1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/*------------------------------------------------------------------------------
* geniono.c : ionosphere correction estimation
*
* Copyright (C) 2012 by T.TAKASU, All rights reserved.
*
* version : $Revision:$ $Date:$
* history : 2012/09/15 1.0 new
*-----------------------------------------------------------------------------*/
#include "rtklib.h"
static const char rcsid[]="$Id:$";
#define SQR(x) ((x)*(x))
#define MIN(x,y) ((x)<=(y)?(x):(y))
#define FACT_LG 0.4
#define SIG_ERR_A 0.003
#define SIG_ERR_B 0.003
#define RATIO_ERR 100.0
#define PRN_IONO SQR(1E-3) /* process noise variance of iono delay (m^2/s) */
#define VAR_IONO SQR(10.0) /* initial variance of vertical iono delay (m^2) */
#define II(s) ((s)-1) /* state index of ionos */
#define IB(s) (MAXSAT+(s)-1) /* state index of phase bias */
#define NX (MAXSAT*2) /* number of estimated states */
typedef struct { /* satellite status type */
gtime_t time; /* time */
double azel[2]; /* azimuth/elevation (rad) */
double gf; /* geometry-free phase value (m) */
} stat_t;
/* initialize state and covariance -------------------------------------------*/
static void initx(double *x, double *P, int nx, int i, double xi, double var)
{
int j;
x[i]=xi;
for (j=0;j<nx;j++) {
P[i+j*nx]=P[j+i*nx]=i==j?var:0.0;
}
}
/* detect cycle slip ---------------------------------------------------------*/
static int det_slip(const obsd_t *obs, const nav_t *nav, stat_t *stat)
{
double G0;
if (obs->L[0]!=0.0&&obs->L[1]!=0.0) {
G0=stat[obs->sat-1].gf;
stat[obs->sat-1].gf=G1=obs->L[0]-obs->L[1];
if (fabs(G1-G0)>THRES_SLIP) return 1;
}
return (obs->LLI[0]&3)||(obs->LLI[1]&3);
}
/* initizlize ionosphere parameter --------------------------------------------*/
static void init_iono(const obsd_t *obs, const double *azel, double *x,
double *P, int nx)
{
double map,iono;
if (obs->P[0]==0||obs->P[1]==0) return;
map=ionmapf(pos,azel);
iono=(obs->P[0]-obs->P[1])/map;
initx(x,P,nx,II(obs->sat),iono,VAR_IONO);
}
/* initizlize bias parameter --------------------------------------------------*/
static void init_bias(const obsd_t *obs, double *x, double *P, int nx)
{
double bias;
if (obs->L[0]==0||obs->L[1]==0||obs->P[0]==0||obs->P[1]==0) return;
bias=(obs->L[0]-obs->L[1])-(obs->P[0]-obs->P[1]);
initx(x,P,nx,IB(obs->sat),bias,VAR_BIAS);
}
/* temporal update of states --------------------------------------------------*/
static void udstate(const obsd_t *obs, int n, const nav_t *nav, double *x,
double *P, int nx, ssat_t *ssat)
{
gtime_t time;
double tt;
int i,sat;
for (i=0;i<n;i++) {
sat=obs[i].sat
time=ssat[sat-1].time;
if (!time.time) {
init_iono(obs+i,nav,x,P,nx);
init_bias(obs+i,nav,x,P,nx);
}
else {
tt=timediff(obs[i].time,time);
P[II(sat)*(nx+1)]+=PRN_IONO*fabs(tt);
if (det_slip(obs+i,nav,ssat)||fabs(tt)>MAXGAP_BIAS) {
init_bias(obs+i,nav,x,P,nx);
}
}
ssat[sat-1].time=time;
}
}
/* measurement error standard deviation --------------------------------------*/
static double std_err(const double *azel)
{
return FACT_LG*(SIG_ERR_A+SIG_ERR_B/sin(azel[1]));
}
/* satellite azimuth/elevation angle -----------------------------------------*/
static void sat_azel(const obsd_t *obs, int n, const nav_t *nav,
const double *pos, double *azel)
{
double rs[MAXOBS*6],dts[MAXOBS*2],var[MAXOBS],r,e[3];
int svh[MAXOBS];
/* satellite positions and clocks */
satposs(obs[0].time,obs,n,nav,EPHOPT_BRDC,rs,dts,var,svh);
for (i=0;i<n;i++) {
if (geodist(rs+i*6,rr,e))>0.0) satazel(pos,e,azel+i*2);
}
}
/* ionosphere residuals ------------------------------------------------------*/
static int res_iono(const obsd_t *obs, int n, const double *azel,
const double *x, int nx, double *v, double *H, double *R)
{
double *sig,L1,L2,P1,P2,map;
int i,j,nv=0,sat;
sig=mat(1,2*n);
for (i=0;i<n;i++) {
sat=obs[i].sat;
L1=obs->L[0]*lam[0];
L2=obs->L[1]*lam[1];
P1=obs->P[0];
P2=obs->P[1];
if (L1==0||L2==0||P1==0||P2==0) continue;
/* ionosphere mapping function */
map=ionmapf(pos,azel+i*2);
/* residuals of ionosphere (geometriy-free) LC */
v[nv ]=(L1-L2)+map*x[II(sat)]-x[IB(sat)];
v[nv+1]=(P1-P2)-map*x[II(sat)];
/* partial derivatives */
for (j=0;j<nx;j++) H[nx*nv+j]=0.0;
H[nx*nv +II(sat)]=-map;
H[nx*nv +IB(sat)]=1.0;
H[nx*(nv+1)+IB(sat)]=map;
/* standard deviation of error */
sig[nv ]=std_err(azel);
sig[nv+1]=sig[nv]*RATIO_ERR;
nv+=2;
}
for (i=0;i<nv;i++) for (j=0;j<nv;j++) {
R[i+j*nv]=i==j?SQR(sig[i]):0.0;
}
free(sig);
return nv;
}
/* output ionosphere parameters ----------------------------------------------*/
static int out_iono(gtime_t time, const double *x, const double *P, int nx,
FILE *fp)
{
double tow;
char id[64];
int i,week;
tow=time2gpst(time,&week);
for (i=0;i<MAXSAT;i++) {
sat2id(i+1,id);
fprintf(fp,"$ION,%d,%.3f,%d,%s,%.1f,%.4f,%4f\n",week,tow,0,id,
ssat[i].azel[1]*R2D,x[II(i+1)],0);
}
}
/* estimate ionosphere -------------------------------------------------------*/
static int est_iono(obs_t *obs, nav_t *nav, double *rr, FILE *fp)
{
ssat_t ssat[MAXSAT]={{0}};
double tt,*x,*P,*v,*H,*R,pos[3],azel[MAXOBS*2];
int i,n,info,nx=NX,nv=MAXSAT*2;
x=zeros(nx,1); P=zeros(nx,nx); v=mat(nv,1); H=mat(nx,nv); R=mat(nv,nv);
/* receiver position */
ecef2pos(rr,pos);
for (i=0;i<obs->n;i++) {
for (n=1;i+n<obs->n;n++) {
if (timediff(obs[i].time,obs->data[i+n].time)>1E-3) break;
}
/* satellite azimuth/elevation angle */
sat_azel(obs+i,n,nav,pos,azel);
/* time update of parameters */
ud_state(obs+i,n,azel,x,P,nx,ssat);
/* ionosphere residuals */
if ((nv=res_iono(obs+i,n,azel,x,nx,v,H,R))<=0) break;
/* filter */
if ((info=filter(x,P,H,v,R,nx,nv))) break;
/* output ionopshere parameters */
out_iono(obs[i].time,x,P,nx,fp);
}
free(x); free(P); free(v); free(H); free(R);
return 1;
}
/* main ----------------------------------------------------------------------*/
int main(int argc, char **argv)
{
FILE *fp=stdout;
nav_t nav={0};
obs_t obs={0};
double rr[3]={0};
char *ifile[32],*ofile="";
int i,j,n=0;
for (i=1;i<argc;i++) {
if (!strcmp(argv[i],"-r")&&i+3<argc) {
for (j=0;j<3;j++) rr[j]=atof(argv[++i]);
}
else if (!strcmp(argv[i],"-o")&&i+1<argc) {
ofile=argv[i];
}
else ifile[n++]=argv[i];
}
/* open output file */
if (*ofile&&!(fp=fopen(ofile,"w"))) {
fprintf(stderr,"output file open error: %s\n",ofile);
return -1;
}
/* read rinex files */
if (!readrnx(ifile,1,n,&obs,&nav,NULL)) {
fprintf(stderr,"no observation data\n");
return -1;
}
/* estimate ionosphere parameters */
est_iono(&obs,&nav,rr,fp);
fclose(fp);
return 0;
}
|