File: nsynth.c

package info (click to toggle)
rsynth 2.0-2
  • links: PTS
  • area: non-free
  • in suites: hamm, slink
  • size: 716 kB
  • ctags: 544
  • sloc: ansic: 5,535; sh: 1,246; makefile: 116
file content (1048 lines) | stat: -rw-r--r-- 30,654 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
#include <config.h>


/* $Id: nsynth.c,v 1.13 1994/11/08 13:30:50 a904209 Exp a904209 $
 */
char *nsynth_id = "$Id: nsynth.c,v 1.13 1994/11/08 13:30:50 a904209 Exp a904209 $";

/* Copyright            1982                    by Dennis H. Klatt

 *      Klatt synthesizer
 *         Modified version of synthesizer described in
 *         J. Acoust. Soc. Am., Mar. 1980. -- new voicing
 *         source.
 *
 * Edit history
 * 000001 10-Mar-83 DK  Initial creation.
 * 000002  5-May-83 DK  Fix bug in operation of parallel F1
 * 000003  7-Jul-83 DK  Allow parallel B1 to vary, and if ALL_PARALLEL,
 *                      also allow B2 and B3 to vary
 * 000004 26-Jul-83 DK  Get rid of mulsh, use short for VAX
 * 000005 24-Oct-83 DK  Split off parwavtab.c, change short to int
 * 000006 16-Nov-83 DK  Make samrate a variable, use exp(), cos() rand()
 * 000007 17-Nov-83 DK  Convert to float, remove  cpsw, add set outsl
 * 000008 28-Nov-83 DK  Add simple impulsive glottal source option
 * 000009  7-Dec-83 DK  Use spkrdef[7] to select impulse or natural voicing
 *                       and update cascade F1,..,F6 at update times
 * 000010 19-Dec-83 DK  Add subroutine no_rad_char() to get rid of rad char
 * 000011 28-Jan-84 DK  Allow up to 8 formants in cascade branch F7 fixed
 *                       at 6.5 kHz, F8 fixed at 7.5 kHz
 * 000012 14-Feb-84 DK  Fix bug in 'os' options so os>12 works
 * 000013 17-May-84 DK  Add G0 code
 * 000014 12-Mar-85 DHW modify for Haskins environment
 * 000015 11-Jul-87 LG  modificiations for PC
 * 000016 20-Apr-91 ATS Modified for SPARCSTATION
 */

#include <useconfig.h>
#include <stdio.h>
#include <math.h>
#include "proto.h"
#include "nsynth.h"
#ifndef PI
#ifndef M_PI                      /* <math.h> */
#define PI               3.1415927
#else /* M_PI */
#define PI               M_PI
#endif /* M_PI */
#endif

#ifdef __STDC__
#define ONE 1.0F
#else
#define ONE 1.0
#endif

typedef struct
 {
  char *name;
  float a;
  float b;
  float c;
  float p1;
  float p2;
 }
resonator_t, *resonator_ptr;

/* Various global variables */

int time_count = 0;
static warnsw;                    /* JPI added for f0 flutter */

/* COUNTERS */

static long nper;                 /* Current loc in voicing period   40000 samp/s */

/* COUNTER LIMITS */

static long T0;                   /* Fundamental period in output samples times 4 */
static long nopen;                /* Number of samples in open phase of period  */
static long nmod;                 /* Position in period to begin noise amp. modul */

/* Variables that have to stick around for awhile, and thus locals
   are not appropriate 
 */

/* Incoming parameter Variables which need to be updated synchronously  */

static long F0hz10;               /* Voicing fund freq in Hz  */
static long AVdb;                 /* Amp of voicing in dB,    0 to   70  */
static long Kskew;                /* Skewness of alternate periods,0 to   40  */

/* Various amplitude variables used in main loop */

static float amp_voice;           /* AVdb converted to linear gain  */
static float amp_bypas;           /* AB converted to linear gain  */
static float par_amp_voice;       /* AVpdb converted to linear gain  */
static float amp_aspir;           /* AP converted to linear gain  */
static float amp_frica;           /* AF converted to linear gain  */
static float amp_breth;           /* ATURB converted to linear gain  */

/* State variables of sound sources */

static long skew;                 /* Alternating jitter, in half-period units  */

static float natglot_a;           /* Makes waveshape of glottal pulse when open  */
static float natglot_b;           /* Makes waveshape of glottal pulse when open  */
static float vwave;               /* Ditto, but before multiplication by AVdb  */
static float vlast;               /* Previous output of voice  */
static float nlast;               /* Previous output of random number generator  */
static float glotlast;            /* Previous value of glotout  */
static float decay;               /* TLTdb converted to exponential time const  */
static float onemd;               /* in voicing one-pole low-pass filter  */
static float minus_pi_t;          /* func. of sample rate */
static float two_pi_t;            /* func. of sample rate */


/* INTERNAL MEMORY FOR DIGITAL RESONATORS AND ANTIRESONATOR  */

static resonator_t rnpp =
{"parallel nasal pole"};
static resonator_t r1p =
{"parallel 1st formant"};
static resonator_t r2p =
{"parallel 2nd formant"};
static resonator_t r3p =
{"parallel 3rd formant"};
static resonator_t r4p =
{"parallel 4th formant"};
static resonator_t r5p =
{"parallel 5th formant"};
static resonator_t r6p =
{"parallel 6th formant"};
static resonator_t r1c =
{"cascade 1st formant"};
static resonator_t r2c =
{"cascade 2nd formant"};
static resonator_t r3c =
{"cascade 3rd formant"};
static resonator_t r4c =
{"cascade 4th formant"};
static resonator_t r5c =
{"cascade 5th formant"};
static resonator_t r6c =
{"cascade 6th formant"};
static resonator_t r7c =
{"cascade 7th formant"};
static resonator_t r8c =
{"cascade 8th formant"};
static resonator_t rnpc =
{"cascade nasal pole"};
static resonator_t rnz =
{"cascade nasal zero"};
static resonator_t rgl =
{"crit-damped glot low-pass filter"};
static resonator_t rlp =
{"downsamp low-pass filter"};
static resonator_t rout =
{"output low-pass"};

/*
 * Constant natglot[] controls shape of glottal pulse as a function
 * of desired duration of open phase N0
 * (Note that N0 is specified in terms of 40,000 samples/sec of speech)
 *
 *    Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3
 *
 *    If the radiation characterivative, a temporal derivative
 *      is folded in, and we go from continuous time to discrete
 *      integers n:  dV/dt = vwave[n]
 *                         = sum over i=1,2,...,n of { a - (i * b) }
 *                         = a n  -  b/2 n**2
 *
 *      where the  constants a and b control the detailed shape
 *      and amplitude of the voicing waveform over the open
 *      potion of the voicing cycle "nopen".
 *
 *    Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3
 *
 *    Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
 *      meaning as nopen gets bigger, V has bigger peak proportional to n
 *
 *    Thus, to generate the table below for 40 <= nopen <= 263:
 *
 *      natglot[nopen - 40] = 1920000 / (nopen * nopen)
 */
static const short natglot[224] =
{
 1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799,
 768, 738, 710, 683, 658, 634, 612, 590, 570, 551,
 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
 391, 380, 370, 360, 350, 341, 332, 323, 315, 307,
 300, 292, 285, 278, 272, 265, 259, 253, 247, 242,
 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
 192, 188, 184, 180, 177, 174, 170, 167, 164, 161,
 158, 155, 153, 150, 147, 145, 142, 140, 137, 135,
 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
 113, 111, 110, 108, 106, 105, 103, 102, 100, 99,
 97, 96, 95, 93, 92, 91, 90, 88, 87, 86,
 85, 84, 83, 82, 80, 79, 78, 77, 76, 75,
 75, 74, 73, 72, 71, 70, 69, 68, 68, 67,
 66, 65, 64, 64, 63, 62, 61, 61, 60, 59,
 59, 58, 57, 57, 56, 56, 55, 55, 54, 54,
 53, 53, 52, 52, 51, 51, 50, 50, 49, 49,
 48, 48, 47, 47, 46, 46, 45, 45, 44, 44,
 43, 43, 42, 42, 41, 41, 41, 41, 40, 40,
 39, 39, 38, 38, 38, 38, 37, 37, 36, 36,
 36, 36, 35, 35, 35, 35, 34, 34, 33, 33,
 33, 33, 32, 32, 32, 32, 31, 31, 31, 31,
 30, 30, 30, 30, 29, 29, 29, 29, 28, 28,
 28, 28, 27, 27
};

/*
 * Convertion table, db to linear, 87 dB --> 32767
 *                                 86 dB --> 29491 (1 dB down = 0.5**1/6)
 *                                 ...
 *                                 81 dB --> 16384 (6 dB down = 0.5)
 *                                 ...
 *                                  0 dB -->     0
 *
 * The just noticeable difference for a change in intensity of a vowel
 *   is approximately 1 dB.  Thus all amplitudes are quantized to 1 dB
 *   steps.
 */

static const float amptable[88] =
{
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 6.0, 7.0,
 8.0, 9.0, 10.0, 11.0, 13.0,
 14.0, 16.0, 18.0, 20.0, 22.0,
 25.0, 28.0, 32.0, 35.0, 40.0,
 45.0, 51.0, 57.0, 64.0, 71.0,
 80.0, 90.0, 101.0, 114.0, 128.0,
 142.0, 159.0, 179.0, 202.0, 227.0,
 256.0, 284.0, 318.0, 359.0, 405.0,
 455.0, 512.0, 568.0, 638.0, 719.0,
 811.0, 911.0, 1024.0, 1137.0, 1276.0,
 1438.0, 1622.0, 1823.0, 2048.0, 2273.0,
 2552.0, 2875.0, 3244.0, 3645.0, 4096.0,
 4547.0, 5104.0, 5751.0, 6488.0, 7291.0,
 8192.0, 9093.0, 10207.0, 11502.0, 12976.0,
 14582.0, 16384.0, 18350.0, 20644.0, 23429.0,
 26214.0, 29491.0, 32767.0
};

const char *par_name[] =
{
 "F0hz10",
 "AVdb",
 "F1hz", "B1hz",
 "F2hz", "B2hz",
 "F3hz", "B3hz",
 "F4hz", "B4hz",
 "F5hz", "B5hz",
 "F6hz", "B6hz",
 "FNZhz", "BNZhz",
 "FNPhz", "BNPhz",
 "AP",
 "Kopen",
 "Aturb",
 "TLTdb",
 "AF",
 "Kskew",
 "A1", "B1phz",
 "A2", "B2phz",
 "A3", "B3phz",
 "A4", "B4phz",
 "A5", "B5phz",
 "A6", "B6phz",
 "ANP",
 "AB",
 "AVpdb",
 "Gain0"
};

static void flutter PROTO((klatt_global_ptr globals, klatt_frame_ptr pars));
static float resonator PROTO((resonator_ptr r, Float input));
static float antiresonator PROTO((resonator_ptr r, Float input));
static float impulsive_source PROTO((long nper));
static float natural_source PROTO((long nper));
static void setabc PROTO((long int f, long int bw, resonator_ptr rp));
static void setabcg PROTO((long int f, long int bw, resonator_ptr rp, Float gain));
static void setzeroabc PROTO((long int f, long int bw, resonator_ptr rp));
static float DBtoLIN PROTO((klatt_global_ptr globals, long int dB));
static float dBconvert PROTO((long int arg));
static void overload_warning PROTO((klatt_global_ptr globals, long int arg));
static short clip PROTO((klatt_global_ptr globals, Float input));
static void pitch_synch_par_reset PROTO((klatt_global_ptr globals,
                                         klatt_frame_ptr frame, long ns));
static void frame_init PROTO((klatt_global_ptr globals, klatt_frame_ptr frame));
void show_parms PROTO((klatt_global_ptr globals, int *pars));


void
show_parms(globals, pars)
klatt_global_ptr globals;
int *pars;
{
 int i;
 static int names;
 if ((names++ % 64) == 0)
  {
   for (i = 0; i < NPAR; i++)
    printf("%s ", par_name[i]);
   printf("\n");
  }
 for (i = 0; i < NPAR; i++)
  {
   printf("%*d ", (int) strlen(par_name[i]), pars[i]);
  }
 printf("\n");
}

/*
   function FLUTTER

   This function adds F0 flutter, as specified in:

   "Analysis, synthesis and perception of voice quality variations among
   female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
   Flutter is added by applying a quasi-random element constructed from three
   slowly varying sine waves.
 */
static void
flutter(globals, pars)
klatt_global_ptr globals;
klatt_frame_ptr pars;
{
 long original_f0 = pars->F0hz10 / 10;
 double fla = (double) globals->f0_flutter / 50;
 double flb = (double) original_f0 / 100;
 double flc = sin(2 * PI * 12.7 * time_count);
 double fld = sin(2 * PI * 7.1 * time_count);
 double fle = sin(2 * PI * 4.7 * time_count);
 double delta_f0 = fla * flb * (flc + fld + fle) * 10;
 F0hz10 += (long) delta_f0;
}

static float
impulsive_source(nper)
long nper;
{
 static float doublet[] =
 {0., 13000000., -13000000.};
 if (nper < 3)
  {
   vwave = doublet[nper];
  }
 else
  {
   vwave = 0.0;
  }
 /* Low-pass filter the differenciated impulse with a critically-damped
    second-order filter, time constant proportional to Kopen */
 return resonator(&rgl, vwave);
}


/* Vwave is the differentiated glottal flow waveform, there is a weak
   spectral zero around 800 Hz, magic constants a,b reset pitch-synch
 */

static float
natural_source(nper)
long nper;
{
 float lgtemp;
 /* See if glottis open */
 if (nper < nopen)
  {
   natglot_a -= natglot_b;
   vwave += natglot_a;
   lgtemp = vwave * 0.028;        /* function of samp_rate ? */
   return (lgtemp);
  }
 else
  {
   /* Glottis closed */
   vwave = 0.0;
   return (0.0);
  }
}

/*----------------------------------------------------------------------------*/
/* Convert formant freqencies and bandwidth into
   resonator difference equation coefficents
 */
static void
setabc(f, bw, rp)
long int f;                       /* Frequency of resonator in Hz  */
long int bw;                      /* Bandwidth of resonator in Hz  */
resonator_ptr rp;                 /* Are output coefficients  */
{
 double arg = minus_pi_t * bw;
 float r = exp(arg);              /* Let r  =  exp(-pi bw t) */
 rp->c = -(r * r);                /* Let c  =  -r**2 */
 arg = two_pi_t * f;
 rp->b = r * cos(arg) * 2.0;      /* Let b = r * 2*cos(2 pi f t) */
 rp->a = 1.0 - rp->b - rp->c;     /* Let a = 1.0 - b - c */
}

/* Convienience function for setting parallel resonators with gain */
static void
setabcg(f, bw, rp, gain)
long int f;                       /* Frequency of resonator in Hz  */
long int bw;                      /* Bandwidth of resonator in Hz  */
resonator_ptr rp;                 /* Are output coefficients  */
Float gain;
{
 setabc(f, bw, rp);
 rp->a *= gain;
}

/* Convert formant freqencies and bandwidth into
 *      anti-resonator difference equation constants
 */
static void
setzeroabc(f, bw, rp)
long int f;                       /* Frequency of resonator in Hz  */
long int bw;                      /* Bandwidth of resonator in Hz  */
resonator_ptr rp;                 /* Are output coefficients  */
{
 setabc(f, bw, rp);               /* First compute ordinary resonator coefficients */
 /* Now convert to antiresonator coefficients */
 rp->a = 1.0 / rp->a;             /* a'=  1/a */
 rp->b *= -rp->a;                 /* b'= -b/a */
 rp->c *= -rp->a;                 /* c'= -c/a */
}

/*----------------------------------------------------------------------------*/


/* Convert from decibels to a linear scale factor */
static float
DBtoLIN(globals, dB)
klatt_global_ptr globals;
long int dB;
{
 /* Check limits or argument (can be removed in final product) */
 if (dB < 0)
  dB = 0;
 else if (dB >= 88)
  {
   if (!globals->quiet_flag)
    printf("Try to compute amptable[%ld]\n", dB);
   dB = 87;
  }
 return amptable[dB] * 0.001;
}

/* WHAT WERE THESE FOR ? */
#define ACOEF           0.005
#define BCOEF           (1.0 - ACOEF)	/* Slight decay to remove dc */

static float
dBconvert(arg)
long int arg;
{
 return 20.0 * log10((double) arg / 32767.0);
}

static void
overload_warning(globals, arg)
klatt_global_ptr globals;
long int arg;
{
 if (warnsw == 0)
  {
   warnsw++;
   if (!globals->quiet_flag)
    {
     printf("\n* * * WARNING: ");
     printf(" Signal at output of synthesizer (+%3.1f dB) exceeds 0 dB\n",
            dBconvert(arg));
    }
  }
}

/* Reset selected parameters pitch-synchronously */

static void
pitch_synch_par_reset(globals, frame, ns)
klatt_global_ptr globals;
klatt_frame_ptr frame;
long ns;
{
 long temp;
 float temp1;
 if (F0hz10 > 0)
  {
   T0 = (40 * globals->samrate) / F0hz10;
   /* Period in samp*4 */
   amp_voice = DBtoLIN(globals, AVdb);

   /* Duration of period before amplitude modulation */
   nmod = T0;
   if (AVdb > 0)
    {
     nmod >>= 1;
    }

   /* Breathiness of voicing waveform */

   amp_breth = DBtoLIN(globals, frame->Aturb) * 0.1;

   /* Set open phase of glottal period */
   /* where  40 <= open phase <= 263 */

   nopen = 4 * frame->Kopen;
   if ((globals->glsource == IMPULSIVE) && (nopen > 263))
    {
     nopen = 263;
    }

   if (nopen >= (T0 - 1))
    {
     nopen = T0 - 2;
     if (!globals->quiet_flag)
      {
       printf("Warning: glottal open period cannot exceed T0, truncated\n");
      }
    }

   if (nopen < 40)
    {
     nopen = 40;                  /* F0 max = 1000 Hz */
     if (!globals->quiet_flag)
      {
       printf("Warning: minimum glottal open period is 10 samples.\n");
       printf("truncated, nopen = %ld\n", nopen);
      }
    }

   /* Reset a & b, which determine shape of "natural" glottal waveform */

   natglot_b = natglot[nopen - 40];
   natglot_a = (natglot_b * nopen) * .333;

   /* Reset width of "impulsive" glottal pulse */

   temp = globals->samrate / nopen;
   setabc(0L, temp, &rgl);

   /* Make gain at F1 about constant */

   temp1 = nopen * .00833;
   rgl.a *= (temp1 * temp1);

   /* Truncate skewness so as not to exceed duration of closed phase
      of glottal period */

   temp = T0 - nopen;
   if (Kskew > temp)
    {
     if (!globals->quiet_flag)
      {
       printf("Kskew duration=%ld > glottal closed period=%ld, truncate\n",
              Kskew, T0 - nopen);
      }
     Kskew = temp;
    }
   if (skew >= 0)
    {
     skew = Kskew;                /* Reset skew to requested Kskew */
    }
   else
    {
     skew = -Kskew;
    }

   /* Add skewness to closed portion of voicing period */

   T0 = T0 + skew;
   skew = -skew;
  }
 else
  {
   T0 = 4;                        /* Default for f0 undefined */
   amp_voice = 0.0;
   nmod = T0;
   amp_breth = 0.0;
   natglot_a = 0.0;
   natglot_b = 0.0;
  }

 /* Reset these pars pitch synchronously or at update rate if f0=0 */

 if ((T0 != 4) || (ns == 0))
  {
   /* Set one-pole low-pass filter that tilts glottal source */
   decay = (0.033 * frame->TLTdb);	/* Function of samp_rate ? */
   if (decay > 0.0)
    {
     onemd = 1.0 - decay;
    }
   else
    {
     onemd = 1.0;
    }
  }
}

/* Get variable parameters from host computer,
   initially also get definition of fixed pars
 */

static void
frame_init(globals, frame)
klatt_global_ptr globals;
klatt_frame_ptr frame;
{
 long Gain0;                      /* Overall gain, 60 dB is unity  0 to   60  */
 float amp_parF1;                 /* A1 converted to linear gain  */
 float amp_parFN;                 /* ANP converted to linear gain  */
 float amp_parF2;                 /* A2 converted to linear gain  */
 float amp_parF3;                 /* A3 converted to linear gain  */
 float amp_parF4;                 /* A4 converted to linear gain  */
 float amp_parF5;                 /* A5 converted to linear gain  */
 float amp_parF6;                 /* A6 converted to linear gain  */

#if 0
 show_parms((int *) frame);
#endif

 /*
    Read  speech frame definition into temp store
    and move some parameters into active use immediately
    (voice-excited ones are updated pitch synchronously
    to avoid waveform glitches).
  */

 F0hz10 = frame->F0hz10;
 AVdb = frame->AVdb - 7;
 if (AVdb < 0)
  AVdb = 0;

 amp_aspir = DBtoLIN(globals, frame->ASP) * .05;
 amp_frica = DBtoLIN(globals, frame->AF) * 0.25;

 Kskew = frame->Kskew;
 par_amp_voice = DBtoLIN(globals, frame->AVpdb);

 /* Fudge factors (which comprehend affects of formants on each other?)
    with these in place ALL_PARALLEL should sound as close as 
    possible to CASCADE_PARALLEL.
    Possible problem feeding in Holmes's amplitudes given this.
  */
 amp_parF1 = DBtoLIN(globals, frame->A1) * 0.4;	/* -7.96 dB */
 amp_parF2 = DBtoLIN(globals, frame->A2) * 0.15;	/* -16.5 dB */
 amp_parF3 = DBtoLIN(globals, frame->A3) * 0.06;	/* -24.4 dB */
 amp_parF4 = DBtoLIN(globals, frame->A4) * 0.04;	/* -28.0 dB */
 amp_parF5 = DBtoLIN(globals, frame->A5) * 0.022;	/* -33.2 dB */
 amp_parF6 = DBtoLIN(globals, frame->A6) * 0.03;	/* -30.5 dB */
 amp_parFN = DBtoLIN(globals, frame->ANP) * 0.6;	/* -4.44 dB */
 amp_bypas = DBtoLIN(globals, frame->AB) * 0.05;	/* -26.0 db */

 if (globals->nfcascade >= 8)
  {
   /* Inside Nyquist rate ? */
   if (globals->samrate >= 16000)
    setabc(7500, 600, &r8c);
   else
    globals->nfcascade = 6;
  }

 if (globals->nfcascade >= 7)
  {
   /* Inside Nyquist rate ? */
   if (globals->samrate >= 16000)
    setabc(6500, 500, &r7c);
   else
    globals->nfcascade = 6;
  }

 /* Set coefficients of variable cascade resonators */

 if (globals->nfcascade >= 6)
  setabc(frame->F6hz, frame->B6hz, &r6c);

 if (globals->nfcascade >= 5)
  setabc(frame->F5hz, frame->B5hz, &r5c);

 setabc(frame->F4hz, frame->B4hz, &r4c);
 setabc(frame->F3hz, frame->B3hz, &r3c);
 setabc(frame->F2hz, frame->B2hz, &r2c);
 setabc(frame->F1hz, frame->B1hz, &r1c);

 /* Set coeficients of nasal resonator and zero antiresonator */
 setabc(frame->FNPhz, frame->BNPhz, &rnpc);
 setzeroabc(frame->FNZhz, frame->BNZhz, &rnz);

 /* Set coefficients of parallel resonators, and amplitude of outputs */
 setabcg(frame->F1hz, frame->B1phz, &r1p, amp_parF1);
 setabcg(frame->FNPhz, frame->BNPhz, &rnpp, amp_parFN);
 setabcg(frame->F2hz, frame->B2phz, &r2p, amp_parF2);
 setabcg(frame->F3hz, frame->B3phz, &r3p, amp_parF3);
 setabcg(frame->F4hz, frame->B4phz, &r4p, amp_parF4);
 setabcg(frame->F5hz, frame->B5phz, &r5p, amp_parF5);
 setabcg(frame->F6hz, frame->B6phz, &r6p, amp_parF6);


 /* fold overall gain into output resonator */
 Gain0 = frame->Gain0 - 3;
 if (Gain0 <= 0)
  Gain0 = 57;
 /* output low-pass filter - resonator with freq 0 and BW = globals->samrate
    Thus 3db point is globals->samrate/2 i.e. Nyquist limit.
    Only 3db down seems rather mild...
  */
 setabcg(0L, (long) globals->samrate, &rout, DBtoLIN(globals, Gain0));
}

static short
clip(globals, input)
klatt_global_ptr globals;
Float input;
{
 long temp = input;
 /* clip on boundaries of 16-bit word */
 if (temp < -32767)
  {
   overload_warning(globals, -temp);
   temp = -32767;
  }
 else if (temp > 32767)
  {
   overload_warning(globals, temp);
   temp = 32767;
  }
 return (temp);
}

/* Generic resonator function */
static float
resonator(r, input)
resonator_ptr r;
Float input;
{
 register float x = r->a * input + r->b * r->p1 + r->c * r->p2;
 r->p2 = r->p1;
 r->p1 = x;
 return x;
}

/* Generic anti-resonator function
   Same as resonator except that a,b,c need to be set with setzeroabc()
   and we save inputs in p1/p2 rather than outputs.
   There is currently only one of these - "rnz"
 */
/*  Output = (rnz.a * input) + (rnz.b * oldin1) + (rnz.c * oldin2) */

static float
antiresonator(r, input)
resonator_ptr r;
Float input;
{
 register float x = r->a * input + r->b * r->p1 + r->c * r->p2;
 r->p2 = r->p1;
 r->p1 = input;
 return x;
}

/*
   function PARWAV

   CONVERT FRAME OF PARAMETER DATA TO A WAVEFORM CHUNK
   Synthesize globals->nspfr samples of waveform and store in jwave[].
 */

void
parwave(globals, frame, jwave)
klatt_global_ptr globals;
klatt_frame_ptr frame;
short int *jwave;
{
 long ns;
 float out = 0.0;
 /* Output of cascade branch, also final output  */

 /* Initialize synthesizer and get specification for current speech
    frame from host microcomputer */

 frame_init(globals, frame);

 if (globals->f0_flutter != 0)
  {
   time_count++;                  /* used for f0 flutter */
   flutter(globals, frame);       /* add f0 flutter */
  }

 /* MAIN LOOP, for each output sample of current frame: */

 for (ns = 0; ns < globals->nspfr; ns++)
  {
   static unsigned long seed = 5; /* Fixed staring value */
   float noise;
   int n4;
   float sourc;                   /* Sound source if all-parallel config used  */
   float glotout;                 /* Output of glottal sound source  */
   float par_glotout;             /* Output of parallelglottal sound sourc  */
   float voice;                   /* Current sample of voicing waveform  */
   float frics;                   /* Frication sound source  */
   float aspiration;              /* Aspiration sound source  */
   long nrand;                    /* Varible used by random number generator  */

   /* Our own code like rand(), but portable
      whole upper 31 bits of seed random 
      assumes 32-bit unsigned arithmetic
      with untested code to handle larger.
    */
   seed = seed * 1664525 + 1;
   if (8 * sizeof(unsigned long) > 32)
         seed &= 0xFFFFFFFF;

   /* Shift top bits of seed up to top of long then back down to LS 14 bits */
   /* Assumes 8 bits per sizeof unit i.e. a "byte" */
   nrand = (((long) seed) << (8 * sizeof(long) - 32)) >> (8 * sizeof(long) - 14);

   /* Tilt down noise spectrum by soft low-pass filter having
    *    a pole near the origin in the z-plane, i.e.
    *    output = input + (0.75 * lastoutput) */

   noise = nrand + (0.75 * nlast);	/* Function of samp_rate ? */
   nlast = noise;

   /* Amplitude modulate noise (reduce noise amplitude during
      second half of glottal period) if voicing simultaneously present
    */

   if (nper > nmod)
    {
     noise *= 0.5;
    }

   /* Compute frication noise */
   sourc = frics = amp_frica * noise;

   /* Compute voicing waveform : (run glottal source simulation at
      4 times normal sample rate to minimize quantization noise in 
      period of female voice)
    */

   for (n4 = 0; n4 < 4; n4++)
    {
     if (globals->glsource == IMPULSIVE)
      {
       /* Use impulsive glottal source */
       voice = impulsive_source(nper);
      }
     else
      {
       /* Or use a more-natural-shaped source waveform with excitation
          occurring both upon opening and upon closure, stronest at closure */
       voice = natural_source(nper);
      }

     /* Reset period when counter 'nper' reaches T0 */
     if (nper >= T0)
      {
       nper = 0;
       pitch_synch_par_reset(globals, frame, ns);
      }

     /* Low-pass filter voicing waveform before downsampling from 4*globals->samrate */
     /* to globals->samrate samples/sec.  Resonator f=.09*globals->samrate, bw=.06*globals->samrate  */

     voice = resonator(&rlp, voice);	/* in=voice, out=voice */

     /* Increment counter that keeps track of 4*globals->samrate samples/sec */
     nper++;
    }

   /* Tilt spectrum of voicing source down by soft low-pass filtering, amount
      of tilt determined by TLTdb
    */
   voice = (voice * onemd) + (vlast * decay);
   vlast = voice;

   /* Add breathiness during glottal open phase */
   if (nper < nopen)
    {
     /* Amount of breathiness determined by parameter Aturb */
     /* Use nrand rather than noise because noise is low-passed */
     voice += amp_breth * nrand;
    }

   /* Set amplitude of voicing */
   glotout = amp_voice * voice;

   /* Compute aspiration amplitude and add to voicing source */
   aspiration = amp_aspir * noise;
   glotout += aspiration;

   par_glotout = glotout;

   if (globals->synthesis_model != ALL_PARALLEL)
    {
     /* Cascade vocal tract, excited by laryngeal sources.
        Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1
      */
     float rnzout = antiresonator(&rnz, glotout);	/* Output of cascade nazal zero resonator  */
     float casc_next_in = resonator(&rnpc, rnzout);	/* in=rnzout, out=rnpc.p1 */

     /* Recoded from sequence of if's to use C's fall through switch
        semantics. May allow compiler to optimize
      */
     switch (globals->nfcascade)
      {
       case 8:
        casc_next_in = resonator(&r8c, casc_next_in);	/* Do not use unless samrat = 16000 */
       case 7:
        casc_next_in = resonator(&r7c, casc_next_in);	/* Do not use unless samrat = 16000 */
       case 6:
        casc_next_in = resonator(&r6c, casc_next_in);	/* Do not use unless long vocal tract or samrat increased */
       case 5:
        casc_next_in = resonator(&r5c, casc_next_in);
       case 4:
        casc_next_in = resonator(&r4c, casc_next_in);
       case 3:
        casc_next_in = resonator(&r3c, casc_next_in);
       case 2:
        casc_next_in = resonator(&r2c, casc_next_in);
       case 1:
        out = resonator(&r1c, casc_next_in);
        break;
       default:
        out = 0.0;
      }
#if 0
     /* Excite parallel F1 and FNP by voicing waveform */
     /* Source is voicing plus aspiration */
     /* Add in phase, boost lows for nasalized */
     out += (resonator(&rnpp, par_glotout) + resonator(&r1p, par_glotout));
#endif
    }
   else
    {
     /* Is ALL_PARALLEL */
     /* NIS - rsynth "hack"
        As Holmes' scheme is weak at nasals and (physically) nasal cavity
        is "back near glottis" feed glottal source through nasal resonators
        Don't think this is quite right, but improves things a bit
      */
     par_glotout = antiresonator(&rnz, par_glotout);
     par_glotout = resonator(&rnpc, par_glotout);
     /* And just use r1p NOT rnpp */
     out = resonator(&r1p, par_glotout);
     /* Sound sourc for other parallel resonators is frication
        plus first difference of voicing waveform.
      */
     sourc += (par_glotout - glotlast);
     glotlast = par_glotout;
    }

   /* Standard parallel vocal tract
      Formants F6,F5,F4,F3,F2, outputs added with alternating sign
    */
   out = resonator(&r6p, sourc) - out;
   out = resonator(&r5p, sourc) - out;
   out = resonator(&r4p, sourc) - out;
   out = resonator(&r3p, sourc) - out;
   out = resonator(&r2p, sourc) - out;

   out = amp_bypas * sourc - out;

   out = resonator(&rout, out);
   *jwave++ = clip(globals, out); /* Convert back to integer */
  }
}

void
parwave_init(globals)
klatt_global_ptr globals;
{
 long FLPhz = (950 * globals->samrate) / 10000;
 long BLPhz = (630 * globals->samrate) / 10000;

 minus_pi_t = -PI / globals->samrate;
 two_pi_t = -2.0 * minus_pi_t;

 setabc(FLPhz, BLPhz, &rlp);
 nper = 0;                        /* LG */
 T0 = 0;                          /* LG */

 rnpp.p1 = 0;                     /* parallel nasal pole  */
 rnpp.p2 = 0;

 r1p.p1 = 0;                      /* parallel 1st formant */
 r1p.p2 = 0;

 r2p.p1 = 0;                      /* parallel 2nd formant */
 r2p.p2 = 0;

 r3p.p1 = 0;                      /* parallel 3rd formant */
 r3p.p2 = 0;

 r4p.p1 = 0;                      /* parallel 4th formant */
 r4p.p2 = 0;

 r5p.p1 = 0;                      /* parallel 5th formant */
 r5p.p2 = 0;

 r6p.p1 = 0;                      /* parallel 6th formant */
 r6p.p2 = 0;

 r1c.p1 = 0;                      /* cascade 1st formant  */
 r1c.p2 = 0;

 r2c.p1 = 0;                      /* cascade 2nd formant  */
 r2c.p2 = 0;

 r3c.p1 = 0;                      /* cascade 3rd formant  */
 r3c.p2 = 0;

 r4c.p1 = 0;                      /* cascade 4th formant  */
 r4c.p2 = 0;

 r5c.p1 = 0;                      /* cascade 5th formant  */
 r5c.p2 = 0;

 r6c.p1 = 0;                      /* cascade 6th formant  */
 r6c.p2 = 0;

 r7c.p1 = 0;
 r7c.p2 = 0;

 r8c.p1 = 0;
 r8c.p2 = 0;

 rnpc.p1 = 0;                     /* cascade nasal pole  */
 rnpc.p2 = 0;

 rnz.p1 = 0;                      /* cascade nasal zero  */
 rnz.p2 = 0;

 rgl.p1 = 0;                      /* crit-damped glot low-pass filter */
 rgl.p2 = 0;

 rlp.p1 = 0;                      /* downsamp low-pass filter  */
 rlp.p2 = 0;

 vlast = 0;                       /* Previous output of voice  */
 nlast = 0;                       /* Previous output of random number generator  */
 glotlast = 0;                    /* Previous value of glotout  */
 warnsw = 0;
}