1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
#include <config.h>
/* $Id: nsynth.c,v 1.13 1994/11/08 13:30:50 a904209 Exp a904209 $
*/
char *nsynth_id = "$Id: nsynth.c,v 1.13 1994/11/08 13:30:50 a904209 Exp a904209 $";
/* Copyright 1982 by Dennis H. Klatt
* Klatt synthesizer
* Modified version of synthesizer described in
* J. Acoust. Soc. Am., Mar. 1980. -- new voicing
* source.
*
* Edit history
* 000001 10-Mar-83 DK Initial creation.
* 000002 5-May-83 DK Fix bug in operation of parallel F1
* 000003 7-Jul-83 DK Allow parallel B1 to vary, and if ALL_PARALLEL,
* also allow B2 and B3 to vary
* 000004 26-Jul-83 DK Get rid of mulsh, use short for VAX
* 000005 24-Oct-83 DK Split off parwavtab.c, change short to int
* 000006 16-Nov-83 DK Make samrate a variable, use exp(), cos() rand()
* 000007 17-Nov-83 DK Convert to float, remove cpsw, add set outsl
* 000008 28-Nov-83 DK Add simple impulsive glottal source option
* 000009 7-Dec-83 DK Use spkrdef[7] to select impulse or natural voicing
* and update cascade F1,..,F6 at update times
* 000010 19-Dec-83 DK Add subroutine no_rad_char() to get rid of rad char
* 000011 28-Jan-84 DK Allow up to 8 formants in cascade branch F7 fixed
* at 6.5 kHz, F8 fixed at 7.5 kHz
* 000012 14-Feb-84 DK Fix bug in 'os' options so os>12 works
* 000013 17-May-84 DK Add G0 code
* 000014 12-Mar-85 DHW modify for Haskins environment
* 000015 11-Jul-87 LG modificiations for PC
* 000016 20-Apr-91 ATS Modified for SPARCSTATION
*/
#include <useconfig.h>
#include <stdio.h>
#include <math.h>
#include "proto.h"
#include "nsynth.h"
#ifndef PI
#ifndef M_PI /* <math.h> */
#define PI 3.1415927
#else /* M_PI */
#define PI M_PI
#endif /* M_PI */
#endif
#ifdef __STDC__
#define ONE 1.0F
#else
#define ONE 1.0
#endif
typedef struct
{
char *name;
float a;
float b;
float c;
float p1;
float p2;
}
resonator_t, *resonator_ptr;
/* Various global variables */
int time_count = 0;
static warnsw; /* JPI added for f0 flutter */
/* COUNTERS */
static long nper; /* Current loc in voicing period 40000 samp/s */
/* COUNTER LIMITS */
static long T0; /* Fundamental period in output samples times 4 */
static long nopen; /* Number of samples in open phase of period */
static long nmod; /* Position in period to begin noise amp. modul */
/* Variables that have to stick around for awhile, and thus locals
are not appropriate
*/
/* Incoming parameter Variables which need to be updated synchronously */
static long F0hz10; /* Voicing fund freq in Hz */
static long AVdb; /* Amp of voicing in dB, 0 to 70 */
static long Kskew; /* Skewness of alternate periods,0 to 40 */
/* Various amplitude variables used in main loop */
static float amp_voice; /* AVdb converted to linear gain */
static float amp_bypas; /* AB converted to linear gain */
static float par_amp_voice; /* AVpdb converted to linear gain */
static float amp_aspir; /* AP converted to linear gain */
static float amp_frica; /* AF converted to linear gain */
static float amp_breth; /* ATURB converted to linear gain */
/* State variables of sound sources */
static long skew; /* Alternating jitter, in half-period units */
static float natglot_a; /* Makes waveshape of glottal pulse when open */
static float natglot_b; /* Makes waveshape of glottal pulse when open */
static float vwave; /* Ditto, but before multiplication by AVdb */
static float vlast; /* Previous output of voice */
static float nlast; /* Previous output of random number generator */
static float glotlast; /* Previous value of glotout */
static float decay; /* TLTdb converted to exponential time const */
static float onemd; /* in voicing one-pole low-pass filter */
static float minus_pi_t; /* func. of sample rate */
static float two_pi_t; /* func. of sample rate */
/* INTERNAL MEMORY FOR DIGITAL RESONATORS AND ANTIRESONATOR */
static resonator_t rnpp =
{"parallel nasal pole"};
static resonator_t r1p =
{"parallel 1st formant"};
static resonator_t r2p =
{"parallel 2nd formant"};
static resonator_t r3p =
{"parallel 3rd formant"};
static resonator_t r4p =
{"parallel 4th formant"};
static resonator_t r5p =
{"parallel 5th formant"};
static resonator_t r6p =
{"parallel 6th formant"};
static resonator_t r1c =
{"cascade 1st formant"};
static resonator_t r2c =
{"cascade 2nd formant"};
static resonator_t r3c =
{"cascade 3rd formant"};
static resonator_t r4c =
{"cascade 4th formant"};
static resonator_t r5c =
{"cascade 5th formant"};
static resonator_t r6c =
{"cascade 6th formant"};
static resonator_t r7c =
{"cascade 7th formant"};
static resonator_t r8c =
{"cascade 8th formant"};
static resonator_t rnpc =
{"cascade nasal pole"};
static resonator_t rnz =
{"cascade nasal zero"};
static resonator_t rgl =
{"crit-damped glot low-pass filter"};
static resonator_t rlp =
{"downsamp low-pass filter"};
static resonator_t rout =
{"output low-pass"};
/*
* Constant natglot[] controls shape of glottal pulse as a function
* of desired duration of open phase N0
* (Note that N0 is specified in terms of 40,000 samples/sec of speech)
*
* Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3
*
* If the radiation characterivative, a temporal derivative
* is folded in, and we go from continuous time to discrete
* integers n: dV/dt = vwave[n]
* = sum over i=1,2,...,n of { a - (i * b) }
* = a n - b/2 n**2
*
* where the constants a and b control the detailed shape
* and amplitude of the voicing waveform over the open
* potion of the voicing cycle "nopen".
*
* Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3
*
* Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
* meaning as nopen gets bigger, V has bigger peak proportional to n
*
* Thus, to generate the table below for 40 <= nopen <= 263:
*
* natglot[nopen - 40] = 1920000 / (nopen * nopen)
*/
static const short natglot[224] =
{
1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799,
768, 738, 710, 683, 658, 634, 612, 590, 570, 551,
533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
391, 380, 370, 360, 350, 341, 332, 323, 315, 307,
300, 292, 285, 278, 272, 265, 259, 253, 247, 242,
237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
192, 188, 184, 180, 177, 174, 170, 167, 164, 161,
158, 155, 153, 150, 147, 145, 142, 140, 137, 135,
133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
113, 111, 110, 108, 106, 105, 103, 102, 100, 99,
97, 96, 95, 93, 92, 91, 90, 88, 87, 86,
85, 84, 83, 82, 80, 79, 78, 77, 76, 75,
75, 74, 73, 72, 71, 70, 69, 68, 68, 67,
66, 65, 64, 64, 63, 62, 61, 61, 60, 59,
59, 58, 57, 57, 56, 56, 55, 55, 54, 54,
53, 53, 52, 52, 51, 51, 50, 50, 49, 49,
48, 48, 47, 47, 46, 46, 45, 45, 44, 44,
43, 43, 42, 42, 41, 41, 41, 41, 40, 40,
39, 39, 38, 38, 38, 38, 37, 37, 36, 36,
36, 36, 35, 35, 35, 35, 34, 34, 33, 33,
33, 33, 32, 32, 32, 32, 31, 31, 31, 31,
30, 30, 30, 30, 29, 29, 29, 29, 28, 28,
28, 28, 27, 27
};
/*
* Convertion table, db to linear, 87 dB --> 32767
* 86 dB --> 29491 (1 dB down = 0.5**1/6)
* ...
* 81 dB --> 16384 (6 dB down = 0.5)
* ...
* 0 dB --> 0
*
* The just noticeable difference for a change in intensity of a vowel
* is approximately 1 dB. Thus all amplitudes are quantized to 1 dB
* steps.
*/
static const float amptable[88] =
{
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 6.0, 7.0,
8.0, 9.0, 10.0, 11.0, 13.0,
14.0, 16.0, 18.0, 20.0, 22.0,
25.0, 28.0, 32.0, 35.0, 40.0,
45.0, 51.0, 57.0, 64.0, 71.0,
80.0, 90.0, 101.0, 114.0, 128.0,
142.0, 159.0, 179.0, 202.0, 227.0,
256.0, 284.0, 318.0, 359.0, 405.0,
455.0, 512.0, 568.0, 638.0, 719.0,
811.0, 911.0, 1024.0, 1137.0, 1276.0,
1438.0, 1622.0, 1823.0, 2048.0, 2273.0,
2552.0, 2875.0, 3244.0, 3645.0, 4096.0,
4547.0, 5104.0, 5751.0, 6488.0, 7291.0,
8192.0, 9093.0, 10207.0, 11502.0, 12976.0,
14582.0, 16384.0, 18350.0, 20644.0, 23429.0,
26214.0, 29491.0, 32767.0
};
const char *par_name[] =
{
"F0hz10",
"AVdb",
"F1hz", "B1hz",
"F2hz", "B2hz",
"F3hz", "B3hz",
"F4hz", "B4hz",
"F5hz", "B5hz",
"F6hz", "B6hz",
"FNZhz", "BNZhz",
"FNPhz", "BNPhz",
"AP",
"Kopen",
"Aturb",
"TLTdb",
"AF",
"Kskew",
"A1", "B1phz",
"A2", "B2phz",
"A3", "B3phz",
"A4", "B4phz",
"A5", "B5phz",
"A6", "B6phz",
"ANP",
"AB",
"AVpdb",
"Gain0"
};
static void flutter PROTO((klatt_global_ptr globals, klatt_frame_ptr pars));
static float resonator PROTO((resonator_ptr r, Float input));
static float antiresonator PROTO((resonator_ptr r, Float input));
static float impulsive_source PROTO((long nper));
static float natural_source PROTO((long nper));
static void setabc PROTO((long int f, long int bw, resonator_ptr rp));
static void setabcg PROTO((long int f, long int bw, resonator_ptr rp, Float gain));
static void setzeroabc PROTO((long int f, long int bw, resonator_ptr rp));
static float DBtoLIN PROTO((klatt_global_ptr globals, long int dB));
static float dBconvert PROTO((long int arg));
static void overload_warning PROTO((klatt_global_ptr globals, long int arg));
static short clip PROTO((klatt_global_ptr globals, Float input));
static void pitch_synch_par_reset PROTO((klatt_global_ptr globals,
klatt_frame_ptr frame, long ns));
static void frame_init PROTO((klatt_global_ptr globals, klatt_frame_ptr frame));
void show_parms PROTO((klatt_global_ptr globals, int *pars));
void
show_parms(globals, pars)
klatt_global_ptr globals;
int *pars;
{
int i;
static int names;
if ((names++ % 64) == 0)
{
for (i = 0; i < NPAR; i++)
printf("%s ", par_name[i]);
printf("\n");
}
for (i = 0; i < NPAR; i++)
{
printf("%*d ", (int) strlen(par_name[i]), pars[i]);
}
printf("\n");
}
/*
function FLUTTER
This function adds F0 flutter, as specified in:
"Analysis, synthesis and perception of voice quality variations among
female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
Flutter is added by applying a quasi-random element constructed from three
slowly varying sine waves.
*/
static void
flutter(globals, pars)
klatt_global_ptr globals;
klatt_frame_ptr pars;
{
long original_f0 = pars->F0hz10 / 10;
double fla = (double) globals->f0_flutter / 50;
double flb = (double) original_f0 / 100;
double flc = sin(2 * PI * 12.7 * time_count);
double fld = sin(2 * PI * 7.1 * time_count);
double fle = sin(2 * PI * 4.7 * time_count);
double delta_f0 = fla * flb * (flc + fld + fle) * 10;
F0hz10 += (long) delta_f0;
}
static float
impulsive_source(nper)
long nper;
{
static float doublet[] =
{0., 13000000., -13000000.};
if (nper < 3)
{
vwave = doublet[nper];
}
else
{
vwave = 0.0;
}
/* Low-pass filter the differenciated impulse with a critically-damped
second-order filter, time constant proportional to Kopen */
return resonator(&rgl, vwave);
}
/* Vwave is the differentiated glottal flow waveform, there is a weak
spectral zero around 800 Hz, magic constants a,b reset pitch-synch
*/
static float
natural_source(nper)
long nper;
{
float lgtemp;
/* See if glottis open */
if (nper < nopen)
{
natglot_a -= natglot_b;
vwave += natglot_a;
lgtemp = vwave * 0.028; /* function of samp_rate ? */
return (lgtemp);
}
else
{
/* Glottis closed */
vwave = 0.0;
return (0.0);
}
}
/*----------------------------------------------------------------------------*/
/* Convert formant freqencies and bandwidth into
resonator difference equation coefficents
*/
static void
setabc(f, bw, rp)
long int f; /* Frequency of resonator in Hz */
long int bw; /* Bandwidth of resonator in Hz */
resonator_ptr rp; /* Are output coefficients */
{
double arg = minus_pi_t * bw;
float r = exp(arg); /* Let r = exp(-pi bw t) */
rp->c = -(r * r); /* Let c = -r**2 */
arg = two_pi_t * f;
rp->b = r * cos(arg) * 2.0; /* Let b = r * 2*cos(2 pi f t) */
rp->a = 1.0 - rp->b - rp->c; /* Let a = 1.0 - b - c */
}
/* Convienience function for setting parallel resonators with gain */
static void
setabcg(f, bw, rp, gain)
long int f; /* Frequency of resonator in Hz */
long int bw; /* Bandwidth of resonator in Hz */
resonator_ptr rp; /* Are output coefficients */
Float gain;
{
setabc(f, bw, rp);
rp->a *= gain;
}
/* Convert formant freqencies and bandwidth into
* anti-resonator difference equation constants
*/
static void
setzeroabc(f, bw, rp)
long int f; /* Frequency of resonator in Hz */
long int bw; /* Bandwidth of resonator in Hz */
resonator_ptr rp; /* Are output coefficients */
{
setabc(f, bw, rp); /* First compute ordinary resonator coefficients */
/* Now convert to antiresonator coefficients */
rp->a = 1.0 / rp->a; /* a'= 1/a */
rp->b *= -rp->a; /* b'= -b/a */
rp->c *= -rp->a; /* c'= -c/a */
}
/*----------------------------------------------------------------------------*/
/* Convert from decibels to a linear scale factor */
static float
DBtoLIN(globals, dB)
klatt_global_ptr globals;
long int dB;
{
/* Check limits or argument (can be removed in final product) */
if (dB < 0)
dB = 0;
else if (dB >= 88)
{
if (!globals->quiet_flag)
printf("Try to compute amptable[%ld]\n", dB);
dB = 87;
}
return amptable[dB] * 0.001;
}
/* WHAT WERE THESE FOR ? */
#define ACOEF 0.005
#define BCOEF (1.0 - ACOEF) /* Slight decay to remove dc */
static float
dBconvert(arg)
long int arg;
{
return 20.0 * log10((double) arg / 32767.0);
}
static void
overload_warning(globals, arg)
klatt_global_ptr globals;
long int arg;
{
if (warnsw == 0)
{
warnsw++;
if (!globals->quiet_flag)
{
printf("\n* * * WARNING: ");
printf(" Signal at output of synthesizer (+%3.1f dB) exceeds 0 dB\n",
dBconvert(arg));
}
}
}
/* Reset selected parameters pitch-synchronously */
static void
pitch_synch_par_reset(globals, frame, ns)
klatt_global_ptr globals;
klatt_frame_ptr frame;
long ns;
{
long temp;
float temp1;
if (F0hz10 > 0)
{
T0 = (40 * globals->samrate) / F0hz10;
/* Period in samp*4 */
amp_voice = DBtoLIN(globals, AVdb);
/* Duration of period before amplitude modulation */
nmod = T0;
if (AVdb > 0)
{
nmod >>= 1;
}
/* Breathiness of voicing waveform */
amp_breth = DBtoLIN(globals, frame->Aturb) * 0.1;
/* Set open phase of glottal period */
/* where 40 <= open phase <= 263 */
nopen = 4 * frame->Kopen;
if ((globals->glsource == IMPULSIVE) && (nopen > 263))
{
nopen = 263;
}
if (nopen >= (T0 - 1))
{
nopen = T0 - 2;
if (!globals->quiet_flag)
{
printf("Warning: glottal open period cannot exceed T0, truncated\n");
}
}
if (nopen < 40)
{
nopen = 40; /* F0 max = 1000 Hz */
if (!globals->quiet_flag)
{
printf("Warning: minimum glottal open period is 10 samples.\n");
printf("truncated, nopen = %ld\n", nopen);
}
}
/* Reset a & b, which determine shape of "natural" glottal waveform */
natglot_b = natglot[nopen - 40];
natglot_a = (natglot_b * nopen) * .333;
/* Reset width of "impulsive" glottal pulse */
temp = globals->samrate / nopen;
setabc(0L, temp, &rgl);
/* Make gain at F1 about constant */
temp1 = nopen * .00833;
rgl.a *= (temp1 * temp1);
/* Truncate skewness so as not to exceed duration of closed phase
of glottal period */
temp = T0 - nopen;
if (Kskew > temp)
{
if (!globals->quiet_flag)
{
printf("Kskew duration=%ld > glottal closed period=%ld, truncate\n",
Kskew, T0 - nopen);
}
Kskew = temp;
}
if (skew >= 0)
{
skew = Kskew; /* Reset skew to requested Kskew */
}
else
{
skew = -Kskew;
}
/* Add skewness to closed portion of voicing period */
T0 = T0 + skew;
skew = -skew;
}
else
{
T0 = 4; /* Default for f0 undefined */
amp_voice = 0.0;
nmod = T0;
amp_breth = 0.0;
natglot_a = 0.0;
natglot_b = 0.0;
}
/* Reset these pars pitch synchronously or at update rate if f0=0 */
if ((T0 != 4) || (ns == 0))
{
/* Set one-pole low-pass filter that tilts glottal source */
decay = (0.033 * frame->TLTdb); /* Function of samp_rate ? */
if (decay > 0.0)
{
onemd = 1.0 - decay;
}
else
{
onemd = 1.0;
}
}
}
/* Get variable parameters from host computer,
initially also get definition of fixed pars
*/
static void
frame_init(globals, frame)
klatt_global_ptr globals;
klatt_frame_ptr frame;
{
long Gain0; /* Overall gain, 60 dB is unity 0 to 60 */
float amp_parF1; /* A1 converted to linear gain */
float amp_parFN; /* ANP converted to linear gain */
float amp_parF2; /* A2 converted to linear gain */
float amp_parF3; /* A3 converted to linear gain */
float amp_parF4; /* A4 converted to linear gain */
float amp_parF5; /* A5 converted to linear gain */
float amp_parF6; /* A6 converted to linear gain */
#if 0
show_parms((int *) frame);
#endif
/*
Read speech frame definition into temp store
and move some parameters into active use immediately
(voice-excited ones are updated pitch synchronously
to avoid waveform glitches).
*/
F0hz10 = frame->F0hz10;
AVdb = frame->AVdb - 7;
if (AVdb < 0)
AVdb = 0;
amp_aspir = DBtoLIN(globals, frame->ASP) * .05;
amp_frica = DBtoLIN(globals, frame->AF) * 0.25;
Kskew = frame->Kskew;
par_amp_voice = DBtoLIN(globals, frame->AVpdb);
/* Fudge factors (which comprehend affects of formants on each other?)
with these in place ALL_PARALLEL should sound as close as
possible to CASCADE_PARALLEL.
Possible problem feeding in Holmes's amplitudes given this.
*/
amp_parF1 = DBtoLIN(globals, frame->A1) * 0.4; /* -7.96 dB */
amp_parF2 = DBtoLIN(globals, frame->A2) * 0.15; /* -16.5 dB */
amp_parF3 = DBtoLIN(globals, frame->A3) * 0.06; /* -24.4 dB */
amp_parF4 = DBtoLIN(globals, frame->A4) * 0.04; /* -28.0 dB */
amp_parF5 = DBtoLIN(globals, frame->A5) * 0.022; /* -33.2 dB */
amp_parF6 = DBtoLIN(globals, frame->A6) * 0.03; /* -30.5 dB */
amp_parFN = DBtoLIN(globals, frame->ANP) * 0.6; /* -4.44 dB */
amp_bypas = DBtoLIN(globals, frame->AB) * 0.05; /* -26.0 db */
if (globals->nfcascade >= 8)
{
/* Inside Nyquist rate ? */
if (globals->samrate >= 16000)
setabc(7500, 600, &r8c);
else
globals->nfcascade = 6;
}
if (globals->nfcascade >= 7)
{
/* Inside Nyquist rate ? */
if (globals->samrate >= 16000)
setabc(6500, 500, &r7c);
else
globals->nfcascade = 6;
}
/* Set coefficients of variable cascade resonators */
if (globals->nfcascade >= 6)
setabc(frame->F6hz, frame->B6hz, &r6c);
if (globals->nfcascade >= 5)
setabc(frame->F5hz, frame->B5hz, &r5c);
setabc(frame->F4hz, frame->B4hz, &r4c);
setabc(frame->F3hz, frame->B3hz, &r3c);
setabc(frame->F2hz, frame->B2hz, &r2c);
setabc(frame->F1hz, frame->B1hz, &r1c);
/* Set coeficients of nasal resonator and zero antiresonator */
setabc(frame->FNPhz, frame->BNPhz, &rnpc);
setzeroabc(frame->FNZhz, frame->BNZhz, &rnz);
/* Set coefficients of parallel resonators, and amplitude of outputs */
setabcg(frame->F1hz, frame->B1phz, &r1p, amp_parF1);
setabcg(frame->FNPhz, frame->BNPhz, &rnpp, amp_parFN);
setabcg(frame->F2hz, frame->B2phz, &r2p, amp_parF2);
setabcg(frame->F3hz, frame->B3phz, &r3p, amp_parF3);
setabcg(frame->F4hz, frame->B4phz, &r4p, amp_parF4);
setabcg(frame->F5hz, frame->B5phz, &r5p, amp_parF5);
setabcg(frame->F6hz, frame->B6phz, &r6p, amp_parF6);
/* fold overall gain into output resonator */
Gain0 = frame->Gain0 - 3;
if (Gain0 <= 0)
Gain0 = 57;
/* output low-pass filter - resonator with freq 0 and BW = globals->samrate
Thus 3db point is globals->samrate/2 i.e. Nyquist limit.
Only 3db down seems rather mild...
*/
setabcg(0L, (long) globals->samrate, &rout, DBtoLIN(globals, Gain0));
}
static short
clip(globals, input)
klatt_global_ptr globals;
Float input;
{
long temp = input;
/* clip on boundaries of 16-bit word */
if (temp < -32767)
{
overload_warning(globals, -temp);
temp = -32767;
}
else if (temp > 32767)
{
overload_warning(globals, temp);
temp = 32767;
}
return (temp);
}
/* Generic resonator function */
static float
resonator(r, input)
resonator_ptr r;
Float input;
{
register float x = r->a * input + r->b * r->p1 + r->c * r->p2;
r->p2 = r->p1;
r->p1 = x;
return x;
}
/* Generic anti-resonator function
Same as resonator except that a,b,c need to be set with setzeroabc()
and we save inputs in p1/p2 rather than outputs.
There is currently only one of these - "rnz"
*/
/* Output = (rnz.a * input) + (rnz.b * oldin1) + (rnz.c * oldin2) */
static float
antiresonator(r, input)
resonator_ptr r;
Float input;
{
register float x = r->a * input + r->b * r->p1 + r->c * r->p2;
r->p2 = r->p1;
r->p1 = input;
return x;
}
/*
function PARWAV
CONVERT FRAME OF PARAMETER DATA TO A WAVEFORM CHUNK
Synthesize globals->nspfr samples of waveform and store in jwave[].
*/
void
parwave(globals, frame, jwave)
klatt_global_ptr globals;
klatt_frame_ptr frame;
short int *jwave;
{
long ns;
float out = 0.0;
/* Output of cascade branch, also final output */
/* Initialize synthesizer and get specification for current speech
frame from host microcomputer */
frame_init(globals, frame);
if (globals->f0_flutter != 0)
{
time_count++; /* used for f0 flutter */
flutter(globals, frame); /* add f0 flutter */
}
/* MAIN LOOP, for each output sample of current frame: */
for (ns = 0; ns < globals->nspfr; ns++)
{
static unsigned long seed = 5; /* Fixed staring value */
float noise;
int n4;
float sourc; /* Sound source if all-parallel config used */
float glotout; /* Output of glottal sound source */
float par_glotout; /* Output of parallelglottal sound sourc */
float voice; /* Current sample of voicing waveform */
float frics; /* Frication sound source */
float aspiration; /* Aspiration sound source */
long nrand; /* Varible used by random number generator */
/* Our own code like rand(), but portable
whole upper 31 bits of seed random
assumes 32-bit unsigned arithmetic
with untested code to handle larger.
*/
seed = seed * 1664525 + 1;
if (8 * sizeof(unsigned long) > 32)
seed &= 0xFFFFFFFF;
/* Shift top bits of seed up to top of long then back down to LS 14 bits */
/* Assumes 8 bits per sizeof unit i.e. a "byte" */
nrand = (((long) seed) << (8 * sizeof(long) - 32)) >> (8 * sizeof(long) - 14);
/* Tilt down noise spectrum by soft low-pass filter having
* a pole near the origin in the z-plane, i.e.
* output = input + (0.75 * lastoutput) */
noise = nrand + (0.75 * nlast); /* Function of samp_rate ? */
nlast = noise;
/* Amplitude modulate noise (reduce noise amplitude during
second half of glottal period) if voicing simultaneously present
*/
if (nper > nmod)
{
noise *= 0.5;
}
/* Compute frication noise */
sourc = frics = amp_frica * noise;
/* Compute voicing waveform : (run glottal source simulation at
4 times normal sample rate to minimize quantization noise in
period of female voice)
*/
for (n4 = 0; n4 < 4; n4++)
{
if (globals->glsource == IMPULSIVE)
{
/* Use impulsive glottal source */
voice = impulsive_source(nper);
}
else
{
/* Or use a more-natural-shaped source waveform with excitation
occurring both upon opening and upon closure, stronest at closure */
voice = natural_source(nper);
}
/* Reset period when counter 'nper' reaches T0 */
if (nper >= T0)
{
nper = 0;
pitch_synch_par_reset(globals, frame, ns);
}
/* Low-pass filter voicing waveform before downsampling from 4*globals->samrate */
/* to globals->samrate samples/sec. Resonator f=.09*globals->samrate, bw=.06*globals->samrate */
voice = resonator(&rlp, voice); /* in=voice, out=voice */
/* Increment counter that keeps track of 4*globals->samrate samples/sec */
nper++;
}
/* Tilt spectrum of voicing source down by soft low-pass filtering, amount
of tilt determined by TLTdb
*/
voice = (voice * onemd) + (vlast * decay);
vlast = voice;
/* Add breathiness during glottal open phase */
if (nper < nopen)
{
/* Amount of breathiness determined by parameter Aturb */
/* Use nrand rather than noise because noise is low-passed */
voice += amp_breth * nrand;
}
/* Set amplitude of voicing */
glotout = amp_voice * voice;
/* Compute aspiration amplitude and add to voicing source */
aspiration = amp_aspir * noise;
glotout += aspiration;
par_glotout = glotout;
if (globals->synthesis_model != ALL_PARALLEL)
{
/* Cascade vocal tract, excited by laryngeal sources.
Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1
*/
float rnzout = antiresonator(&rnz, glotout); /* Output of cascade nazal zero resonator */
float casc_next_in = resonator(&rnpc, rnzout); /* in=rnzout, out=rnpc.p1 */
/* Recoded from sequence of if's to use C's fall through switch
semantics. May allow compiler to optimize
*/
switch (globals->nfcascade)
{
case 8:
casc_next_in = resonator(&r8c, casc_next_in); /* Do not use unless samrat = 16000 */
case 7:
casc_next_in = resonator(&r7c, casc_next_in); /* Do not use unless samrat = 16000 */
case 6:
casc_next_in = resonator(&r6c, casc_next_in); /* Do not use unless long vocal tract or samrat increased */
case 5:
casc_next_in = resonator(&r5c, casc_next_in);
case 4:
casc_next_in = resonator(&r4c, casc_next_in);
case 3:
casc_next_in = resonator(&r3c, casc_next_in);
case 2:
casc_next_in = resonator(&r2c, casc_next_in);
case 1:
out = resonator(&r1c, casc_next_in);
break;
default:
out = 0.0;
}
#if 0
/* Excite parallel F1 and FNP by voicing waveform */
/* Source is voicing plus aspiration */
/* Add in phase, boost lows for nasalized */
out += (resonator(&rnpp, par_glotout) + resonator(&r1p, par_glotout));
#endif
}
else
{
/* Is ALL_PARALLEL */
/* NIS - rsynth "hack"
As Holmes' scheme is weak at nasals and (physically) nasal cavity
is "back near glottis" feed glottal source through nasal resonators
Don't think this is quite right, but improves things a bit
*/
par_glotout = antiresonator(&rnz, par_glotout);
par_glotout = resonator(&rnpc, par_glotout);
/* And just use r1p NOT rnpp */
out = resonator(&r1p, par_glotout);
/* Sound sourc for other parallel resonators is frication
plus first difference of voicing waveform.
*/
sourc += (par_glotout - glotlast);
glotlast = par_glotout;
}
/* Standard parallel vocal tract
Formants F6,F5,F4,F3,F2, outputs added with alternating sign
*/
out = resonator(&r6p, sourc) - out;
out = resonator(&r5p, sourc) - out;
out = resonator(&r4p, sourc) - out;
out = resonator(&r3p, sourc) - out;
out = resonator(&r2p, sourc) - out;
out = amp_bypas * sourc - out;
out = resonator(&rout, out);
*jwave++ = clip(globals, out); /* Convert back to integer */
}
}
void
parwave_init(globals)
klatt_global_ptr globals;
{
long FLPhz = (950 * globals->samrate) / 10000;
long BLPhz = (630 * globals->samrate) / 10000;
minus_pi_t = -PI / globals->samrate;
two_pi_t = -2.0 * minus_pi_t;
setabc(FLPhz, BLPhz, &rlp);
nper = 0; /* LG */
T0 = 0; /* LG */
rnpp.p1 = 0; /* parallel nasal pole */
rnpp.p2 = 0;
r1p.p1 = 0; /* parallel 1st formant */
r1p.p2 = 0;
r2p.p1 = 0; /* parallel 2nd formant */
r2p.p2 = 0;
r3p.p1 = 0; /* parallel 3rd formant */
r3p.p2 = 0;
r4p.p1 = 0; /* parallel 4th formant */
r4p.p2 = 0;
r5p.p1 = 0; /* parallel 5th formant */
r5p.p2 = 0;
r6p.p1 = 0; /* parallel 6th formant */
r6p.p2 = 0;
r1c.p1 = 0; /* cascade 1st formant */
r1c.p2 = 0;
r2c.p1 = 0; /* cascade 2nd formant */
r2c.p2 = 0;
r3c.p1 = 0; /* cascade 3rd formant */
r3c.p2 = 0;
r4c.p1 = 0; /* cascade 4th formant */
r4c.p2 = 0;
r5c.p1 = 0; /* cascade 5th formant */
r5c.p2 = 0;
r6c.p1 = 0; /* cascade 6th formant */
r6c.p2 = 0;
r7c.p1 = 0;
r7c.p2 = 0;
r8c.p1 = 0;
r8c.p2 = 0;
rnpc.p1 = 0; /* cascade nasal pole */
rnpc.p2 = 0;
rnz.p1 = 0; /* cascade nasal zero */
rnz.p2 = 0;
rgl.p1 = 0; /* crit-damped glot low-pass filter */
rgl.p2 = 0;
rlp.p1 = 0; /* downsamp low-pass filter */
rlp.p2 = 0;
vlast = 0; /* Previous output of voice */
nlast = 0; /* Previous output of random number generator */
glotlast = 0; /* Previous value of glotout */
warnsw = 0;
}
|