File: testall.cpp

package info (click to toggle)
rtaudio 4.1.1~ds0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 832 kB
  • ctags: 555
  • sloc: cpp: 9,188; sh: 2,494; makefile: 32
file content (233 lines) | stat: -rw-r--r-- 6,641 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/******************************************/
/*
  testall.cpp
  by Gary P. Scavone, 2007-2008

  This program will make a variety of calls
  to extensively test RtAudio functionality.
*/
/******************************************/

#include "RtAudio.h"
#include <iostream>
#include <cstdlib>
#include <cstring>

#define BASE_RATE 0.005
#define TIME   1.0

void usage( void ) {
  // Error function in case of incorrect command-line
  // argument specifications
  std::cout << "\nuseage: testall N fs <iDevice> <oDevice> <iChannelOffset> <oChannelOffset>\n";
  std::cout << "    where N = number of channels,\n";
  std::cout << "    fs = the sample rate,\n";
  std::cout << "    iDevice = optional input device to use (default = 0),\n";
  std::cout << "    oDevice = optional output device to use (default = 0),\n";
  std::cout << "    iChannelOffset = an optional input channel offset (default = 0),\n";
  std::cout << "    and oChannelOffset = optional output channel offset (default = 0).\n\n";
  exit( 0 );
}

unsigned int channels;

// Interleaved buffers
int sawi( void *outputBuffer, void * /*inputBuffer*/, unsigned int nBufferFrames,
          double /*streamTime*/, RtAudioStreamStatus status, void *data )
{
  unsigned int i, j;
  extern unsigned int channels;
  double *buffer = (double *) outputBuffer;
  double *lastValues = (double *) data;

  if ( status )
    std::cout << "Stream underflow detected!" << std::endl;

  for ( i=0; i<nBufferFrames; i++ ) {
    for ( j=0; j<channels; j++ ) {
      *buffer++ = (double) lastValues[j];
      lastValues[j] += BASE_RATE * (j+1+(j*0.1));
      if ( lastValues[j] >= 1.0 ) lastValues[j] -= 2.0;
    }
  }

  return 0;
}

// Non-interleaved buffers
int sawni( void *outputBuffer, void * /*inputBuffer*/, unsigned int nBufferFrames,
           double /*streamTime*/, RtAudioStreamStatus status, void *data )
{
  unsigned int i, j;
  extern unsigned int channels;
  double *buffer = (double *) outputBuffer;
  double *lastValues = (double *) data;

  if ( status )
    std::cout << "Stream underflow detected!" << std::endl;

  float increment;
  for ( j=0; j<channels; j++ ) {
    increment = BASE_RATE * (j+1+(j*0.1));
    for ( i=0; i<nBufferFrames; i++ ) {
      *buffer++ = (double) lastValues[j];
      lastValues[j] += increment;
      if ( lastValues[j] >= 1.0 ) lastValues[j] -= 2.0;
    }
  }

  return 0;
}

int inout( void *outputBuffer, void *inputBuffer, unsigned int /*nBufferFrames*/,
           double /*streamTime*/, RtAudioStreamStatus status, void *data )
{
  // Since the number of input and output channels is equal, we can do
  // a simple buffer copy operation here.
  if ( status ) std::cout << "Stream over/underflow detected." << std::endl;

  unsigned int *bytes = (unsigned int *) data;
  memcpy( outputBuffer, inputBuffer, *bytes );
  return 0;
}

int main( int argc, char *argv[] )
{
  unsigned int bufferFrames, fs, oDevice = 0, iDevice = 0, iOffset = 0, oOffset = 0;
  char input;

  // minimal command-line checking
  if (argc < 3 || argc > 7 ) usage();

  RtAudio dac;
  if ( dac.getDeviceCount() < 1 ) {
    std::cout << "\nNo audio devices found!\n";
    exit( 1 );
  }

  channels = (unsigned int) atoi( argv[1] );
  fs = (unsigned int) atoi( argv[2] );
  if ( argc > 3 )
    iDevice = (unsigned int) atoi( argv[3] );
  if ( argc > 4 )
    oDevice = (unsigned int) atoi(argv[4]);
  if ( argc > 5 )
    iOffset = (unsigned int) atoi(argv[5]);
  if ( argc > 6 )
    oOffset = (unsigned int) atoi(argv[6]);

  double *data = (double *) calloc( channels, sizeof( double ) );

  // Let RtAudio print messages to stderr.
  dac.showWarnings( true );

  // Set our stream parameters for output only.
  bufferFrames = 512;
  RtAudio::StreamParameters oParams, iParams;
  oParams.deviceId = oDevice;
  oParams.nChannels = channels;
  oParams.firstChannel = oOffset;

  if ( oDevice == 0 )
    oParams.deviceId = dac.getDefaultOutputDevice();

  RtAudio::StreamOptions options;
  options.flags = RTAUDIO_HOG_DEVICE;
  try {
    dac.openStream( &oParams, NULL, RTAUDIO_FLOAT64, fs, &bufferFrames, &sawi, (void *)data, &options );
    std::cout << "\nStream latency = " << dac.getStreamLatency() << std::endl;

    // Start the stream
    dac.startStream();
    std::cout << "\nPlaying ... press <enter> to stop.\n";
    std::cin.get( input );

    // Stop the stream
    dac.stopStream();

    // Restart again
    std::cout << "Press <enter> to restart.\n";
    std::cin.get( input );
    dac.startStream();

    // Test abort function
    std::cout << "Playing again ... press <enter> to abort.\n";
    std::cin.get( input );
    dac.abortStream();

    // Restart another time
    std::cout << "Press <enter> to restart again.\n";
    std::cin.get( input );
    dac.startStream();

    std::cout << "Playing again ... press <enter> to close the stream.\n";
    std::cin.get( input );
  }
  catch ( RtAudioError& e ) {
    e.printMessage();
    goto cleanup;
  }

  if ( dac.isStreamOpen() ) dac.closeStream();

  // Test non-interleaved functionality
  options.flags = RTAUDIO_NONINTERLEAVED;
  try {
    dac.openStream( &oParams, NULL, RTAUDIO_FLOAT64, fs, &bufferFrames, &sawni, (void *)data, &options );

    std::cout << "Press <enter> to start non-interleaved playback.\n";
    std::cin.get( input );

    // Start the stream
    dac.startStream();
    std::cout << "\nPlaying ... press <enter> to stop.\n";
    std::cin.get( input );
  }
  catch ( RtAudioError& e ) {
    e.printMessage();
    goto cleanup;
  }

  if ( dac.isStreamOpen() ) dac.closeStream();

  // Now open a duplex stream.
  unsigned int bufferBytes;
  iParams.deviceId = iDevice;
  iParams.nChannels = channels;
  iParams.firstChannel = iOffset;
  if ( iDevice == 0 )
    iParams.deviceId = dac.getDefaultInputDevice();
  options.flags = RTAUDIO_NONINTERLEAVED;
  try {
    dac.openStream( &oParams, &iParams, RTAUDIO_SINT32, fs, &bufferFrames, &inout, (void *)&bufferBytes, &options );

    bufferBytes = bufferFrames * channels * 4;

    std::cout << "Press <enter> to start duplex operation.\n";
    std::cin.get( input );

    // Start the stream
    dac.startStream();
    std::cout << "\nRunning ... press <enter> to stop.\n";
    std::cin.get( input );

    // Stop the stream
    dac.stopStream();
    std::cout << "\nStopped ... press <enter> to restart.\n";
    std::cin.get( input );

    // Restart the stream
    dac.startStream();
    std::cout << "\nRunning ... press <enter> to stop.\n";
    std::cin.get( input );
  }
  catch ( RtAudioError& e ) {
    e.printMessage();
  }

 cleanup:
  if ( dac.isStreamOpen() ) dac.closeStream();
  free( data );

  return 0;
}