
            sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 4));
            sum_add32 = _mm_add_epi16(sum_add32, _mm_slli_si128(sum_add32, 8));
            sum_add32 = _mm_srai_epi32(sum_add32, 16);
            sum_add32 = _mm_shuffle_epi32(sum_add32, 3);

            // [sum(t2[0]..t2[7]), X, X, X] [int32*4]; faster than multiple _mm_hadds_epi16
            __m128i sum_mul_add32 = _mm_add_epi16(mul_add16_1, mul_add16_2);
            sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 2));
            sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 4));
            sum_mul_add32 = _mm_add_epi16(sum_mul_add32, _mm_slli_si128(sum_mul_add32, 8));
            sum_mul_add32 = _mm_srai_epi32(sum_mul_add32, 16);
            sum_mul_add32 = _mm_shuffle_epi32(sum_mul_add32, 3);

            // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7]
            ss1 = _mm_add_epi32(ss1, sum_add32);

            // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7]
            ss2 = _mm_add_epi32(ss2, sum_mul_add32);

            // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*8]
            // We could've combined this with generating sum_add32 above and
            // save an instruction but benchmarking shows that as being slower
            __m128i add16 = SSE2_HADDS_EPI16(add16_1, add16_2);

            // [t1[0], t1[1], ...] -> [t1[0]*28 + t1[1]*24, ...] [int32*4]
            __m128i mul32 = _mm_madd_epi16(add16, mul_t1);

            // [sum(mul32), X, X, X] [int32*4]; faster than multiple _mm_hadd_epi32
            mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 4));
            mul32 = _mm_add_epi32(mul32, _mm_srli_si128(mul32, 8));

            // s2 += 28*t1[0] + 24*t1[1] + 20*t1[2] + 16*t1[3] + 12*t1[4] + 8*t1[5] + 4*t1[6]
            ss2 = _mm_add_epi32(ss2, mul32);

#if CHAR_OFFSET != 0
            // s1 += 32*CHAR_OFFSET
            __m128i char_offset_multiplier = _mm_set1_epi32(32 * CHAR_OFFSET);
            ss1 = _mm_add_epi32(ss1, char_offset_multiplier);

            // s2 += 528*CHAR_OFFSET
            char_offset_multiplier = _mm_set1_epi32(528 * CHAR_OFFSET);
            ss2 = _mm_add_epi32(ss2, char_offset_multiplier);
#endif
        }

        _mm_store_si128((__m128i_u*)x, ss1);
        *ps1 = x[0];
        _mm_store_si128((__m128i_u*)x, ss2);
        *ps2 = x[0];
    }
    return i;
}

/*
  AVX2 loop per 64 bytes:
    int16 t1[16];
    int16 t2[16];
    for (int j = 0; j < 16; j++) {
      t1[j] = buf[j*4 + i] + buf[j*4 + i+1] + buf[j*4 + i+2] + buf[j*4 + i+3];
      t2[j] = 4*buf[j*4 + i] + 3*buf[j*4 + i+1] + 2*buf[j*4 + i+2] + buf[j*4 + i+3];
    }
    s2 += 64*s1 + (uint32)(
              60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14] +
              t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
          ) + 2080*CHAR_OFFSET;
    s1 += (uint32)(t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]) +
          64*CHAR_OFFSET;
 */
__attribute__ ((target("avx2"))) MVSTATIC int32 get_checksum1_avx2_64(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
    if (len > 64) {
        // Instructions reshuffled compared to SSE2 for slightly better performance
        int aligned = ((uintptr_t)buf & 31) == 0;

        uint32 x[8] = {0};
        x[0] = *ps1;
        __m256i ss1 = _mm256_lddqu_si256((__m256i_u*)x);
        x[0] = *ps2;
        __m256i ss2 = _mm256_lddqu_si256((__m256i_u*)x);

        // The order gets shuffled compared to SSE2
        const int16 mul_t1_buf[16] = {60, 56, 52, 48, 28, 24, 20, 16, 44, 40, 36, 32, 12, 8, 4, 0};
        __m256i mul_t1 = _mm256_lddqu_si256((__m256i_u*)mul_t1_buf);

        for (; i < (len-64); i+=64) {
            // Load ... 2*[int8*32]
            __m256i in8_1, in8_2;
            if (!aligned) {
                in8_1 = _mm256_lddqu_si256((__m256i_u*)&buf[i]);
                in8_2 = _mm256_lddqu_si256((__m256i_u*)&buf[i + 32]);
            } else {
                in8_1 = _mm256_load_si256((__m256i_u*)&buf[i]);
                in8_2 = _mm256_load_si256((__m256i_u*)&buf[i + 32]);
            }

            // Prefetch for next loops. This has no observable effect on the
            // tested AMD but makes as much as 20% difference on the Intel.
            // Curiously that same Intel sees no benefit from this with SSE2
            // or SSSE3.
            _mm_prefetch(&buf[i + 64], _MM_HINT_T0);
            _mm_prefetch(&buf[i + 96], _MM_HINT_T0);
            _mm_prefetch(&buf[i + 128], _MM_HINT_T0);
            _mm_prefetch(&buf[i + 160], _MM_HINT_T0);

            // (1*buf[i] + 1*buf[i+1]), (1*buf[i+2], 1*buf[i+3]), ... 2*[int16*16]
            // Fastest, even though multiply by 1
            __m256i mul_one = _mm256_set1_epi8(1);
            __m256i add16_1 = _mm256_maddubs_epi16(mul_one, in8_1);
            __m256i add16_2 = _mm256_maddubs_epi16(mul_one, in8_2);

            // (4*buf[i] + 3*buf[i+1]), (2*buf[i+2], buf[i+3]), ... 2*[int16*16]
            __m256i mul_const = _mm256_set1_epi32(4 + (3 << 8) + (2 << 16) + (1 << 24));
            __m256i mul_add16_1 = _mm256_maddubs_epi16(mul_const, in8_1);
            __m256i mul_add16_2 = _mm256_maddubs_epi16(mul_const, in8_2);

            // s2 += 64*s1
            ss2 = _mm256_add_epi32(ss2, _mm256_slli_epi32(ss1, 6));

            // [t1[0] + t1[1], t1[2] + t1[3] ...] [int16*16]
            __m256i add16 = _mm256_hadds_epi16(add16_1, add16_2);

            // [t1[0], t1[1], ...] -> [t1[0]*60 + t1[1]*56, ...] [int32*8]
            __m256i mul32 = _mm256_madd_epi16(add16, mul_t1);

            // [sum(t1[0]..t1[15]), X, X, X, X, X, X, X] [int32*8]
            __m256i sum_add32 = _mm256_add_epi16(add16_1, add16_2);
            sum_add32 = _mm256_add_epi16(sum_add32, _mm256_permute4x64_epi64(sum_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
            sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 2));
            sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 4));
            sum_add32 = _mm256_add_epi16(sum_add32, _mm256_slli_si256(sum_add32, 8));
            sum_add32 = _mm256_srai_epi32(sum_add32, 16);
            sum_add32 = _mm256_shuffle_epi32(sum_add32, 3);

            // s1 += t1[0] + t1[1] + t1[2] + t1[3] + t1[4] + t1[5] + t1[6] + t1[7] + t1[8] + t1[9] + t1[10] + t1[11] + t1[12] + t1[13] + t1[14] + t1[15]
            ss1 = _mm256_add_epi32(ss1, sum_add32);

            // [sum(t2[0]..t2[15]), X, X, X, X, X, X, X] [int32*8]
            __m256i sum_mul_add32 = _mm256_add_epi16(mul_add16_1, mul_add16_2);
            sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_permute4x64_epi64(sum_mul_add32, 2 + (3 << 2) + (0 << 4) + (1 << 6)));
            sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 2));
            sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 4));
            sum_mul_add32 = _mm256_add_epi16(sum_mul_add32, _mm256_slli_si256(sum_mul_add32, 8));
            sum_mul_add32 = _mm256_srai_epi32(sum_mul_add32, 16);
            sum_mul_add32 = _mm256_shuffle_epi32(sum_mul_add32, 3);

            // s2 += t2[0] + t2[1] + t2[2] + t2[3] + t2[4] + t2[5] + t2[6] + t2[7] + t2[8] + t2[9] + t2[10] + t2[11] + t2[12] + t2[13] + t2[14] + t2[15]
            ss2 = _mm256_add_epi32(ss2, sum_mul_add32);

            // [sum(mul32), X, X, X, X, X, X, X] [int32*8]
            mul32 = _mm256_add_epi32(mul32, _mm256_permute2x128_si256(mul32, mul32, 1));
            mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 4));
            mul32 = _mm256_add_epi32(mul32, _mm256_srli_si256(mul32, 8));

            // s2 += 60*t1[0] + 56*t1[1] + 52*t1[2] + 48*t1[3] + 44*t1[4] + 40*t1[5] + 36*t1[6] + 32*t1[7] + 28*t1[8] + 24*t1[9] + 20*t1[10] + 16*t1[11] + 12*t1[12] + 8*t1[13] + 4*t1[14]
            ss2 = _mm256_add_epi32(ss2, mul32);

#if CHAR_OFFSET != 0
            // s1 += 64*CHAR_OFFSET
            __m256i char_offset_multiplier = _mm256_set1_epi32(64 * CHAR_OFFSET);
            ss1 = _mm256_add_epi32(ss1, char_offset_multiplier);

            // s2 += 2080*CHAR_OFFSET
            char_offset_multiplier = _mm256_set1_epi32(2080 * CHAR_OFFSET);
            ss2 = _mm256_add_epi32(ss2, char_offset_multiplier);
#endif
        }

        _mm256_store_si256((__m256i_u*)x, ss1);
        *ps1 = x[0];
        _mm256_store_si256((__m256i_u*)x, ss2);
        *ps2 = x[0];
    }
    return i;
}

static int32 get_checksum1_default_1(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2)
{
    uint32 s1 = *ps1;
    uint32 s2 = *ps2;
    for (; i < (len-4); i+=4) {
        s2 += 4*(s1 + buf[i]) + 3*buf[i+1] + 2*buf[i+2] + buf[i+3] + 10*CHAR_OFFSET;
        s1 += (buf[i+0] + buf[i+1] + buf[i+2] + buf[i+3] + 4*CHAR_OFFSET);
    }
    for (; i < len; i++) {
        s1 += (buf[i]+CHAR_OFFSET); s2 += s1;
    }
    *ps1 = s1;
    *ps2 = s2;
    return i;
}

/* With GCC 10 putting this implementation inside 'extern "C"' causes an
   assembler error. That worked fine on GCC 5-9 and clang 6-10...
  */
static inline uint32 get_checksum1_cpp(char *buf1, int32 len)
{
    int32 i = 0;
    uint32 s1 = 0;
    uint32 s2 = 0;

    // multiples of 64 bytes using AVX2 (if available)
    i = get_checksum1_avx2_64((schar*)buf1, len, i, &s1, &s2);

    // multiples of 32 bytes using SSSE3 (if available)
    i = get_checksum1_ssse3_32((schar*)buf1, len, i, &s1, &s2);

    // multiples of 32 bytes using SSE2 (if available)
    i = get_checksum1_sse2_32((schar*)buf1, len, i, &s1, &s2);

    // whatever is left
    i = get_checksum1_default_1((schar*)buf1, len, i, &s1, &s2);

    return (s1 & 0xffff) + (s2 << 16);
}

extern "C" {

uint32 get_checksum1(char *buf1, int32 len)
{
    return get_checksum1_cpp(buf1, len);
}

} // extern "C"

#ifdef BENCHMARK_SIMD_CHECKSUM1
#pragma clang optimize off
#pragma GCC push_options
#pragma GCC optimize ("O0")

#define ROUNDS 1024
#define BLOCK_LEN 1024*1024

#ifndef CLOCK_MONOTONIC_RAW
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC
#endif

static void benchmark(const char* desc, int32 (*func)(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2), schar* buf, int32 len) {
    struct timespec start, end;
    uint64_t us;
    uint32_t cs, s1, s2;
    int i, next;

    clock_gettime(CLOCK_MONOTONIC_RAW, &start);
    for (i = 0; i < ROUNDS; i++) {
        s1 = s2 = 0;
        next = func((schar*)buf, len, 0, &s1, &s2);
        get_checksum1_default_1((schar*)buf, len, next, &s1, &s2);
    }
    clock_gettime(CLOCK_MONOTONIC_RAW, &end);
    us = next == 0 ? 0 : (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;
    cs = next == 0 ? 0 : (s1 & 0xffff) + (s2 << 16);
    printf("%-5s :: %5.0f MB/s :: %08x\n", desc, us ? (float)(len / (1024 * 1024) * ROUNDS) / ((float)us / 1000000.0f) : 0, cs);
}

static int32 get_checksum1_auto(schar* buf, int32 len, int32 i, uint32* ps1, uint32* ps2) {
    uint32 cs = get_checksum1((char*)buf, len);
    *ps1 = cs & 0xffff;
    *ps2 = cs >> 16;
    return len;
}

int main() {
    int i;
    unsigned char* buf = (unsigned char*)malloc(BLOCK_LEN);
    for (i = 0; i < BLOCK_LEN; i++) buf[i] = (i + (i % 3) + (i % 11)) % 256;

    benchmark("Auto", get_checksum1_auto, (schar*)buf, BLOCK_LEN);
    benchmark("Raw-C", get_checksum1_default_1, (schar*)buf, BLOCK_LEN);
    benchmark("SSE2", get_checksum1_sse2_32, (schar*)buf, BLOCK_LEN);
    benchmark("SSSE3", get_checksum1_ssse3_32, (schar*)buf, BLOCK_LEN);
    benchmark("AVX2", get_checksum1_avx2_64, (schar*)buf, BLOCK_LEN);

    free(buf);
    return 0;
}

#pragma GCC pop_options
#pragma clang optimize on
#endif /* BENCHMARK_SIMD_CHECKSUM1 */

#endif /* HAVE_SIMD */
#endif /* __cplusplus */
#endif /* __x86_64__ */