1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/*------------------------------------------------------------------------------
* rcvdcb.c : estimate receiver dcb
*
* Copyright (C) 2012 by T.TAKASU, All rights reserved.
*
* version : $Revision:$ $Date:$
* history : 2012/09/15 1.0 new
*-----------------------------------------------------------------------------*/
#include "rtklib.h"
static const char rcsid[]="$Id:$";
#define MIN_EL (5.0*D2R)
#define FACT_LG 0.4
#define SIG_ERR_A 0.003
#define SIG_ERR_B 0.003
#define RATIO_ERR 100.0
#define THRES_LG 0.08
#define MAXGAP_IONO 300.0
#define MAXGAP_BIAS 300.0
#define STEC_RID "$STEC" /* stec record id */
#define PRN_IONO SQR(1E-3) /* process noise var of iono (m^2/s) */
#define PRN_IONR SQR(1E-9) /* process noise var of iono rate (m^2/s) */
#define VAR_IONO SQR(10.0) /* initial var of iono (m^2) */
#define VAR_IONR SQR(0.1) /* initial var of iono rate (m^2) */
#define VAR_BIAS SQR(10.0) /* initial var of bias (m^2) */
#define II(s) (((s)-1)*2) /* state index of ionos */
#define IB(s) (MAXSAT*2+(s)-1) /* state index of bias */
#define NX (MAXSAT*3) /* number of estimated states */
#define SQR(x) ((x)*(x))
/* type definition -----------------------------------------------------------*/
typedef struct { /* satellite status type */
gtime_t time; /* time */
double azel[2]; /* azimuth/elevation (rad) */
double LG,PG; /* geometry-free phase/code (m) */
} sstat_t;
typedef struct { /* ekf type */
int nx; /* number of states */
double *x,*P; /* state variable and covariance */
} ekf_t;
/* new ekf -------------------------------------------------------------------*/
static ekf_t *ekf_new(int nx)
{
ekf_t *ekf;
if (!(ekf=(ekf_t *)malloc(sizeof(ekf_t)))) return NULL;
ekf->nx=nx;
ekf->x=zeros(nx,1);
ekf->P=zeros(nx,nx);
return ekf;
}
/* free ekf ------------------------------------------------------------------*/
static void ekf_free(ekf_t *ekf)
{
if (!ekf) return;
free(ekf->x);
free(ekf->P);
free(ekf);
}
/* mapping function of ionosphere ---------------------------------------------*/
static double map_iono(const double *pos, const double *azel)
{
#if 0
return ionmapf(pos,azel);
#else
return 1.0;
#endif
}
/* measurement error standard deviation --------------------------------------*/
static double sig_err(const double *azel)
{
return FACT_LG*(SIG_ERR_A+SIG_ERR_B/sin(azel[1]));
}
/* initialize state and covariance -------------------------------------------*/
static void initx(double *x, double *P, int nx, int i, double xi, double var)
{
int j;
x[i]=xi;
for (j=0;j<nx;j++) {
P[i+j*nx]=P[j+i*nx]=i==j?var:0.0;
}
}
/* predict ekf ---------------------------------------------------------------*/
static void ekf_pred(ekf_t *ekf, double *F, int ix, int nx)
{
double *Q;
int i;
Q=mat(nx,ekf->nx);
/* x(i)=F*x(i) */
matmul("NN",nx,1,nx,1.0,F,ekf->x+ix,0.0,Q);
matcpy(ekf->x+ix,Q,nx,1);
/* P(i,:)=F*P(i,:); P(:,i)=P(:,i)*F' */
for (i=0;i<ekf->nx;i++) {
matmul("NN",nx,1,nx,1.0,F,ekf->P+ekf->nx*i+ix,0.0,Q);
matcpy(ekf->P+ekf->nx*i+ix,Q,nx,1);
}
matmul("NT",ekf->nx,nx,nx,1.0,ekf->P+ekf->nx*ix,F,0.0,Q);
matcpy(ekf->P+ekf->nx*ix,Q,ekf->nx,nx);
free(Q);
}
/* temporal update of states --------------------------------------------------*/
static void ud_state(const obsd_t *obs, int n, const nav_t *nav,
const double *pos, const double *azel, ekf_t *ekf,
sstat_t *sstat)
{
double P1,P2,L1,L2,PG,LG,tt,F[4]={0};
double iono,m_iono,c_iono=1.0-SQR(lam[1]/lam[0]);
int i,j,k,sat,slip;
for (i=0;i<n;i++) {
P1=obs[i].P[0]; L1=obs[i].L[0]*lam[0];
P2=obs[i].P[1]; L2=obs[i].L[1]*lam[1];
if (L1==0.0||L2==0.0||P1==0.0||P2==0.0||azel[i*2+1]<MIN_EL) continue;
sat=obs[i].sat;
tt=timediff(obs[i].time,sstat[sat-1].time);
LG=L1-L2;
PG=P1-P2;
slip=(obs[i].LLI[0]&3)||(obs[i].LLI[1]&3);
slip|=fabs(LG-sstat[sat-1].LG)>THRES_LG;
j=II(sat); k=IB(sat);
if (fabs(tt)>MAXGAP_IONO) {
m_iono=map_iono(pos,azel+i*2);
#if 1
iono=PG/c_iono/m_iono;
#else
iono=ionmodel(obs[i].time,nav->ion_gps,pos,azel+i*2);
#endif
initx(ekf->x,ekf->P,ekf->nx,j,iono,VAR_IONO);
initx(ekf->x,ekf->P,ekf->nx,j+1,0.0,VAR_IONR);
}
else {
#if 1
F[0]=F[3]=1.0; F[2]=tt;
ekf_pred(ekf,F,j,2);
#else
ekf->P[ j *(ekf->nx+1)]+=PRN_IONO*fabs(tt);
#endif
ekf->P[(j+1)*(ekf->nx+1)]+=PRN_IONR*fabs(tt);
}
if (tt>MAXGAP_BIAS||slip) {
initx(ekf->x,ekf->P,ekf->nx,k,LG+PG,VAR_BIAS);
}
sstat[sat-1].time=obs[i].time;
sstat[sat-1].azel[0]=azel[i*2];
sstat[sat-1].azel[1]=azel[i*2+1];
sstat[sat-1].LG=LG;
sstat[sat-1].PG=PG;
}
}
/* ionosphere residuals ------------------------------------------------------*/
static int res_iono(const obsd_t *obs, int n, const nav_t *nav,
const double *rs, const double *rr, const double *pos,
const double *azel, const pcv_t *pcv, const ekf_t *ekf,
double *phw, double *v, double *H, double *R)
{
double *sig,P1,P2,L1,L2,m_iono,c_iono=1.0-SQR(lam[1]/lam[0]);
double LG,PG,antdel[3]={0},dant[NFREQ]={0};
int i,j,nv=0,sat;
sig=mat(1,2*n);
for (i=0;i<n;i++) {
P1=obs[i].P[0]; L1=obs[i].L[0]*lam[0];
P2=obs[i].P[1]; L2=obs[i].L[1]*lam[1];
if (P1==0.0||P2==0.0||L1==0.0||L2==0.0||azel[1+i*2]<MIN_EL) continue;
sat=obs[i].sat;
/* ionosphere mapping function */
m_iono=map_iono(pos,azel+i*2);
/* ionosphere-LC model */
LG=-c_iono*m_iono*ekf->x[II(sat)]+ekf->x[IB(sat)];
PG= c_iono*m_iono*ekf->x[II(sat)];
/* receiver antenna phase center offset and variation */
if (pcv) {
antmodel(pcv,antdel,azel+i*2,dant);
LG+=dant[0]-dant[1];
PG+=dant[0]-dant[1];
}
/* phase windup correction */
windupcorr(obs[i].time,rs+i*6,rr,phw+obs[i].sat-1);
LG+=(lam[0]-lam[1])*phw[obs[i].sat-1];
/* C1->P1 DCB correction */
if (obs[i].code[0]==CODE_L1C) P1+=nav->cbias[obs[i].sat-1][1];
/* residuals of ionosphere (geometriy-free) LC */
v[nv ]=(L1-L2)-LG;
#if 0
v[nv+1]=(P1-P2)-PG;
#else
v[nv+1]=0.0;
#endif
for (j=0;j<ekf->nx*2;j++) H[ekf->nx*nv+j]=0.0;
H[ekf->nx*nv +II(sat)]=-c_iono*m_iono;
H[ekf->nx*nv +IB(sat)]=1.0;
H[ekf->nx*(nv+1)+II(sat)]=c_iono*m_iono;
sig[nv ]=sig_err(azel+i*2);
sig[nv+1]=RATIO_ERR*sig[nv];
nv+=2;
}
for (i=0;i<nv;i++) for (j=0;j<nv;j++) {
R[i+j*nv]=i==j?SQR(sig[i]):0.0;
}
free(sig);
return nv;
}
/* output ionosphere parameters ----------------------------------------------*/
static void out_iono(gtime_t time, const ekf_t *ekf, const sstat_t *sstat,
const double *pos, FILE *fp)
{
double tow;
char id[64];
int sat,week;
tow=time2gpst(time,&week);
for (sat=1;sat<=MAXSAT;sat++) {
if (sstat[sat-1].time.time==0||
timediff(time,sstat[sat-1].time)>MAXGAP_IONO) continue;
satno2id(sat,id);
fprintf(fp,"%s %4d %5.0f %-3s %7.3f %8.3f %8.4f %7.4f %6.1f %5.1f %7.3f %11.3f\n",
STEC_RID,week,tow,id,pos[0]*R2D,pos[1]*R2D,ekf->x[II(sat)],
sqrt(ekf->P[II(sat)*(ekf->nx+1)]),sstat[sat-1].azel[0]*R2D,
sstat[sat-1].azel[1]*R2D, sstat[sat-1].PG,sstat[sat-1].LG);
}
}
/* estimate receiver dcb -----------------------------------------------------*/
static int est_iono(obs_t *obs, nav_t *nav, double *rr, FILE *fp)
{
sstat_t sstat[MAXSAT]={{{0}}};
ekf_t *ekf;
gtime_t time;
double r,pos[3],rs[MAXOBS*6],dts[MAXOBS*2],var[MAXOBS],e[3],azel[2];
int i,j,n=0,info,nx=NX,nv=MAXSAT*2,svh[MAXOBS];
ekf=ekf_new(NX); v=mat(nv,1); H=mat(nx,nv); R=mat(nv,nv);
/* receiver position */
ecef2pos(rr,pos);
for (i=0;i<obs->n;i+=n) {
for (n=1;i+n<obs->n;n++) {
if (timediff(obs->data[i+n].time,obs->data[i].time)>1E-3) break;
}
time=obs->data[i].time;
/* satellite positions and clocks */
satposs(time,obs->data+i,n,nav,EPHOPT_BRDC,rs,dts,var,svh);
/* satellite azimuth/elevation angle */
for (j=0;j<n;j++) {
if ((r=geodist(rs+j*6,rr,e))<=0.0) continue;
satazel(pos,e,azel);
azel[j*2]=azel[1+j*2]=0.0;
}
}
return 1;
}
/* main ----------------------------------------------------------------------*/
int main(int argc, char **argv)
{
FILE *fp=stdout;
nav_t nav={0};
obs_t obs={0};
sta_t sta={{0}};
gtime_t ts={0},te={0};
double eps[6]={0},epe[6]={0},rr[3]={0},tint=30.0;
char *rfile[32],*ifile="";
int i,j,n=0;
for (i=1;i<argc;i++) {
if (!strcmp(argv[i],"-ts")&&i+2<argc) {
sscanf(argv[++i],"%lf/%lf/%lf",eps,eps+1,eps+2);
sscanf(argv[++i],"%lf:%lf:%lf",eps+3,eps+4,eps+5);
}
else if (!strcmp(argv[i],"-te")&&i+2<argc) {
sscanf(argv[++i],"%lf/%lf/%lf",epe,epe+1,epe+2);
sscanf(argv[++i],"%lf:%lf:%lf",epe+3,epe+4,epe+5);
}
else if (!strcmp(argv[i],"-ti")&&i+1<argc) {
tint=atof(argv[++i]);
}
else if (!strcmp(argv[i],"-r")&&i+3<argc) {
for (j=0;j<3;j++) rr[j]=atof(argv[++i]);
}
else if (!strcmp(argv[i],"-i")&&i+1<argc) ifile=argv[++i];
else rfile[n++]=argv[i];
}
if (eps[2]>=1.0) ts=epoch2time(eps);
if (epe[2]>=1.0) te=epoch2time(epe);
/* read rinex obs/nav */
for (i=0;i<n;i++) {
fprintf(stderr,"reading ... %s\n",rfile[i]);
readrnxt(rfile[i],1,ts,te,0.0,&obs,&nav,&sta);
if (norm(sta.pos,3)>0.0) matcpy(rr,sta.pos,3,1);
}
if (!sortobs(&obs)) {
fprintf(stderr,"no observation data\n");
return -1;
}
uniqnav(&nav);
/* read ionex file */
if (*ifile) readionex(ifile,&nav);
/* estimate receiver dcb */
est_rcvdcb(&obs,&nav,rr,fp);
fclose(fp);
return 0;
}
|