1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/** @file
Various utility functions for use by device drivers.
Copyright (C) 2015 Tommy Vestermark
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
*/
#ifndef INCLUDE_BIT_UTIL_H_
#define INCLUDE_BIT_UTIL_H_
#include <stdint.h>
/// Reverse (reflect) the bits in an 32 bit byte.
///
/// @param x input byte
/// @return bit reversed byte
uint32_t reverse32(uint32_t x);
/// Reverse (reflect) the bits in an 8 bit byte.
///
/// @param x input byte
/// @return bit reversed byte
uint8_t reverse8(uint8_t x);
/// Reflect (reverse LSB to MSB) each byte of a number of bytes.
///
/// @param message bytes of message data
/// @param num_bytes number of bytes to reflect
void reflect_bytes(uint8_t message[], unsigned num_bytes);
/// Reflect (reverse LSB to MSB) each nibble in an 8 bit byte, preserves nibble order.
///
/// @param x input byte
/// @return reflected nibbles
uint8_t reflect4(uint8_t x);
/// Reflect (reverse LSB to MSB) each nibble in a number of bytes.
///
/// @param message bytes of nibble message data
/// @param num_bytes number of bytes to reflect
void reflect_nibbles(uint8_t message[], unsigned num_bytes);
/// Unstuff nibbles with 1-bit separator (4B1S) to bytes, returns number of successfully unstuffed nibbles.
///
/// @param message bytes of message data
/// @param offset_bits start offset of message in bits
/// @param num_bits message length in bits
/// @param dst target buffer for extracted nibbles, at least num_bits/5 size
/// @return number of successfully unstuffed nibbles.
unsigned extract_nibbles_4b1s(uint8_t const *message, unsigned offset_bits, unsigned num_bits, uint8_t *dst);
/// UART "8n1" (10-to-8) decoder with 1 start bit (0), no parity, 1 stop bit (1), LSB-first bit-order.
///
/// @param message bytes of message data
/// @param offset_bits start offset of message in bits
/// @param num_bits message length in bits
/// @param dst target buffer for extracted bytes, at least num_bits/10 size
/// @return number of successful decoded bytes
unsigned extract_bytes_uart(uint8_t const *message, unsigned offset_bits, unsigned num_bits, uint8_t *dst);
/// UART "8o1" (11-to-8) decoder with 1 start bit (1), odd parity, 1 stop bit (0), MSB-first bit-order.
///
/// @param message bytes of message data
/// @param offset_bits start offset of message in bits
/// @param num_bits message length in bits
/// @param dst target buffer for extracted bytes, at least num_bits/11 size
/// @return number of successful decoded bytes
unsigned extract_bytes_uart_parity(uint8_t const *message, unsigned offset_bits, unsigned num_bits, uint8_t *dst);
/// Decode symbols to bits.
///
/// @param message bytes of message data
/// @param offset_bits start offset of message in bits
/// @param num_bits message length in bits
/// @param zero symbol for zero bit, bits MSB aligned, count in LSB
/// @param one symbol for one bit, bits MSB aligned, count in LSB
/// @param sync symbol for sync bit, ignored at start, terminates at end
/// @param dst target buffer for extracted bits, at least num_bits/symbol_x_len size
/// @return number of successful decoded bits
unsigned extract_bits_symbols(uint8_t const *message, unsigned offset_bits, unsigned num_bits, uint32_t zero, uint32_t one, uint32_t sync, uint8_t *dst);
/// CRC-4.
///
/// @param message array of bytes to check
/// @param nBytes number of bytes in message
/// @param polynomial CRC polynomial
/// @param init starting crc value
/// @return CRC value
uint8_t crc4(uint8_t const message[], unsigned nBytes, uint8_t polynomial, uint8_t init);
/// CRC-7.
///
/// @param message array of bytes to check
/// @param nBytes number of bytes in message
/// @param polynomial CRC polynomial
/// @param init starting crc value
/// @return CRC value
uint8_t crc7(uint8_t const message[], unsigned nBytes, uint8_t polynomial, uint8_t init);
/// Generic Cyclic Redundancy Check CRC-8.
///
/// Example polynomial: 0x31 = x8 + x5 + x4 + 1 (x8 is implicit)
/// Example polynomial: 0x80 = x8 + x7 (a normal bit-by-bit parity XOR)
///
/// @param message array of bytes to check
/// @param nBytes number of bytes in message
/// @param polynomial byte is from x^7 to x^0 (x^8 is implicitly one)
/// @param init starting crc value
/// @return CRC value
uint8_t crc8(uint8_t const message[], unsigned nBytes, uint8_t polynomial, uint8_t init);
/// "Little-endian" Cyclic Redundancy Check CRC-8 LE
/// Input and output are reflected, i.e. least significant bit is shifted in first.
///
/// @param message array of bytes to check
/// @param nBytes number of bytes in message
/// @param polynomial CRC polynomial
/// @param init starting crc value
/// @return CRC value
uint8_t crc8le(uint8_t const message[], unsigned nBytes, uint8_t polynomial, uint8_t init);
/// CRC-16 LSB.
/// Input and output are reflected, i.e. least significant bit is shifted in first.
/// Note that poly and init already need to be reflected.
///
/// @param message array of bytes to check
/// @param nBytes number of bytes in message
/// @param polynomial CRC polynomial
/// @param init starting crc value
/// @return CRC value
uint16_t crc16lsb(uint8_t const message[], unsigned nBytes, uint16_t polynomial, uint16_t init);
/// CRC-16.
///
/// @param message array of bytes to check
/// @param nBytes number of bytes in message
/// @param polynomial CRC polynomial
/// @param init starting crc value
/// @return CRC value
uint16_t crc16(uint8_t const message[], unsigned nBytes, uint16_t polynomial, uint16_t init);
/// Digest-8 by "LFSR-based Toeplitz hash", bits MSB to LSB.
///
/// @param message bytes of message data
/// @param bytes number of bytes to digest
/// @param gen key stream generator, needs to includes the MSB for ROR if the LFSR is rolling
/// @param key initial key
/// @return digest value
uint8_t lfsr_digest8(uint8_t const message[], unsigned bytes, uint8_t gen, uint8_t key);
/// Digest-8 by "LFSR-based Toeplitz hash", byte reversed, bits MSB to LSB.
///
/// @param message bytes of message data, read in reverse
/// @param bytes number of bytes to digest
/// @param gen key stream generator, needs to includes the MSB for ROR if the LFSR is rolling
/// @param key initial key
/// @return digest value
uint8_t lfsr_digest8_reverse(uint8_t const message[], int bytes, uint8_t gen, uint8_t key);
/// Digest-8 by "LFSR-based Toeplitz hash", byte reversed, bit reflect (LSB to MSB).
///
/// @param message bytes of message data, read in reverse
/// @param bytes number of bytes to digest
/// @param gen key stream generator, needs to includes the LSB for ROL if the LFSR is rolling
/// @param key initial key
/// @return digest value
uint8_t lfsr_digest8_reflect(uint8_t const message[], int bytes, uint8_t gen, uint8_t key);
/// Digest-16 by "LFSR-based Toeplitz hash".
///
/// @param message bytes of message data
/// @param bytes number of bytes to digest
/// @param gen key stream generator, needs to includes the MSB if the LFSR is rolling
/// @param key initial key
/// @return digest value
uint16_t lfsr_digest16(uint8_t const message[], unsigned bytes, uint16_t gen, uint16_t key);
/// Apply CCITT data whitening to a buffer.
///
/// The CCITT data whitening process is built around a 9-bit Linear Feedback Shift Register (LFSR).
/// The LFSR polynomial is the same polynomial as for IBM data whitening (x9 + x5 + 1).
/// The initial value of the data whitening key is set to all ones, 0x1FF.
/// s.a. https://www.nxp.com/docs/en/application-note/AN5070.pdf s.5.2
///
/// @param buffer bytes of message data
/// @param buffer_size number of bytes to process
void ccitt_whitening(uint8_t *buffer, unsigned buffer_size);
/// Apply IBM data whitening to a buffer.
///
/// The IBM data whitening process is built around a 9-bit Linear Feedback Shift Register (LFSR).
/// CCITT data whitening processes data packets byte-per-byte, whereas IBM data
/// whitening processes the data packet bit-per-bit
/// Same, the initial value of the data whitening key is set to all ones, 0x1FF.
/// s.a. https://www.nxp.com/docs/en/application-note/AN5070.pdf s.5.1
///
/// @param buffer bytes of message data
/// @param buffer_size number of bytes to process
void ibm_whitening(uint8_t *buffer, unsigned buffer_size);
/// Compute bit parity of a single byte (8 bits).
///
/// @param byte single byte to check
/// @return 1 odd parity, 0 even parity
int parity8(uint8_t byte);
/// Compute bit parity of a number of bytes.
///
/// @param message bytes of message data
/// @param num_bytes number of bytes to sum
/// @return 1 odd parity, 0 even parity
int parity_bytes(uint8_t const message[], unsigned num_bytes);
/// Compute XOR (byte-wide parity) of a number of bytes.
///
/// @param message bytes of message data
/// @param num_bytes number of bytes to sum
/// @return summation value, per bit-position 1 odd parity, 0 even parity
uint8_t xor_bytes(uint8_t const message[], unsigned num_bytes);
/// Compute Addition of a number of bytes.
///
/// @param message bytes of message data
/// @param num_bytes number of bytes to sum
/// @return summation value
int add_bytes(uint8_t const message[], unsigned num_bytes);
/// Compute Addition of a number of nibbles (byte wise).
///
/// @param message bytes (of two nibbles) of message data
/// @param num_bytes number of bytes to sum
/// @return summation value
int add_nibbles(uint8_t const message[], unsigned num_bytes);
#endif /* INCLUDE_BIT_UTIL_H_ */
|