File: rtaxVote.pl

package info (click to toggle)
rtax 0.984-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 316 kB
  • sloc: perl: 1,123; sh: 203; makefile: 2
file content (286 lines) | stat: -rwxr-xr-x 10,123 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/perl

# read the prokMSAids of the hits, as produced by exactMatchIds.
# Then grab the taxonomy info for those prokMSAids and make some classification info from the set.

use strict;
use warnings;

#use lib '.';
use FindBin;
use lib "$FindBin::Bin";

use LevelPrediction;

loadTaxonomy( $ARGV[0] );
processHits( $ARGV[1] );

my %taxonomies = ();

# my %taxonomyPrior = ();

sub loadTaxonomy {
    my ($taxFileName) = @_;
    print STDERR "loading taxonomy...\n";
    open( TAX, $taxFileName ) or die "Cannot open input taxonomy file $taxFileName: $!";
    my $lines = 0;
    while ( my $line = <TAX> ) {
		chomp $line;
		
		# try to accept several formats:
		# semicolon or tab-delimited taxonomy strings
		# and including the "pcid-width" column between the sequence id and
		# the taxonomy string, or not
		
		my ( $prokMSAid, @taxonomy ) = split( /[;\t]/, $line );
        #my ( @taxonomy ) = split( /; /, $taxString );

	    if ( @taxonomy && ($taxonomy[0] eq "" || $taxonomy[0] =~ /^(\d+\.?\d*|\.\d+)$/ )) {
	        # value is numeric or empty, must be the pcid width of the target cluster
	        my $taxPcid = shift @taxonomy;
	        #print STDERR "Ignoring target cluster width: $taxPcid\n";
	    }

        $taxonomies{$prokMSAid} = \@taxonomy;

#       my $taxString = "";
#        for my $taxElem (@taxonomy) {
#            $taxString .= "$taxElem; ";
#
#            #			$taxonomyPrior{$taxString}++;
#       }
        $lines++;
    }
    close TAX;
    print STDERR "...done loading $lines taxonomy lines\n";

    #	print STDERR "normalizing prior...\n";
    #	for my $taxKey (keys %taxonomyPrior)
    #	{
    #		$taxonomyPrior{$taxKey} /= $lines;
    #	}
    #	$taxonomyPrior{""} = 1;
    #    print STDERR "...done normalizing prior\n";
}

sub printLine {
    my ( $label, $bestPcid, @ids ) = @_;

    my $levelPredictions = makeTaxonomyPrediction(@ids);
    print "$label\t$bestPcid";
    for my $levelPrediction (@$levelPredictions) {
        print "\t" . $levelPrediction->toString();
    }

    #if(scalar(@$levelPredictions) == 0) {$unclassified++}
    #if(scalar(@$levelPredictions) == 0) { print "\tUNCLASSIFIED"; }

    print "\n";

    return ( scalar(@$levelPredictions) == 0 );
}

sub processHits {
    my ($hitsFileName) = @_;
    open( HITS, $hitsFileName ) || die("Could not open $hitsFileName");

    my $hit          = 0;
    my $noprimer     = 0;
    my $nohit        = 0;
    my $toomanyhits  = 0;
    my $nomatepair  = 0;
    my $unclassified = 0;

    while (<HITS>) {
        chomp;
        my ( $label, $bestPcid, @ids ) = split /\t/;

        if ( ( !@ids ) || ( $ids[0] eq "" ) )    #  an empty id list
		{
			print "$label\t\tNOHIT\n";
            $nohit++;
		}
		elsif($ids[0] eq "NOHIT")     # at one point we represented this only as an empty id list, but now apparently it is used
        {
            print "$label\t\tNOHIT\n";
            $nohit++;
        }
        elsif ( ( $ids[0] eq "NOPRIMER" ) ) {
            print "$label\t\tNOPRIMER\n";
            $noprimer++;
        }
        elsif ( ( $ids[0] eq "TOOMANYHITS" ) ) {
            print "$label\t\tTOOMANYHITS\n";
            $toomanyhits++;
        }
        elsif ( ( $ids[0] eq "NOMATEPAIR" ) ) {
            print "$label\t\tNOMATEPAIR\n";
            $nomatepair++;
        }
        else {
            $unclassified += printLine( $label, $bestPcid, @ids );
            $hit++;
        }
    }

    my $samples = $hit + $nohit + $toomanyhits + $nomatepair + $noprimer;

    print STDERR "$samples items\n";
    if ( $samples != 0 ) {
        print STDERR "$noprimer (" . sprintf( "%.1f",     ( 100 * $noprimer / $samples ) ) . "%) had no primer match\n";
        print STDERR "$nohit (" . sprintf( "%.1f",        ( 100 * $nohit / $samples ) ) . "%) had no hits\n";
        print STDERR "$toomanyhits (" . sprintf( "%.1f",        ( 100 * $toomanyhits / $samples ) ) . "%) had too many hits\n";
        print STDERR "$nomatepair (" . sprintf( "%.1f",        ( 100 * $nomatepair / $samples ) ) . "%) had no mate pair\n";
        print STDERR "$unclassified (" . sprintf( "%.1f", ( 100 * $unclassified / $samples ) ) . "%) had hits but no classification\n";
        print STDERR "" . ( $hit - $unclassified ) . " (" . sprintf( "%.1f",          ( 100 * ( $hit - $unclassified ) / $samples ) ) . "%) were classified\n";
    }

    # classifications per level?  That depends on the stringency filter, which is downstream

    close HITS;
}

#sub normalizeByPrior {
#	my ($taxString, $taxonCounts) = @_;
#
#	print STDERR "Normalizing: \n";
#	while( my ($k, $v) = each %$taxonCounts) {
#        print STDERR "$k = $v ; ";
#    }
#	print STDERR "\n";
#
#	my $normalizer = $taxonomyPrior{$taxString};
#	if(!defined $normalizer)
#		{
#			print STDERR ("No prior: $taxString\n");
#		}
#
#	for my $taxon (keys %$taxonCounts)
#	{
#		$taxonCounts->{$taxon} = ($taxonCounts->{$taxon} / $taxonomyPrior{$taxString . $taxon . "; "}) * $normalizer;
#	}
#	print STDERR "       Done: \n";
#	while( my ($k, $v) = each %$taxonCounts) {
#        print STDERR "$k = $v ; ";
#    }
#	print STDERR "\n";
#}

sub makeTaxonomyPrediction {
    my (@ids) = @_;
	
    my @levelPredictions = ();

# TOOMANYHITS is now added in ucFilterBest.pl, so it should be caught at line 99 above

#	if(scalar(@ids) == 1000) {
#		# when we did the uclust at exactMatchOneReadSet:50, we used " --allhits --maxaccepts 1000 ".
#		# after that we filtered for the best pcid set (using ucFilterBest.pl).
#		# if 1000 hits remain, then the real set of best-pcid hits is larger, and we missed some.
#		# In that case we should bail because the set of 1000 hits we do have may not be representative.
#		# I think this is the reason why matching the E517F primer only (17nt reads) produced predictions, and at different levels to boot.
#		# That also depends on the classification thresholds.
#			
#		my $levelPrediction = LevelPrediction->new();	
#		$levelPrediction->label("TOOMANYHITS");
#		push @levelPredictions, $levelPrediction;
#		return \@levelPredictions;
#		}

    my @taxonomyVectors = map { $taxonomies{$_} } @ids;
#	my @taxonomyClusterSizes = map { $taxonomyWorstPcids{$_} } @ids;

    my $globalTotal = @taxonomyVectors;

    my $predictedTaxa    = "";

    my $globalUnknowns = 0;    # at all levels, incrementing as we go

    for my $level ( 0 .. 10 ) {

        my $levelPrediction = LevelPrediction->new();

        # assert the remaining taxonomyVectors are equal at higher levels

        my %taxonCounts   = ();
        my $localUnknowns = 0;
        my $localTotal    = @taxonomyVectors;

        # count up how often each label is seen descending from this node

        for my $vec (@taxonomyVectors) {
            my $taxon = $vec->[$level];

            # "Unknown" should occur only towards the leaves; an unspecified intermediate level followed by a populated level is a "skip".
            # Here, "skip" is counted as just another taxon.
            if   ( !defined $taxon || $taxon eq "" || $taxon =~ /unknown/i ) { $localUnknowns++; }
            else                                                             { $taxonCounts{$taxon}++; }
        }

        if ( $localUnknowns == $localTotal ) { last; }

        # this normalization makes no sense, because we don't want a uniform prior either
        # e.g., one Archaeal hit among dozens of Bacterial hits will win, because there are so few Archaea in GreenGenes to begin with
        # normalizeByPrior( $predictedTaxa, \%taxonCounts );

        # get the best label and check for ties

        $levelPrediction->numChildren( scalar( keys %taxonCounts ) );

        my @taxaInOrder = sort { $taxonCounts{$b} <=> $taxonCounts{$a} } keys %taxonCounts;
        my $bestTaxon = $taxaInOrder[0];

        # print STDERR "$bestLabel\n";
        $levelPrediction->label($bestTaxon);
        $predictedTaxa .= "$bestTaxon; ";

        my $bestCount = $taxonCounts{$bestTaxon};
        $levelPrediction->count($bestCount);

        my $secondBestTaxon = $taxaInOrder[1];
        if ( defined $secondBestTaxon ) {
            my $secondBestCount = $taxonCounts{$secondBestTaxon};

            if ( $levelPrediction->count() < 2 * $secondBestCount ) {
                # Declare a tie if the winning taxon doesn't have at least twice as many votes as the runner-up.  
				# just consider this level unknown and bail
                last;
            }
        }

        # compute various ratios of the prediction vs. alternatives

        $levelPrediction->localMinProportion( $bestCount / $localTotal );
        $levelPrediction->localMaxProportion( ( $bestCount + $localUnknowns ) / $localTotal );

        my $globalUnknowns += $localUnknowns;
        $levelPrediction->globalMinProportion( $bestCount / $globalTotal );
        $levelPrediction->globalMaxProportion( ( $bestCount + $globalUnknowns ) / $globalTotal );

        # what if all of the "unknown" matches should have been the same?  Then an "alternate" classification might have won
        $levelPrediction->alternateLocalProportion( $localUnknowns / $localTotal );
        $levelPrediction->alternateGlobalProportion( $globalUnknowns / $globalTotal )
            ;    # note we already added the local unknowns to the global unknowns

        # it's possible that a completely different path has a higher global probability than this one,
        # but we'd never know because we pick the max _per level_ and never explore the other paths.

        # decide whether to bother continuing
        # if ( $bestLocalMinProportion < 0.5 ) { last; }
        # for now, print all the best labels until everything is unknown or there is a tie; sort out the confidence later

        push @levelPredictions, $levelPrediction;

        # remove any non-matching paths from consideration at the next level

        my @newTaxonomyVectors = ();
        for my $vec (@taxonomyVectors) {
            my $taxon = $vec->[$level];
            if ( defined $taxon && $taxon eq $bestTaxon ) { push @newTaxonomyVectors, $vec; }
        }
        @taxonomyVectors = @newTaxonomyVectors;

    }
    return \@levelPredictions;

}