1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
/*
* Copyright (C) 1999-2003 Paolo Mantegazza <mantegazza@aero.polimi.it>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _RTAI_SCHEDCORE_H
#define _RTAI_SCHEDCORE_H
#include <rtai_version.h>
#include <rtai_lxrt.h>
#include <rtai_sched.h>
#include <rtai_malloc.h>
#include <rtai_trace.h>
#include <rtai_leds.h>
#include <rtai_sem.h>
#include <rtai_rwl.h>
#include <rtai_spl.h>
#include <rtai_scb.h>
#include <rtai_mbx.h>
#include <rtai_msg.h>
#include <rtai_tbx.h>
#include <rtai_mq.h>
#include <rtai_bits.h>
#include <rtai_wd.h>
#include <rtai_tasklets.h>
#include <rtai_fifos.h>
#include <rtai_netrpc.h>
#include <rtai_shm.h>
#include <rtai_usi.h>
#ifdef __KERNEL__
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <asm/param.h>
#include <asm/system.h>
#include <asm/io.h>
extern RT_TASK rt_smp_linux_task[];
extern RT_TASK *rt_smp_current[];
extern RTIME rt_smp_time_h[];
extern int rt_smp_oneshot_timer[];
#ifdef CONFIG_RTAI_MALLOC
#define sched_malloc(size) rt_malloc((size))
#define sched_free(adr) rt_free((adr))
#ifndef CONFIG_RTAI_MALLOC_BUILTIN
#define sched_mem_init()
#define sched_mem_end()
#else /* CONFIG_RTAI_MALLOC_BUILTIN */
#define sched_mem_init() \
{ if(__rtai_heap_init() != 0) { \
return(-ENOMEM); \
} }
#define sched_mem_end() __rtai_heap_exit()
#endif /* !CONFIG_RTAI_MALLOC_BUILTIN */
#define call_exit_handlers(task) __call_exit_handlers(task)
#define set_exit_handler(task, fun, arg1, arg2) __set_exit_handler(task, fun, arg1, arg2)
#else /* !CONFIG_RTAI_MALLOC */
#define sched_malloc(size) kmalloc((size), GFP_KERNEL)
#define sched_free(adr) kfree((adr))
#define sched_mem_init()
#define sched_mem_end()
#define call_exit_handlers(task)
#define set_exit_handler(task, fun, arg1, arg2)
#endif /* CONFIG_RTAI_MALLOC */
#define RT_SEM_MAGIC 0xaabcdeff
#define SEM_ERR (0xFfff)
#define MSG_ERR ((RT_TASK *)0xFfff)
#define NOTHING ((void *)0)
#define SOMETHING ((void *)1)
#define SEMHLF 0x0000FFFF
#define RPCHLF 0xFFFF0000
#define RPCINC 0x00010000
#define DECLARE_RT_CURRENT int cpuid; RT_TASK *rt_current
#define ASSIGN_RT_CURRENT rt_current = rt_smp_current[cpuid = hard_cpu_id()]
#define RT_CURRENT rt_smp_current[hard_cpu_id()]
#define MAX_LINUX_RTPRIO 99
#define MIN_LINUX_RTPRIO 1
#ifdef CONFIG_RTAI_SCHED_ISR_LOCK
void rtai_handle_isched_lock(int nesting);
#endif /* CONFIG_RTAI_SCHED_ISR_LOCK */
#ifdef CONFIG_SMP
#define rt_time_h (rt_smp_time_h[cpuid & sqilter])
#define oneshot_timer (rt_smp_oneshot_timer[cpuid & sqilter])
#define rt_linux_task (rt_smp_linux_task[cpuid])
#else
#define rt_time_h (rt_smp_time_h[0])
#define oneshot_timer (rt_smp_oneshot_timer[0])
#define rt_linux_task (rt_smp_linux_task[0])
#endif
#ifdef CONFIG_SMP
extern unsigned long sqilter;
static inline void send_sched_ipi(unsigned long dest)
{
unsigned long flags;
rtai_hw_lock(flags);
_send_sched_ipi(dest);
rtai_hw_unlock(flags);
}
#define RT_SCHEDULE_MAP(schedmap) \
do { \
if (sqilter) { \
if (schedmap) send_sched_ipi(schedmap); \
} else { \
rt_schedule(); \
} \
} while (0)
#define RT_SCHEDULE_MAP_BOTH(schedmap) \
do { \
if (sqilter && schedmap) send_sched_ipi(schedmap); \
rt_schedule(); \
} while (0)
#define RT_SCHEDULE(task, cpuid) \
do { \
if (((task)->runnable_on_cpus != (cpuid)) && sqilter) { \
send_sched_ipi(1 << (task)->runnable_on_cpus); \
} else { \
rt_schedule(); \
} \
} while (0)
#define RT_SCHEDULE_BOTH(task, cpuid) \
{ \
if (((task)->runnable_on_cpus != (cpuid)) && sqilter) { \
send_sched_ipi(1 << (task)->runnable_on_cpus); \
} \
rt_schedule(); \
}
#else /* !CONFIG_SMP */
#define send_sched_ipi(dest)
#define RT_SCHEDULE_MAP_BOTH(schedmap) rt_schedule()
#define RT_SCHEDULE_MAP(schedmap) rt_schedule()
#define RT_SCHEDULE(task, cpuid) rt_schedule()
#define RT_SCHEDULE_BOTH(task, cpuid) rt_schedule()
#endif /* CONFIG_SMP */
#define BASE_SOFT_PRIORITY 1000000000
#define TASK_HARDREALTIME TASK_UNINTERRUPTIBLE
static inline void enq_ready_edf_task(RT_TASK *ready_task)
{
RT_TASK *task;
#ifdef CONFIG_SMP
task = rt_smp_linux_task[ready_task->runnable_on_cpus & sqilter].rnext;
#else
task = rt_smp_linux_task[0].rnext;
#endif
while (task->policy < 0 && ready_task->period >= task->period) {
task = task->rnext;
}
task->rprev = (ready_task->rprev = task->rprev)->rnext = ready_task;
ready_task->rnext = task;
}
#define MAX_WAKEUP_SRQ (2 << 6)
struct klist_t { volatile int srq, in, out; void *task[MAX_WAKEUP_SRQ]; };
extern struct klist_t wake_up_srq;
static inline void enq_ready_task(RT_TASK *ready_task)
{
RT_TASK *task;
if (ready_task->is_hard) {
#ifdef CONFIG_SMP
task = rt_smp_linux_task[ready_task->runnable_on_cpus & sqilter].rnext;
#else
task = rt_smp_linux_task[0].rnext;
#endif
while (ready_task->priority >= task->priority) {
if ((task = task->rnext)->priority < 0) break;
}
task->rprev = (ready_task->rprev = task->rprev)->rnext = ready_task;
ready_task->rnext = task;
} else {
ready_task->state |= RT_SCHED_SFTRDY;
wake_up_srq.task[wake_up_srq.in] = ready_task->lnxtsk;
wake_up_srq.in = (wake_up_srq.in + 1) & (MAX_WAKEUP_SRQ - 1);
rt_pend_linux_srq(wake_up_srq.srq);
}
}
static inline int renq_ready_task(RT_TASK *ready_task, int priority)
{
int retval;
if ((retval = ready_task->priority != priority)) {
ready_task->priority = priority;
if (ready_task->state == RT_SCHED_READY) {
(ready_task->rprev)->rnext = ready_task->rnext;
(ready_task->rnext)->rprev = ready_task->rprev;
enq_ready_task(ready_task);
}
}
return retval;
}
static inline int renq_current(RT_TASK *rt_current, int priority)
{
int retval;
if ((retval = rt_current->priority != priority)) {
rt_current->priority = priority;
(rt_current->rprev)->rnext = rt_current->rnext;
(rt_current->rnext)->rprev = rt_current->rprev;
enq_ready_task(rt_current);
}
return retval;
}
static inline void rem_ready_task(RT_TASK *task)
{
if (task->state == RT_SCHED_READY) {
if (!task->is_hard) {
(task->lnxtsk)->state = TASK_HARDREALTIME;
}
(task->rprev)->rnext = task->rnext;
(task->rnext)->rprev = task->rprev;
}
}
static inline void rem_ready_current(RT_TASK *rt_current)
{
if (!rt_current->is_hard) {
(rt_current->lnxtsk)->state = TASK_HARDREALTIME;
}
(rt_current->rprev)->rnext = rt_current->rnext;
(rt_current->rnext)->rprev = rt_current->rprev;
}
static inline void enq_timed_task(RT_TASK *timed_task)
{
RT_TASK *task;
#ifdef CONFIG_SMP
task = rt_smp_linux_task[timed_task->runnable_on_cpus & sqilter].tnext;
#else
task = rt_smp_linux_task[0].tnext;
#endif
while (timed_task->resume_time > task->resume_time) {
task = task->tnext;
}
task->tprev = (timed_task->tprev = task->tprev)->tnext = timed_task;
timed_task->tnext = task;
}
static inline void wake_up_timed_tasks(int cpuid)
{
RT_TASK *task;
#ifdef CONFIG_SMP
task = rt_smp_linux_task[cpuid = cpuid & sqilter].tnext;
#else
task = rt_smp_linux_task[0].tnext;
#endif
while (task->resume_time <= rt_time_h) {
if ((task->state &= ~(RT_SCHED_DELAYED | RT_SCHED_SEMAPHORE | RT_SCHED_RECEIVE | RT_SCHED_SEND | RT_SCHED_RPC | RT_SCHED_RETURN | RT_SCHED_MBXSUSP)) == RT_SCHED_READY) {
if (task->policy < 0) {
enq_ready_edf_task(task);
} else {
enq_ready_task(task);
}
}
task = task->tnext;
}
#ifdef CONFIG_SMP
rt_smp_linux_task[cpuid].tnext = task;
task->tprev = &rt_smp_linux_task[cpuid];
#else
rt_smp_linux_task[0].tnext = task;
task->tprev = &rt_smp_linux_task[0];
#endif
}
static inline void rem_timed_task(RT_TASK *task)
{
if ((task->state & RT_SCHED_DELAYED)) {
(task->tprev)->tnext = task->tnext;
(task->tnext)->tprev = task->tprev;
}
}
#define get_time() rt_get_time()
#if 0
static inline RTIME get_time(void)
{
#ifdef CONFIG_SMP
if (sqilter) {
int cpuid;
return rt_smp_oneshot_timer[cpuid = hard_cpu_id()] ? rdtsc() : rt_smp_times[cpuid].tick_time;
} else {
return rt_smp_oneshot_timer[0] ? rdtsc(): rt_times.tick_time;
}
#else
return oneshot_timer ? rdtsc(): rt_times.tick_time;
#endif
}
#endif
static inline void enqueue_blocked(RT_TASK *task, QUEUE *queue, int qtype)
{
QUEUE *q;
task->blocked_on = (q = queue);
if (!qtype) {
while ((q = q->next) != queue && (q->task)->priority <= task->priority);
}
q->prev = (task->queue.prev = q->prev)->next = &(task->queue);
task->queue.next = q;
}
static inline void dequeue_blocked(RT_TASK *task)
{
task->prio_passed_to = NOTHING;
(task->queue.prev)->next = task->queue.next;
(task->queue.next)->prev = task->queue.prev;
task->blocked_on = NOTHING;
}
static __volatile__ inline unsigned long pass_prio(RT_TASK *to, RT_TASK *from)
{
QUEUE *q;
#ifdef CONFIG_SMP
unsigned long schedmap;
schedmap = 0;
#endif
from->prio_passed_to = to;
while (to && to->priority > from->priority) {
to->priority = from->priority;
if (to->state == RT_SCHED_READY) {
(to->rprev)->rnext = to->rnext;
(to->rnext)->rprev = to->rprev;
enq_ready_task(to);
#ifdef CONFIG_SMP
set_bit(to->runnable_on_cpus & 0x1F, &schedmap);
#endif
} else if ((q = to->blocked_on) && !((to->state & RT_SCHED_SEMAPHORE) &&
((SEM *)q)->qtype)) {
(to->queue.prev)->next = to->queue.next;
(to->queue.next)->prev = to->queue.prev;
while ((q = q->next) != to->blocked_on && (q->task)->priority <= to->priority);
q->prev = (to->queue.prev = q->prev)->next = &(to->queue);
to->queue.next = q;
}
to = to->prio_passed_to;
}
#ifdef CONFIG_SMP
return schedmap;
#else
return 0;
#endif
}
static inline RT_TASK *_rt_whoami(void)
{
#ifdef CONFIG_SMP
RT_TASK *rt_current;
unsigned long flags;
flags = rt_global_save_flags_and_cli();
rt_current = RT_CURRENT;
rt_global_restore_flags(flags);
return rt_current;
#else
return rt_smp_current[0];
#endif
}
static inline void __call_exit_handlers(RT_TASK *task)
{
XHDL *pt, *tmp;
pt = task->ExitHook; // Initialise ExitHook in rt_task_init()
while ( pt ) {
(*pt->fun) (pt->arg1, pt->arg2);
tmp = pt;
pt = pt->nxt;
rt_free(tmp);
}
task->ExitHook = 0;
}
static inline XHDL *__set_exit_handler(RT_TASK *task, void (*fun) (void *, int), void *arg1, int arg2)
{
XHDL *p;
// exit handler functions are automatically executed at terminattion time by rt_task_delete()
// in the reverse order they were created (like C++ destructors behave).
if (task->magic != RT_TASK_MAGIC) return 0;
if (!(p = (XHDL *) rt_malloc (sizeof(XHDL)))) return 0;
p->fun = fun;
p->arg1 = arg1;
p->arg2 = arg2;
p->nxt = task->ExitHook;
return (task->ExitHook = p);
}
static inline int rtai_init_features (void)
{
#ifdef CONFIG_RTAI_LEDS_BUILTIN
__rtai_leds_init();
#endif /* CONFIG_RTAI_LEDS_BUILTIN */
#ifdef CONFIG_RTAI_SEM_BUILTIN
__rtai_sem_init();
#endif /* CONFIG_RTAI_SEM_BUILTIN */
#ifdef CONFIG_RTAI_MSG_BUILTIN
__rtai_msg_init();
#endif /* CONFIG_RTAI_MSG_BUILTIN */
#ifdef CONFIG_RTAI_MBX_BUILTIN
__rtai_mbx_init();
#endif /* CONFIG_RTAI_MBX_BUILTIN */
#ifdef CONFIG_RTAI_TBX_BUILTIN
__rtai_tbx_init();
#endif /* CONFIG_RTAI_TBX_BUILTIN */
#ifdef CONFIG_RTAI_MQ_BUILTIN
__rtai_mq_init();
#endif /* CONFIG_RTAI_MQ_BUILTIN */
#ifdef CONFIG_RTAI_BITS_BUILTIN
__rtai_bits_init();
#endif /* CONFIG_RTAI_BITS_BUILTIN */
#ifdef CONFIG_RTAI_TASKLETS_BUILTIN
__rtai_tasklets_init();
#endif /* CONFIG_RTAI_TASKLETS_BUILTIN */
#ifdef CONFIG_RTAI_FIFOS_BUILTIN
__rtai_fifos_init();
#endif /* CONFIG_RTAI_FIFOS_BUILTIN */
#ifdef CONFIG_RTAI_NETRPC_BUILTIN
__rtai_netrpc_init();
#endif /* CONFIG_RTAI_NETRPC_BUILTIN */
#ifdef CONFIG_RTAI_SHM_BUILTIN
__rtai_shm_init();
#endif /* CONFIG_RTAI_SHM_BUILTIN */
#ifdef CONFIG_RTAI_USI_BUILTIN
__rtai_usi_init();
#endif /* CONFIG_RTAI_USI_BUILTIN */
#ifdef CONFIG_RTAI_MATH_BUILTIN
__rtai_math_init();
#endif /* CONFIG_RTAI_MATH_BUILTIN */
return 0;
}
static inline void rtai_cleanup_features (void) {
#ifdef CONFIG_RTAI_MATH_BUILTIN
__rtai_math_exit();
#endif /* CONFIG_RTAI_MATH_BUILTIN */
#ifdef CONFIG_RTAI_USI_BUILTIN
__rtai_usi_exit();
#endif /* CONFIG_RTAI_USI_BUILTIN */
#ifdef CONFIG_RTAI_SHM_BUILTIN
__rtai_shm_exit();
#endif /* CONFIG_RTAI_SHM_BUILTIN */
#ifdef CONFIG_RTAI_NETRPC_BUILTIN
__rtai_netrpc_exit();
#endif /* CONFIG_RTAI_NETRPC_BUILTIN */
#ifdef CONFIG_RTAI_FIFOS_BUILTIN
__rtai_fifos_exit();
#endif /* CONFIG_RTAI_FIFOS_BUILTIN */
#ifdef CONFIG_RTAI_TASKLETS_BUILTIN
__rtai_tasklets_exit();
#endif /* CONFIG_RTAI_TASKLETS_BUILTIN */
#ifdef CONFIG_RTAI_BITS_BUILTIN
__rtai_bits_exit();
#endif /* CONFIG_RTAI_BITS_BUILTIN */
#ifdef CONFIG_RTAI_MQ_BUILTIN
__rtai_mq_exit();
#endif /* CONFIG_RTAI_MQ_BUILTIN */
#ifdef CONFIG_RTAI_TBX_BUILTIN
__rtai_tbx_exit();
#endif /* CONFIG_RTAI_TBX_BUILTIN */
#ifdef CONFIG_RTAI_MBX_BUILTIN
__rtai_mbx_exit();
#endif /* CONFIG_RTAI_MBX_BUILTIN */
#ifdef CONFIG_RTAI_MSG_BUILTIN
__rtai_msg_exit();
#endif /* CONFIG_RTAI_MSG_BUILTIN */
#ifdef CONFIG_RTAI_SEM_BUILTIN
__rtai_sem_exit();
#endif /* CONFIG_RTAI_SEM_BUILTIN */
#ifdef CONFIG_RTAI_LEDS_BUILTIN
__rtai_leds_exit();
#endif /* CONFIG_RTAI_LEDS_BUILTIN */
}
int rt_check_current_stack(void);
int rt_kthread_init(RT_TASK *task,
void (*rt_thread)(int),
int data,
int stack_size,
int priority,
int uses_fpu,
void(*signal)(void));
int rt_kthread_init_cpuid(RT_TASK *task,
void (*rt_thread)(int),
int data,
int stack_size,
int priority,
int uses_fpu,
void(*signal)(void),
unsigned int cpuid);
#endif /* __KERNEL__ */
#endif /* !_RTAI_SCHEDCORE_H */
|