File: pi_stress.c

package info (click to toggle)
rt-tests 1.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 708 kB
  • ctags: 1,268
  • sloc: ansic: 8,836; python: 480; makefile: 183
file content (1477 lines) | stat: -rw-r--r-- 38,846 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
/*
   pi_stress - Priority Inheritance stress test

   Copyright (C) 2006, 2007 Clark Williams <williams@redhat.com>

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301
   USA */

/* This program stress tests pthreads priority inheritance mutexes

   The logic is built upon the state machine that performs the "classic_pi"
   deadlock scenario. A state machine or "inversion group" is a group of three
   threads as described below.

   The basic premise here is to set up a deadlock scenario and confirm that PI
   mutexes resolve the situation. Three worker threads will be created from the
   main thread: low, medium and high priority threads that use SCHED_FIFO as
   their scheduling policy. The low priority thread claims a mutex and then
   starts "working". The medium priority thread starts and preempts the low
   priority thread. Then the high priority thread runs and attempts to claim
   the mutex owned by the low priority thread. Without priority inheritance,
   this will deadlock the program. With priority inheritance, the low priority
   thread receives a priority boost, finishes it's "work" and releases the mutex,
   which allows the high priority thread to run and finish and then the medium
   priority thread finishes.

   That's the theory, anyway...

   CW - 2006  */

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <stdarg.h>
#include <pthread.h>
#include <sched.h>
#include <unistd.h>
#include <string.h>
#include <signal.h>
#include <getopt.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/syscall.h>
#include <termios.h>
#include <stdint.h>
#include <inttypes.h>
#include <limits.h>

#include "rt-sched.h"
#include "rt-utils.h"

#include "error.h"

/* conversions */
#define USEC_PER_SEC 	1000000
#define NSEC_PER_SEC 	1000000000
#define USEC_TO_NSEC(u) ((u) * 1000)
#define USEC_TO_SEC(u) 	((u) / USEC_PER_SEC)
#define NSEC_TO_USEC(n) ((n) / 1000)
#define SEC_TO_NSEC(s) 	((s) * NSEC_PER_SEC)
#define SEC_TO_USEC(s) 	((s) * USEC_PER_SEC)

/* test timeout */
#define TIMEOUT 2

/* determine if the C library supports Priority Inheritance mutexes */
#if defined(_POSIX_THREAD_PRIO_INHERIT) && _POSIX_THREAD_PRIO_INHERIT != -1
#define HAVE_PI_MUTEX 1
#else
#define HAVE_PI_MUTEX 0
#endif

#if HAVE_PI_MUTEX == 0
#error "Can't run this test without PI Mutex support"
#endif

#define SUCCESS 0
#define FAILURE 1

/* cursor control */
#define UP_ONE "\033[1A"
#define DOWN_ONE "\033[1B"

#define pi_info(fmt, arg...) \
	do { if (verbose) info(fmt, ## arg); } while (0)
#define pi_debug(fmt, arg...) \
	do { if (debugging) debug(fmt, ## arg); } while (0)
#define pi_error(fmt, arg...) \
	do { err_msg(fmt, ## arg); have_errors = 1; } while (0)

/* the length of the test */
/* default is infinite */
int duration = -1;

/* times for starting and finishing the stress test */
time_t start, finish;

/* the number of groups to create */
int ngroups = 0;

/* the number of times a group causes a priority inversion situation */
/* default to infinite */
int inversions = -1;

/* turn on lots of prints */
int verbose = 0;

/* turn on pi_debugging prints */
int debugging = 0;

int quiet = 0;	/* turn off all prints, default = 0 (off) */

/* prompt to start test */
int prompt = 0;

/* report interval */
unsigned long report_interval = (unsigned long)SEC_TO_USEC(0.75);

int shutdown = 0;		/* global indicating we should shut down */
pthread_mutex_t shutdown_mtx;	/* associated mutex */

/* indicate if errors have occurred */
int have_errors = 0;

/* indicated that keyboard interrupt has happened */
int interrupted = 0;

/* force running on one cpu */
int uniprocessor = 0;

/* lock all memory */
int lockall = 0;

/* command line options */
struct option options[] = {
	{"duration", required_argument, NULL, 't'},
	{"verbose", no_argument, NULL, 'v'},
	{"quiet", no_argument, NULL, 'q'},
	{"groups", required_argument, NULL, 'g'},
	{"inversions", required_argument, NULL, 'i'},
	{"rr", no_argument, NULL, 'r'},
	{"sched", required_argument, NULL, 's'},
	{"uniprocessor", no_argument, NULL, 'u'},
	{"prompt", no_argument, NULL, 'p'},
	{"debug", no_argument, NULL, 'd'},
	{"version", no_argument, NULL, 'V'},
	{"mlockall", no_argument, NULL, 'm'},
	{"help", no_argument, NULL, 'h'},
	{NULL, 0, NULL, 0},
};

#define NUM_TEST_THREADS 3
#define NUM_ADMIN_THREADS 1

pthread_barrier_t all_threads_ready;
pthread_barrier_t all_threads_done;

cpu_set_t test_cpu_mask, admin_cpu_mask;

int policy = SCHED_FIFO;

/* scheduling attributes per thread */
struct sched_attr low_sa;
struct sched_attr med_sa;
struct sched_attr high_sa;
struct sched_attr admin_sa;

#define SA_INIT_LOW	(1 << 0)
#define SA_INIT_MED	(1 << 1)
#define SA_INIT_HIGH	(1 << 2)
#define SA_INIT_ADMIN	(1 << 3)

unsigned int sa_initialized;

struct group_parameters {

	/* group id (index) */
	int id;

	/* cpu this group is bound to */
	long cpu;

	/* threads in the group */
	pthread_t low_tid;
	pthread_t med_tid;
	pthread_t high_tid;

	/* number of machine iterations to perform */
	int inversions;

	/* group mutex */
	pthread_mutex_t mutex;

	/* state barriers */
	pthread_barrier_t start_barrier;
	pthread_barrier_t locked_barrier;
	pthread_barrier_t elevate_barrier;
	pthread_barrier_t finish_barrier;

	/* Either everyone goes through the loop, or else no-ones does */
	pthread_barrier_t loop_barr;
	pthread_mutex_t loop_mtx;	/* Protect access to int loop */
	int loop;	/* boolean, loop or not, connected to shutdown */

	/* state variables */
	volatile int watchdog;

	/* total number of inversions performed */
	unsigned long total;

	/* total watchdog hits */
	int watchdog_hits;

} *groups;

/* number of consecutive watchdog hits before quitting */
#define WATCHDOG_LIMIT 5

/* number of online processors */
long num_processors = 0;

/* forward prototypes */
void *low_priority(void *arg);
void *med_priority(void *arg);
void *high_priority(void *arg);
void *reporter(void *arg);
void *watchdog(void *arg);
int setup_thread_attr(pthread_attr_t * attr, struct sched_attr * sa,
		      cpu_set_t * mask);
int set_cpu_affinity(cpu_set_t * test_mask, cpu_set_t * admin_mask);
void process_command_line(int argc, char **argv);
void usage(void);
int block_signals(void);
int allow_sigterm(void);
void set_shutdown_flag(void);
int initialize_group(struct group_parameters *group);
int create_group(struct group_parameters *group);
unsigned long total_inversions(void);
void banner(void);
void summary(void);
void wait_for_termination(void);
int barrier_init(pthread_barrier_t * b, const pthread_barrierattr_t * attr,
		 unsigned count, const char *name);
void setup_sched_attr(struct sched_attr *attr, int policy, int prio);
void setup_sched_config(int policy);

int main(int argc, char **argv)
{
	int status;
	struct sched_param thread_param;
	int i;
	int retval = FAILURE;
	int core;
	int nthreads;

	/* Make sure we see all message, even those on stdout.  */
	setvbuf(stdout, NULL, _IONBF, 0);

	/* get the number of processors */
	num_processors = sysconf(_SC_NPROCESSORS_ONLN);

	/* calculate the number of inversion groups to run */
	ngroups = num_processors == 1 ? 1 : num_processors - 1;


	/* process command line arguments */
	process_command_line(argc, argv);

	/* set default sched attributes */
	setup_sched_config(policy);

	/* lock memory */
	if (lockall)
		if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
			pi_error("mlockall failed\n");
			return FAILURE;
		}
	/* boost main's priority (so we keep running) :) */
	thread_param.sched_priority = admin_sa.sched_priority;
	status = pthread_setschedparam(pthread_self(), admin_sa.sched_policy,
				       &thread_param);
	if (status) {
		pi_error("main: boosting to max priority: 0x%x\n", status);
		return FAILURE;
	}
	/* block unwanted signals */
	block_signals();

	/* allocate our groups array */
	groups = calloc(ngroups, sizeof(struct group_parameters));
	if (groups == NULL) {
		pi_error("main: failed to allocate %d groups\n", ngroups);
		return FAILURE;
	}
	/* set up CPU affinity masks */
	if (set_cpu_affinity(&test_cpu_mask, &admin_cpu_mask))
		return FAILURE;

	nthreads = ngroups * NUM_TEST_THREADS + NUM_ADMIN_THREADS;

	/* set up our ready barrier */
	if (barrier_init(&all_threads_ready, NULL, nthreads,
			 "all_threads_ready"))
		return FAILURE;

	/* set up our done barrier */
	if (barrier_init(&all_threads_done, NULL, nthreads, "all_threads_done"))
		return FAILURE;

	/* create the groups */
	pi_info("Creating %d test groups\n", ngroups);
	for (core = 0; core < num_processors; core++)
		if (CPU_ISSET(core, &test_cpu_mask))
			break;
	for (i = 0; i < ngroups; i++) {
		groups[i].id = i;
		groups[i].cpu = core++;
		if (core >= num_processors)
			core = 0;
		if (create_group(&groups[i]) != SUCCESS)
			return FAILURE;
	}

	/* prompt if requested */
	if (prompt) {
		printf("Press return to start test: ");
		getchar();
	}
	/* report */
	banner();
	start = time(NULL);

	/* turn loose the threads */
	pi_info("Releasing all threads\n");
	status = pthread_barrier_wait(&all_threads_ready);
	if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
		pi_error("main: pthread_barrier_wait(all_threads_ready): 0x%x\n",
		      status);
		set_shutdown_flag();
		return FAILURE;
	}

	reporter(NULL);

	if (!quiet) {
		fputs(DOWN_ONE, stdout);
		printf("Stopping test\n");
	}
	set_shutdown_flag();

	/* wait for all threads to notice the shutdown flag */
	if (have_errors == 0 && interrupted == 0) {
		pi_info("waiting for all threads to complete\n");
		status = pthread_barrier_wait(&all_threads_done);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("main: pthread_barrier_wait(all_threads_ready): 0x%x\n",
			     status);
			return FAILURE;
		}
		pi_info("All threads terminated!\n");
		retval = SUCCESS;
	} else
		kill(0, SIGTERM);
	finish = time(NULL);
	summary();
	if (lockall)
		munlockall();
	exit(retval);
}

int
setup_thread_attr(pthread_attr_t * attr, struct sched_attr * sa,
		  cpu_set_t * mask)
{
	int status;
	struct sched_param thread_param;

	status = pthread_attr_init(attr);
	if (status) {
		pi_error
		    ("setup_thread_attr: initializing thread attribute: 0x%x\n",
		     status);
		return FAILURE;
	}
	status = pthread_attr_setaffinity_np(attr, sizeof(cpu_set_t), mask);
	if (status) {
		pi_error("setup_thread_attr: setting affinity attribute: 0x%x\n",
		      status);
		return FAILURE;
	}

	/* The pthread API does not yet support SCHED_DEADLINE, defer the
	 * thread configuration to setup_thread() */
	if (sa->sched_policy == SCHED_DEADLINE)
		return SUCCESS;

	status = pthread_attr_setschedpolicy(attr, sa->sched_policy);
	if (status) {
		pi_error
		    ("setup_thread_attr: setting attribute policy to %s: 0x%x\n",
		     policy_to_string(sa->sched_policy),
		     status);
		return FAILURE;
	}
	status = pthread_attr_setinheritsched(attr, PTHREAD_EXPLICIT_SCHED);
	if (status) {
		pi_error
		    ("setup_thread_attr: setting explicit scheduling inheritance: 0x%x\n",
		     status);
		return FAILURE;
	}
	thread_param.sched_priority = sa->sched_priority;
	status = pthread_attr_setschedparam(attr, &thread_param);
	if (status) {
		pi_error("setup_thread_attr: setting scheduler param: 0x%x\n",
		      status);
		return FAILURE;
	}
	return SUCCESS;
}

int set_cpu_affinity(cpu_set_t * test_mask, cpu_set_t * admin_mask)
{
	int status, i, admin_proc;
	cpu_set_t current_mask;

	/* handle uniprocessor case */
	if (num_processors == 1 || uniprocessor) {
		CPU_ZERO(admin_mask);
		CPU_ZERO(test_mask);
		CPU_SET(0, admin_mask);
		CPU_SET(0, test_mask);
		pi_info("admin and test threads running on one processor\n");
		return SUCCESS;
	}
	/* first set our main thread to run on the first
	   scheduleable processor we can find */
	status = sched_getaffinity(0, sizeof(cpu_set_t), &current_mask);
	if (status) {
		pi_error("failed getting CPU affinity mask: 0x%x\n", status);
		return FAILURE;
	}
	for (i = 0; i < num_processors; i++) {
		if (CPU_ISSET(i, &current_mask))
			break;
	}
	if (i >= num_processors) {
		pi_error("No schedulable CPU found for main!\n");
		return FAILURE;
	}
	admin_proc = i;
	CPU_ZERO(admin_mask);
	CPU_SET(admin_proc, admin_mask);
	status = sched_setaffinity(0, sizeof(cpu_set_t), admin_mask);
	if (status) {
		pi_error("set_cpu_affinity: setting CPU affinity mask: 0x%x\n",
		      status);
		return FAILURE;
	}
	pi_info("Admin thread running on processor: %d\n", i);

	/* Set test affinity so that tests run on the non-admin processors */
	CPU_ZERO(test_mask);
	for (i = admin_proc + 1; i < num_processors; i++)
		CPU_SET(i, test_mask);

	if (admin_proc + 1 == num_processors - 1)
		pi_info("Test threads running on processor: %ld\n",
		     num_processors - 1);
	else
		pi_info("Test threads running on processors:  %d-%d\n",
		     admin_proc + 1, (int)num_processors - 1);

	return SUCCESS;
}

/* clear all watchdog counters */
void watchdog_clear(void)
{
	int i;
	for (i = 0; i < ngroups; i++)
		groups[i].watchdog = 0;
}

/* check for zero watchdog counters */
int watchdog_check(void)
{
	int i;
	int failures = 0;
	struct group_parameters *g;

	for (i = 0; i < ngroups; i++) {
		g = &groups[i];
		if (g->watchdog == 0) {
			/* don't report deadlock if group is finished */
			if (g->inversions == g->total)
				continue;
			if (++g->watchdog_hits >= WATCHDOG_LIMIT) {
				pi_error
				    ("WATCHDOG triggered: group %d is deadlocked!\n",
				     i);
				failures++;
			}
		} else
			g->watchdog_hits = 0;
	}
	return failures ? FAILURE : SUCCESS;
}

int pending_interrupt(void)
{
	sigset_t pending;

	if (sigpending(&pending) < 0) {
		pi_error("from sigpending: %s\n", strerror(errno));
		return 0;
	}

	return interrupted = sigismember(&pending, SIGINT);
}

static inline void tsnorm(struct timespec *ts)
{
	while (ts->tv_nsec >= NSEC_PER_SEC) {
		ts->tv_nsec -= NSEC_PER_SEC;
		ts->tv_sec++;
	}
}

/*
 * this routine serves two purposes:
 *   1. report progress
 *   2. check for deadlocks
 */
void *reporter(void *arg)
{
	int status;
	int end = 0;
	struct timespec ts;

	ts.tv_sec = 0;
	ts.tv_nsec = USEC_TO_NSEC(report_interval);

	tsnorm(&ts);

	if (duration >= 0)
		end = duration + time(NULL);

	/* sleep initially to let everything get up and running */
	status = clock_nanosleep(CLOCK_MONOTONIC, 0, &ts, NULL);
	if (status) {
		pi_error("from clock_nanosleep: %s\n", strerror(status));
		return NULL;
	}

	pi_debug("reporter: starting report loop\n");
	pi_info("Press Control-C to stop test\nCurrent Inversions: \n");

	for (;;) {
		pthread_mutex_lock(&shutdown_mtx);
		if (shutdown) {
			pthread_mutex_unlock(&shutdown_mtx);
			break;
		}
		pthread_mutex_unlock(&shutdown_mtx);

		/* wait for our reporting interval */
		status = clock_nanosleep(CLOCK_MONOTONIC, 0, &ts, NULL);
		if (status) {
			pi_error("from clock_nanosleep: %s\n", strerror(status));
			break;
		}

		/* check for signaled shutdown */
		if (!quiet) {
			pthread_mutex_lock(&shutdown_mtx);
			if (shutdown == 0) {
				fputs(UP_ONE, stdout);
				printf("Current Inversions: %lu\n",
						total_inversions());
			}
		}
		pthread_mutex_unlock(&shutdown_mtx);

		/* if we specified a duration, see if it has expired */
		if (end && time(NULL) > end) {
			pi_info("duration reached (%d seconds)\n", duration);
			set_shutdown_flag();
			continue;
		}
		/* check for a pending SIGINT */
		if (pending_interrupt()) {
			pi_info("Keyboard Interrupt!\n");
			break;
		}
		/* check watchdog stuff */
		if ((watchdog_check())) {
			pi_error("reporter stopping due to watchdog event\n");
			set_shutdown_flag();
			break;
		}
		/* clear watchdog counters */
		watchdog_clear();

	}
	pi_debug("reporter: finished\n");
	set_shutdown_flag();
	return NULL;
}

int verify_cpu(int cpu)
{
	int status;
	int err;
	cpu_set_t mask;

	CPU_ZERO(&mask);

	status = sched_getaffinity(0, sizeof(cpu_set_t), &mask);
	if (status == -1) {
		err = errno;
		fprintf(stderr, "sched_getaffinity %s\n", strerror(err));
		exit(1);
	}

	if (CPU_ISSET(cpu, &mask))
		return SUCCESS;
	return FAILURE;
}

void *low_priority(void *arg)
{
	int status;
	int unbounded;
	unsigned long count = 0;
	struct group_parameters *p = (struct group_parameters *)arg;
	pthread_barrier_t *loop_barr = &p->loop_barr;
	pthread_mutex_t *loop_mtx = &p->loop_mtx;
	int *loop = &p->loop;

	allow_sigterm();

	if (verify_cpu(p->cpu) != SUCCESS) {
		pi_error("low_priority[%d]: not bound to %ld\n", p->id, p->cpu);
		return NULL;
	}

	pi_debug("low_priority[%d]: entering ready state\n", p->id);
	/* wait for all threads to be ready */
	status = pthread_barrier_wait(&all_threads_ready);
	if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
		pi_error
		    ("low_priority[%d]: pthread_barrier_wait(all_threads_ready): %x",
		     p->id, status);
		return NULL;
	}

	unbounded = (p->inversions < 0);

	pi_debug("low_priority[%d]: starting inversion loop\n", p->id);

	for (;;) {
		/*
		   We can't set the 'loop' boolean here, because some flags
		   may have already reached the loop_barr
		 */
		if (!unbounded && (p->total >= p->inversions)) {
			set_shutdown_flag();
		}

		/* Either all threads go through the loop_barr, or none do */
		pthread_mutex_lock(loop_mtx);
		if (*loop == 0) {
			pthread_mutex_unlock(loop_mtx);
			break;
		}
		pthread_mutex_unlock(loop_mtx);

		status = pthread_barrier_wait(loop_barr);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error("%s[%d]: pthread_barrier_wait(loop): %x\n",
			      __func__, p->id, status);
			return NULL;
		}

		/* Only one Thread needs to check the shutdown status */
		if (status == PTHREAD_BARRIER_SERIAL_THREAD) {
			pthread_mutex_lock(&shutdown_mtx);
			if (shutdown) {
				pthread_mutex_lock(loop_mtx);
				*loop = 0;
				pthread_mutex_unlock(loop_mtx);
			}
			pthread_mutex_unlock(&shutdown_mtx);
		}

		/* initial state */
		pi_debug("low_priority[%d]: entering start wait (%d)\n", p->id,
		      count++);
		status = pthread_barrier_wait(&p->start_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("low_priority[%d]: pthread_barrier_wait(start): %x\n",
			     p->id, status);
			return NULL;
		}

		pi_debug("low_priority[%d]: claiming mutex\n", p->id);
		pthread_mutex_lock(&p->mutex);
		pi_debug("low_priority[%d]: mutex locked\n", p->id);

		pi_debug("low_priority[%d]: entering locked wait\n", p->id);
		status = pthread_barrier_wait(&p->locked_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
				("low_priority[%d]: pthread_barrier_wait(locked): %x\n",
				 p->id, status);
			/* release the mutex */
			pi_debug("low_priority[%d]: unlocking mutex\n", p->id);
			pthread_mutex_unlock(&p->mutex);
			return NULL;
		}

		/* wait for priority boost */
		pi_debug("low_priority[%d]: entering elevated wait\n", p->id);
		status = pthread_barrier_wait(&p->elevate_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
				("low_priority[%d]: pthread_barrier_wait(elevate): %x\n",
				 p->id, status);
			/* release the mutex */
			pi_debug("low_priority[%d]: unlocking mutex\n", p->id);
			pthread_mutex_unlock(&p->mutex);
			return NULL;
		}

		/* release the mutex */
		pi_debug("low_priority[%d]: unlocking mutex\n", p->id);
		pthread_mutex_unlock(&p->mutex);

		/* finish state */
		pi_debug("low_priority[%d]: entering finish wait\n", p->id);
		status = pthread_barrier_wait(&p->finish_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("low_priority[%d]: pthread_barrier_wait(elevate): %x\n",
			     p->id, status);
			return NULL;
		}
	}
	set_shutdown_flag();
	pi_debug("low_priority[%d]: entering done barrier\n", p->id);
	/* wait for all threads to finish */
	status = pthread_barrier_wait(&all_threads_done);
	if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
		pi_error
		    ("low_priority[%d]: pthread_barrier_wait(all_threads_done): %x",
		     p->id, status);
		return NULL;
	}
	pi_debug("low_priority[%d]: exiting\n", p->id);
	return NULL;
}

void *med_priority(void *arg)
{
	int status;
	int unbounded;
	unsigned long count = 0;
	struct group_parameters *p = (struct group_parameters *)arg;
	pthread_barrier_t *loop_barr = &p->loop_barr;
	pthread_mutex_t *loop_mtx = &p->loop_mtx;
	int *loop = &p->loop;

	allow_sigterm();

	if (verify_cpu(p->cpu) != SUCCESS) {
		pi_error("med_priority[%d]: not bound to %ld\n", p->id, p->cpu);
		return NULL;
	}

	pi_debug("med_priority[%d]: entering ready state\n", p->id);
	/* wait for all threads to be ready */
	status = pthread_barrier_wait(&all_threads_ready);
	if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
		pi_error
		    ("med_priority[%d]: pthread_barrier_wait(all_threads_ready): %x",
		     p->id, status);
		return NULL;
	}

	unbounded = (p->inversions < 0);

	pi_debug("med_priority[%d]: starting inversion loop\n", p->id);
	for (;;) {
		if (!unbounded && (p->total >= p->inversions)) {
			set_shutdown_flag();
		}
		/* Either all threads go through the loop_barr, or none do */
		pthread_mutex_lock(loop_mtx);
		if (*loop == 0) {
			pthread_mutex_unlock(loop_mtx);
			break;
		}
		pthread_mutex_unlock(loop_mtx);

		status = pthread_barrier_wait(loop_barr);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error("%s[%d]: pthread_barrier_wait(loop): %x\n",
			      __func__, p->id, status);
			return NULL;
		}

		/* Only one Thread needs to check the shutdown status */
		if (status == PTHREAD_BARRIER_SERIAL_THREAD) {
			pthread_mutex_lock(&shutdown_mtx);
			if (shutdown) {
				pthread_mutex_lock(loop_mtx);
				*loop = 0;
				pthread_mutex_unlock(loop_mtx);
			}
			pthread_mutex_unlock(&shutdown_mtx);
		}

		/* start state */
		pi_debug("med_priority[%d]: entering start state (%d)\n", p->id,
		      count++);
		status = pthread_barrier_wait(&p->start_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("med_priority[%d]: pthread_barrier_wait(start): %x",
			     p->id, status);
			return NULL;
		}
		pi_debug("med_priority[%d]: entering elevate state\n", p->id);
		status = pthread_barrier_wait(&p->elevate_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error ("med_priority[%d]: pthread_barrier_wait(elevate): %x", p->id, status);
			return NULL;
		}

		pi_debug("med_priority[%d]: entering finish state\n", p->id);
		status = pthread_barrier_wait(&p->finish_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("med_priority[%d]: pthread_barrier_wait(finished): %x",
			     p->id, status);
			return NULL;
		}
	}
	set_shutdown_flag();

	pi_debug("med_priority[%d]: entering done barrier\n", p->id);
	/* wait for all threads to finish */
	if (have_errors == 0) {
		status = pthread_barrier_wait(&all_threads_done);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("med_priority[%d]: pthread_barrier_wait(all_threads_done): %x",
			     p->id, status);
			return NULL;
		}
	}
	/* exit */
	pi_debug("med_priority[%d]: exiting\n", p->id);
	return NULL;
}

void *high_priority(void *arg)
{
	int status;
	int unbounded;
	unsigned long count = 0;
	struct group_parameters *p = (struct group_parameters *)arg;
	pthread_barrier_t *loop_barr = &p->loop_barr;
	pthread_mutex_t *loop_mtx = &p->loop_mtx;
	int *loop = &p->loop;
	cpu_set_t cpu_mask;
	int i;

	if (high_sa.sched_policy == SCHED_DEADLINE) {
		CPU_ZERO(&cpu_mask);
		for (i = 0; i < num_processors; i++)
			CPU_SET(i, &cpu_mask);
		status = sched_setaffinity(0, sizeof(cpu_set_t), &cpu_mask);
		if (status < 0) {
			pi_error
			    ("high_priority[%d]: set cpu affinity*dl): %x\n",
			    p->id, status);
			return NULL;
		}

		status = sched_setattr(gettid(), &high_sa, 0);
		if (status < 0) {
			pi_error
			    ("high_priority[%d]: sched_setattr(dl): %x\n",
			    p->id, status);
			return NULL;
		}
	}

	allow_sigterm();
	if (verify_cpu(p->cpu) != SUCCESS) {
		pi_error("high_priority[%d]: not bound to %ld\n", p->id, p->cpu);
		return NULL;
	}

	pi_debug("high_priority[%d]: entering ready state\n", p->id);

	/* wait for all threads to be ready */
	status = pthread_barrier_wait(&all_threads_ready);
	if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
		pi_error
		    ("high_priority[%d]: pthread_barrier_wait(all_threads_ready): %x",
		     p->id, status);
		return NULL;
	}
	unbounded = (p->inversions < 0);
	pi_debug("high_priority[%d]: starting inversion loop\n", p->id);
	for (;;) {
		if (!unbounded && (p->total >= p->inversions)) {
			set_shutdown_flag();
		}

		/* Either all threads go through the loop_barr, or none do */
		pthread_mutex_lock(loop_mtx);
		if (*loop == 0) {
			pthread_mutex_unlock(loop_mtx);
			break;
		}
		pthread_mutex_unlock(loop_mtx);

		status = pthread_barrier_wait(loop_barr);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error("%s[%d]: pthread_barrier_wait(loop): %x\n",
			      __func__, p->id, status);
			return NULL;
		}

		/* Only one Thread needs to check the shutdown status */
		if (status == PTHREAD_BARRIER_SERIAL_THREAD) {
			pthread_mutex_lock(&shutdown_mtx);
			if (shutdown) {
				pthread_mutex_lock(loop_mtx);
				*loop = 0;
				pthread_mutex_unlock(loop_mtx);
			}
			pthread_mutex_unlock(&shutdown_mtx);
		}
		pi_debug("high_priority[%d]: entering start state (%d)\n", p->id,
		      count++);
		status = pthread_barrier_wait(&p->start_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("high_priority[%d]: pthread_barrier_wait(start): %x",
			     p->id, status);
			return NULL;
		}

		pi_debug("high_priority[%d]: entering running state\n", p->id);
		status = pthread_barrier_wait(&p->locked_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("high_priority[%d]: pthread_barrier_wait(running): %x",
			     p->id, status);
			return NULL;
		}
		pi_debug("high_priority[%d]: locking mutex\n", p->id);
		pthread_mutex_lock(&p->mutex);
		pi_debug("high_priority[%d]: got mutex\n", p->id);

		pi_debug("high_priority[%d]: unlocking mutex\n", p->id);
		pthread_mutex_unlock(&p->mutex);
		pi_debug("high_priority[%d]: entering finish state\n", p->id);

		status = pthread_barrier_wait(&p->finish_barrier);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("high_priority[%d]: pthread_barrier_wait(finish): %x",
			     status);
			return NULL;
		}
		/* update the group stats */
		p->total++;

		/* update the watchdog counter */
		p->watchdog++;

	}
	set_shutdown_flag();

	pi_debug("high_priority[%d]: entering done barrier\n", p->id);

	if (have_errors == 0) {
		/* wait for all threads to finish */
		status = pthread_barrier_wait(&all_threads_done);
		if (status && status != PTHREAD_BARRIER_SERIAL_THREAD) {
			pi_error
			    ("high_priority[%d]: pthread_barrier_wait(all_threads_done): %x",
			     p->id, status);
			return NULL;
		}
	}
	/* exit */
	pi_debug("high_priority[%d]: exiting\n", p->id);
	return NULL;
}

void usage(void)
{
	printf("usage: pi_stress <options>\n");
	printf("    options:\n");
	printf("\t--verbose\t- lots of output\n");
	printf("\t--quiet\t\t- suppress running output\n");
	printf
	    ("\t--duration=<n>- length of the test run in seconds [infinite]\n");
	printf("\t--groups=<n>\t- set the number of inversion groups [%d]\n",
	       ngroups);
	printf
	    ("\t--inversions=<n>- number of inversions per group [infinite]\n");
	printf("\t--report=<path>\t- output to file [/dev/null]\n");
	printf("\t--rr\t\t- use SCHED_RR for test threads [SCHED_FIFO]\n");
	printf("\t--sched\t\t- scheduling options per thread type:\n");
	printf("\t\tid=[high|med|low]\t\t\t- select thread\n");
	printf("\t\t,policy=[fifo,rr],priority=<n>\t\t- SCHED_FIFO or SCHED_RR\n");
	printf("\t\t,policy=deadline,runtime=<n>,deadline=<n>,period=<n>\t- SCHED_DEADLINE\n");
	printf("\t--prompt\t- prompt before starting the test\n");
	printf
	    ("\t--uniprocessor\t- force all threads to run on one processor\n");
	printf("\t--mlockall\t- lock current and future memory\n");
	printf("\t--debug\t\t- turn on debug prints\n");
	printf("\t--version\t- print version number on output\n");
	printf("\t--help\t\t- print this message\n");
}

/* block all signals (called from main) */
int block_signals(void)
{
	int status;
	sigset_t sigset;

	/* mask off all signals */
	status = sigfillset(&sigset);
	if (status) {
		pi_error("setting up full signal set %s\n", strerror(status));
		return FAILURE;
	}
	status = pthread_sigmask(SIG_BLOCK, &sigset, NULL);
	if (status) {
		pi_error("setting signal mask: %s\n", strerror(status));
		return FAILURE;
	}
	return SUCCESS;
}

/* allow SIGTERM delivery (called from worker threads) */
int allow_sigterm(void)
{
	int status;
	sigset_t sigset;

	status = sigemptyset(&sigset);
	if (status) {
		pi_error("creating empty signal set: %s\n", strerror(status));
		return FAILURE;
	}
	status = sigaddset(&sigset, SIGTERM);
	if (status) {
		pi_error("adding SIGTERM to signal set: %s\n", strerror(status));
		return FAILURE;
	}
	status = pthread_sigmask(SIG_UNBLOCK, &sigset, NULL);
	if (status) {
		pi_error("unblocking SIGTERM: %s\n", strerror(status));
		return FAILURE;
	}
	return SUCCESS;
}

/* clean up before exiting */
void set_shutdown_flag(void)
{
	pthread_mutex_lock(&shutdown_mtx);
	if (shutdown == 0) {
		/* tell anyone that's looking that we're done */
		pi_info("setting shutdown flag\n");
		shutdown = 1;
	}
	pthread_mutex_unlock(&shutdown_mtx);
}

/* set up a test group */
int initialize_group(struct group_parameters *group)
{
	int status;
	pthread_mutexattr_t mutex_attr;

	group->inversions = inversions;

	/* setup default attributes for the group mutex */
	/* (make it a PI mutex) */
	status = pthread_mutexattr_init(&mutex_attr);
	if (status) {
		pi_error("initializing mutex attribute: %s\n", strerror(status));
		return FAILURE;
	}

	/* set priority inheritance attribute for mutex */
	status = pthread_mutexattr_setprotocol(&mutex_attr,
					       PTHREAD_PRIO_INHERIT);
	if (status) {
		pi_error("setting mutex attribute policy: %s\n", strerror(status));
		return FAILURE;
	}
	/* initialize the group mutex */
	status = pthread_mutex_init(&group->mutex, &mutex_attr);
	if (status) {
		pi_error("initializing mutex: %s\n", strerror(status));
		return FAILURE;
	}

	/* initialize the group barriers */
	if (barrier_init(&group->start_barrier, NULL, NUM_TEST_THREADS,
			 "start_barrier"))
		return FAILURE;

	if (barrier_init(&group->locked_barrier, NULL, 2, "locked_barrier"))
		return FAILURE;

	if (barrier_init(&group->elevate_barrier, NULL, 2, "elevate_barrier"))
		return FAILURE;

	if (barrier_init
	    (&group->finish_barrier, NULL, NUM_TEST_THREADS, "finish_barrier"))
		return FAILURE;

	if (barrier_init(&group->loop_barr, NULL, NUM_TEST_THREADS,
			 "loop_barrier"))
		return FAILURE;

	if ((status = pthread_mutex_init(&group->loop_mtx, NULL)) != 0) {
		pi_error("pthread_mutex_init, status = %d\n", status);
		return FAILURE;
	}

	if ((status = pthread_mutex_lock(&group->loop_mtx)) != 0) {
		pi_error("pthread_mutex_lock, status = %d\n", status);
		return FAILURE;
	}

	group->loop = 1;

	if ((status = pthread_mutex_unlock(&group->loop_mtx)) != 0) {
		pi_error("pthread_mutex_unlock, status = %d\n", status);
		return FAILURE;
	}

	return SUCCESS;
}

/* setup and create a groups threads */
int create_group(struct group_parameters *group)
{
	int status;
	pthread_attr_t thread_attr;
	cpu_set_t mask;

	/* initialize group structure */
	status = initialize_group(group);
	if (status) {
		pi_error("initializing group %d\n", group->id);
		return FAILURE;
	}

	CPU_ZERO(&mask);
	CPU_SET(group->cpu, &mask);

	pi_debug("group %d bound to cpu %ld\n", group->id, group->cpu);

	/* start the low priority thread */
	pi_debug("creating low priority thread\n");
	if (setup_thread_attr(&thread_attr, &low_sa, &mask))
		return FAILURE;
	status = pthread_create(&group->low_tid,
				&thread_attr, low_priority, group);
	if (status != 0) {
		pi_error("creating low_priority thread: %s\n", strerror(status));
		return FAILURE;
	}

	/* create the medium priority thread */
	pi_debug("creating medium priority thread\n");
	if (setup_thread_attr(&thread_attr, &med_sa, &mask))
		return FAILURE;
	status = pthread_create(&group->med_tid,
				&thread_attr, med_priority, group);
	if (status != 0) {
		pi_error("creating med_priority thread: %s\n", strerror(status));
		return FAILURE;
	}

	/* create the high priority thread */
	pi_debug("creating high priority thread\n");
	if (setup_thread_attr(&thread_attr, &high_sa, &mask))
		return FAILURE;
	status = pthread_create(&group->high_tid,
				&thread_attr, high_priority, group);
	if (status != 0) {
		pi_error("creating high_priority thread: %s\n", strerror(status));
		set_shutdown_flag();
		return FAILURE;
	}
	return SUCCESS;
}

unsigned long parse_unsigned(const char *str)
{
	unsigned long n;
	char *p;

	errno = 0;
	n = strtoul(str, &p, 10);

	if ((errno == ERANGE && n == ULONG_MAX)
			|| (errno != 0 && n == 0)) {
		pi_error("parsing number failed: %s\n", str);
		exit(EXIT_FAILURE);
	}

	return n;
}

long parse_signed(const char *str)
{
	long n;
	char *p;

	errno = 0;
	n = strtol(str, &p, 10);

	if ((errno == ERANGE && (n == LONG_MAX || n == LONG_MIN))
			|| (errno != 0 && n == 0)) {
		pi_error("parsing number failed: %s\n", str);
		exit(EXIT_FAILURE);
	}

	return n;
}

int process_sched_line(const char *arg)
{
	char *buf, *k, *v;
	const char del[] = ",=";
	struct sched_attr sa = { 0, };
	char *id = NULL;
	int retval = SUCCESS;

	buf = strdupa(arg);

	k = strsep(&buf, del);
	while (k) {
		v = strsep(&buf, del);
		if (!v)
			break;

		if (!strcmp(k, "id"))
			id = v;
		else if (!strcmp(k, "policy"))
			sa.sched_policy = string_to_policy(v);
		else if (!strcmp(k, "nice"))
			sa.sched_nice = parse_signed(v);
		else if (!strcmp(k, "priority"))
			sa.sched_priority = parse_unsigned(v);
		else if (!strcmp(k, "runtime"))
			sa.sched_runtime = parse_unsigned(v);
		else if (!strcmp(k, "deadline"))
			sa.sched_deadline = parse_unsigned(v);
		else if (!strcmp(k, "period"))
			sa.sched_period = parse_unsigned(v);

		k = strsep(&buf, del);
	}

	if (!id) {
		free(buf);
		return FAILURE;
	}

	/* We do not validate the options, instead we pass all garbage
	 * to the kernel and see what's happening */

	if (!strcmp(id, "low")) {
		memcpy(&low_sa, &sa, sizeof(struct sched_attr));
		sa_initialized |= SA_INIT_LOW;
	} else if (!strcmp(id, "med")) {
		memcpy(&med_sa, &sa, sizeof(struct sched_attr));
		sa_initialized |= SA_INIT_MED;
	} else if (!strcmp(id, "high")) {
		memcpy(&high_sa, &sa, sizeof(struct sched_attr));
		sa_initialized |= SA_INIT_HIGH;
	} else {
		retval = FAILURE;
	}

	free(buf);
	return retval;
}

void process_command_line(int argc, char **argv)
{
	int opt;
	while ((opt = getopt_long(argc, argv, "+", options, NULL)) != -1) {
		switch (opt) {
		case '?':
		case 'h':
			usage();
			exit(0);
		case 't':
			duration = strtol(optarg, NULL, 10);
			break;
		case 'v':
			verbose = 1;
			quiet = 0;
			break;
		case 'q':
			verbose = 0;
			quiet = 1;
			break;
		case 'i':
			inversions = strtol(optarg, NULL, 10);
			pi_info("doing %d inversion per group\n", inversions);
			break;
		case 'g':
			ngroups = strtol(optarg, NULL, 10);
			pi_info("number of groups set to %d\n", ngroups);
			break;
		case 'r':
			policy = SCHED_RR;
			break;
		case 's':
			if (process_sched_line(optarg))
				pi_error("ignoring invalid options '%s'\n", optarg);
			break;
		case 'p':
			prompt = 1;
			break;
		case 'd':
			debugging = 1;
			break;
		case 'V':
			printf("pi_stress v%1.2f ", VERSION);
			exit(0);
		case 'u':
			uniprocessor = 1;
			break;
		case 'm':
			lockall = 1;
			break;
		}
	}
}

/* total the number of inversions that have been performed */
unsigned long total_inversions(void)
{
	int i;
	unsigned long total = 0;

	for (i = 0; i < ngroups; i++)
		total += groups[i].total;
	return total;
}

void print_sched_attr(const char *name, struct sched_attr * sa)
{
	printf("    %6s thread", name);
	printf(" %s", policy_to_string(sa->sched_policy));

	switch(sa->sched_policy) {
	case SCHED_OTHER:
		printf(" nice %d\n", sa->sched_nice);
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		printf(" priority %d\n", sa->sched_priority);
		break;
	case SCHED_DEADLINE:
		printf(" runtime %" PRIu64 " deadline %" PRIu64 " period %" PRIu64 "\n",
			sa->sched_runtime, sa->sched_deadline,
			sa->sched_period);
		break;
	}
}

void banner(void)
{
	if (quiet)
		return;

	printf("Starting PI Stress Test\n");
	printf("Number of thread groups: %d\n", ngroups);
	if (duration >= 0)
		printf("Duration of test run: %d seconds\n", duration);
	else
		printf("Duration of test run: infinite\n");
	if (inversions < 0)
		printf("Number of inversions per group: unlimited\n");
	else
		printf("Number of inversions per group: %d\n", inversions);
	print_sched_attr("Admin", &admin_sa);
	printf("%d groups of 3 threads will be created\n", ngroups);
	print_sched_attr("High", &high_sa);
	print_sched_attr("Med", &med_sa);
	print_sched_attr("Low", &low_sa);
	printf("\n");
}

void summary(void)
{
	time_t interval = finish - start;
	struct tm *t = gmtime(&interval);

	printf("Total inversion performed: %lu\n", total_inversions());
	printf("Test Duration: %d days, %d hours, %d minutes, %d seconds\n",
	       t->tm_yday, t->tm_hour, t->tm_min, t->tm_sec);
}

int
barrier_init(pthread_barrier_t * b, const pthread_barrierattr_t * attr,
	     unsigned count, const char *name)
{
	int status;

	if ((status = pthread_barrier_init(b, attr, count)) != 0) {
		pi_error("barrier_init: failed to initialize: %s\n", name);
		pi_error("status = %d\n", status);
		return FAILURE;
	}

	return SUCCESS;
}

void setup_sched_attr(struct sched_attr *attr, int policy, int prio)
{
	attr->sched_policy = policy;
	attr->sched_priority = prio;
}

void setup_sched_config(int policy)
{
	int prio_min;

	prio_min = sched_get_priority_min(policy);

	if (!(sa_initialized & SA_INIT_LOW))
		setup_sched_attr(&low_sa,   policy, prio_min + 0);
	if (!(sa_initialized & SA_INIT_MED))
		setup_sched_attr(&med_sa,   policy, prio_min + 1);
	if (!(sa_initialized & SA_INIT_HIGH))
		setup_sched_attr(&high_sa,  policy, prio_min + 2);
	if (!(sa_initialized & SA_INIT_ADMIN))
		setup_sched_attr(&admin_sa, policy, prio_min + 3);
}