1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
/*
* rtl_time.c
*
* architecture-dependent clock support
*
* Written by Michael Barabanov
* Copyright VJY Associates 1998-1999
* Released under the terms of the GPL
*
*/
#include <rtl_conf.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <asm/smp.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/system.h>
#include <linux/sched.h>
#include <linux/timex.h>
#include <linux/mc146818rtc.h>
#include <rtl.h>
#include <rtl_core.h>
#include <rtl_debug.h>
#include <rtl_sync.h>
#include <rtl_time.h>
/* #define CONFIG_RTL_FAST_8254 */
hrtime_t _gethrtime(struct rtl_clock *c)
{
return gethrtime();
}
struct rtl_clock _i8254_clock;
#ifdef __SMP__
struct rtl_clock _apic_clock[NR_CPUS];
#endif
extern void (*kd_mksound)(unsigned int hz, unsigned int ticks);
static hrtime_t (*rtl_do_get_time)(void);
static hrtime_t hrtime_resolution;
static long LATCH_NS;
static long MAX_LATCH_ONESHOT;
/* getting global time from 8254 */
#define READ_CNT0(var) \
{ var = inb(0x40); var |= (inb(0x40) << 8); }
#define READ_CNT2(var) \
{ var = inb(0x42); var |= (inb(0x42) << 8); }
#define LATCH_CNT0() \
outb(0xd2, 0x43);
#define LATCH_CNT0_AND_2() \
outb(0xda, 0x43);
#define LATCH_CNT2() \
outb(0xd8, 0x43);
#define WRITE_COUNTER_ZERO16(x) { \
outb_p(x&0xff,0x40); outb_p((x>>8)&0xff,0x40);\
clock_counter =x; \
}
#define WRITE_COUNTER_ZERO8(x) { \
outb_p(x&0xff,0x40); \
clock_counter =x; \
}
#ifdef CONFIG_RTL_FAST_8254
#define WRITE_COUNTER_ZERO_ONESHOT(x) WRITE_COUNTER_ZERO8(x)
#else
#define WRITE_COUNTER_ZERO_ONESHOT(x) WRITE_COUNTER_ZERO16(x)
#endif
static volatile int last_c2;
unsigned long scaler_8254_to_hrtime; /* =8380965 ns*100 */
unsigned long scaler_hrtime_to_8254;
#define LATCH2 0x8000
#ifdef __SMP__
static spinlock_t lock8254;
/* static spinlock_t rtl_time_lock; */
#define RTL_SPIN_LOCK rtl_time_lock
#endif
hrtime_t gethrtime(void)
{
return rtl_do_get_time();
}
hrtime_t gethrtimeres(void)
{
return hrtime_resolution;
}
hrtime_t base_time;
hrtime_t last_8254_time;
long offset_time;
hrtime_t global_8254_gettime (void)
{
register unsigned int c2;
int flags;
long t;
rtl_spin_lock_irqsave (&lock8254, flags);
LATCH_CNT2();
READ_CNT2(c2);
offset_time += ((c2 < last_c2) ? (last_c2 - c2) / 2 : (last_c2 - c2 + LATCH2) / 2);
last_c2 = c2;
if (offset_time >= CLOCK_TICK_RATE) {
offset_time -= CLOCK_TICK_RATE;
base_time += HRTICKS_PER_SEC;
}
#if HRTICKS_PER_SEC != CLOCK_TICK_RATE
__asm__("shl $10, %%eax\n\t"
"mul %%ebx\n\t"
:"=d" (t) : "b" (scaler_8254_to_hrtime), "a" (offset_time));
#else
t = offset_time;
#endif
last_8254_time = base_time + t;
rtl_spin_unlock_irqrestore (&lock8254, flags);
return last_8254_time;
}
/* getting global time from Pentium TSC */
static unsigned long scaler_pentium_to_hrtime;
long rtl_delay_mult;
int can_change_latch2;
int I8253_channel2_free(void)
{
return can_change_latch2;
}
hrtime_t pent_gettime(void)
{
hrtime_t t;
/* time = counter * scaler_pentium_to_hrtime / 2^32 * 2^5; */
/* Why 2^5? Because the slowest Pentiums run at 60 MHz */
__asm__("rdtsc\n\t"
"mov %%edx, %%ecx\n\t"
"mul %%ebx\n\t" /* multiply the low 32 bits of the counter by the scaler_pentium */
"mov %%ecx, %%eax\n\t"
"mov %%edx, %%ecx\n\t" /* save the high 32 bits of the product */
"mul %%ebx\n\t" /* now the high 32 bits of the counter */
"add %%ecx, %%eax\n\t"
"adc $0, %%edx\n\t"
"shld $5, %%eax, %%edx\n\t"
"shl $5, %%eax\n\t"
:"=A" (t) : "b" (scaler_pentium_to_hrtime) : "cx");
return t;
}
/* TODO I commented these out here and where used, Don't think we need it
except on 486 ! Didn't want to debug */
//static unsigned long (*save_do_gettimeoffset)(void);
/* we can't allow Linux to read the clocks; it must use this function */
//static unsigned long do_rt_gettimeoffset(void)
//{
// return 0; /* TODO: take code from 2.0 version */
//}
static void rtl_kd_nosound(unsigned long ignored)
{
int flags;
rtl_no_interrupts(flags);
outb(inb_p(0x61) & 0xfd, 0x61);
rtl_restore_interrupts(flags);
}
static void rtl_kd_mksound(unsigned int hz, unsigned int ticks)
{
static struct timer_list sound_timer = { NULL, NULL, 0, 0,
rtl_kd_nosound };
unsigned int count = 0;
if (hz > 20 && hz < 32767)
count = 1193180 / hz;
cli();
del_timer(&sound_timer);
if (count) {
int flags;
rtl_spin_lock_irqsave (&lock8254, flags);
outb_p(inb_p(0x61)|3, 0x61);
if (can_change_latch2) {
outb_p(0xB6, 0x43);
outb_p(count & 0xff, 0x42);
outb((count >> 8) & 0xff, 0x42);
}
rtl_spin_unlock_irqrestore (&lock8254, flags);
if (ticks) {
sound_timer.expires = jiffies+ticks;
add_timer(&sound_timer);
}
} else
rtl_kd_nosound(0);
sti();
return;
}
static void (*save_kd_mksound)(unsigned int hz, unsigned int ticks);
static void uninit_hrtime (void){
// do_gettimeoffset = save_do_gettimeoffset;
rtl_kd_mksound(0, 0);
kd_mksound = save_kd_mksound;
}
#define wait_value(x) do {; } while ((inb(0x61) & 0x20) != (x))
#define wait_cycle() do { wait_value(0); wait_value(0x20); } while (0)
#define CLATCH (1024 * 32)
#define NLOOPS 50
#ifdef __SMP__
static unsigned long scaler_hrtime_to_apic;
/* this is defined in arch/i386/kernel/smp.c */
#define APIC_DIVISOR 16
static long apic_ticks_per_sec;
#endif
/* scaler_pentium == 2^32 / (2^5 * (cpu clocks per ns)) */
static void do_calibration(void)
{
#ifdef __SMP__
long temp = 0;
long a1 = 0;
long a2 = 0;
long save_apic = 0;
long result_apic;
#endif
long long t1;
long long t2;
long pps;
int j;
long result;
rtl_irqstate_t flags;
rtl_no_interrupts(flags);
#ifdef __SMP__
if (smp_found_config) {
save_apic = apic_read(APIC_TMICT);
apic_write(APIC_TMICT, 1000000000/APIC_DIVISOR);
}
#endif
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
outb_p(0xb6, 0x43); /* binary, mode 3, LSB/MSB, ch 2 */
outb(CLATCH & 0xff, 0x42); /* LSB of count */
outb(CLATCH >> 8, 0x42); /* MSB of count */
wait_cycle();
rdtscll(t1);
#ifdef __SMP__
if (smp_found_config) {
a1 = apic_read(APIC_TMCCT);
}
#endif
for (j = 0; j < NLOOPS; j++) {
wait_cycle();
}
rdtscll(t2);
#ifdef __SMP__
if (smp_found_config) {
a2 = apic_read(APIC_TMCCT);
}
result_apic = a1 - a2;
#endif
result = t2 - t1;
#ifdef __SMP__
if (smp_found_config) {
temp = apic_read(APIC_TMICT);
apic_write(APIC_TMICT, save_apic);
}
#endif
rtl_restore_interrupts(flags);
pps = muldiv (result, CLOCK_TICK_RATE, CLATCH * NLOOPS);
scaler_pentium_to_hrtime = muldiv (1 << 27, HRTICKS_PER_SEC, pps);
#ifdef __SMP__
if (smp_found_config) {
temp = muldiv (result_apic, CLOCK_TICK_RATE, CLATCH * NLOOPS);
#if HRTICKS_PER_SEC == NSECS_PER_SEC
scaler_hrtime_to_apic = muldiv (temp, 1 << 31, HRTICKS_PER_SEC / 2);
#else
scaler_hrtime_to_apic = muldiv (temp, 1 << (31 - 10), HRTICKS_PER_SEC / 2);
#endif
/* printk("sca=%ld, temp=%ld resapic=%ld\n", scaler_hrtime_to_apic, temp, result_apic); */
apic_ticks_per_sec = temp;
/* printk("pps apic=%ld %ld\n", temp * APIC_DIVISOR, scaler_hrtime_to_apic); */
}
#endif
/* printk("pps=%ld\n", pps); */
}
static void init_hrtime (void)
{
int flags;
kd_mksound(0, 0); /* clear the possibly pending sound timer */
save_kd_mksound = kd_mksound;
kd_mksound = rtl_kd_mksound;
#if HRTICKS_PER_SEC != CLOCK_TICK_RATE
scaler_8254_to_hrtime = muldiv (HRTICKS_PER_SEC, 1 << 22, CLOCK_TICK_RATE);
scaler_hrtime_to_8254 = muldiv (CLOCK_TICK_RATE, 1 << 31, HRTICKS_PER_SEC / 2);
LATCH_NS = muldiv (LATCH, HRTICKS_PER_SEC, CLOCK_TICK_RATE);
#else
LATCH_NS = LATCH;
#endif
MAX_LATCH_ONESHOT = LATCH_NS * 3 / 4;
#ifdef CONFIG_RTL_FAST_8254
MAX_LATCH_ONESHOT = muldiv (250, HRTICKS_PER_SEC, CLOCK_TICK_RATE);
#endif
rtl_no_interrupts(flags);
if (boot_cpu_data.x86_capability & X86_FEATURE_TSC) {
can_change_latch2 = 1;
do_calibration();
rtl_do_get_time = pent_gettime;
hrtime_resolution = 32;
/* printk("scaler_pentium_to_hrtime = %d\n", (int) scaler_pentium_to_hrtime); */
} else {
can_change_latch2 = 0;
/* program channel 2 of the 8254 chip for periodic counting */
outb_p(0xb6, 0x43); /* binary, mode 3, LSB/MSB, ch 2 */
outb_p(LATCH2 & 0xff, 0x42);
outb_p((LATCH2 >> 8) & 0xff, 0x42);
outb_p((inb_p(0x61) & 0xfd) | 1, 0x61); /* shut up the speaker and enable counting */
LATCH_CNT2();
READ_CNT2(last_c2);
offset_time = 0;
base_time = 0;
rtl_do_get_time = global_8254_gettime;
hrtime_resolution = HRTICKS_PER_SEC / CLOCK_TICK_RATE;
}
/* TODO What's going on here ? I don't think we need this VY*/
// save_do_gettimeoffset = do_gettimeoffset;
// do_gettimeoffset = do_rt_gettimeoffset;
/*
current_time.tv_sec = xtime.tv_sec;
current_time.tv_nsec = 0;
rtl_time_offset = 0;
rtl_time_offset = rtl_timespec_to_rtime(¤t_time) - rtl_get_time();
*/
rtl_restore_interrupts(flags);
}
void rtl_clock_clear(clockid_t h)
{
h->uninit(h);
}
static hrtime_t periodic_gethrtime (struct rtl_clock *c) { return c->value; }
static hrtime_t oneshot_gethrtime (struct rtl_clock *c) { return gethrtime(); }
/* the 8254 clock */
static unsigned int clock_counter; /* current latch value */
static inline long RTIME_to_8254_ticks(long t)
{
#if HRTICKS_PER_SEC != CLOCK_TICK_RATE
int dummy;
__asm__("mull %2"
:"=a" (dummy), "=d" (t)
:"g" (scaler_hrtime_to_8254), "0" (t)
);
#endif
return (t);
}
void _8254_checklinuxirq (void)
{
/* if (test_and_set_bit(0, &checklinuxirq[clock])) {
return;
}
*/
/* TODO must periodically call gethrtime if it's based on i8254 */
/* or maybe not (for speed reasons)
* anyway, here's a way to do it:
* set a bit on every gethrtime();
* clear it in periodic irq
* periodically check: if it's not set, gethrtime()
*
* alternatively, use the fact that in periodic
* mode we can add periods to 8254 ticks count
*/
hrtime_t t;
if (rtl_do_get_time == &pent_gettime) {
t = _i8254_clock.gethrtime(&_i8254_clock);
} else {
t = last_8254_time;
}
if (t > _i8254_clock.arch.linux_time) {
_i8254_clock.arch.linux_time += LATCH_NS;
rtl_global_pend_irq (0);
if (t > _i8254_clock.arch.linux_time) {
ifdebug(TIME) {
rtl_printf("RTL: lost jiffies:");
rtl_printf("\n");
}
_i8254_clock.arch.linux_time = t;
_i8254_clock.arch.linux_time += MAX_LATCH_ONESHOT;
}
}
if (!_i8254_clock.arch.istimerset) {
_i8254_clock.settimer (&_i8254_clock, MAX_LATCH_ONESHOT);
}
/* clear_bit (0, &checklinuxirq [clock]); */
}
static unsigned int _8254_irq(unsigned int irq, struct pt_regs *regs)
{
int flags;
rtl_spin_lock_irqsave (&lock8254, flags);
if (_i8254_clock.mode == RTL_CLOCK_MODE_PERIODIC) {
if (test_and_set_bit(0, &_i8254_clock.arch.count_irqs)) {
_i8254_clock.value += _i8254_clock.resolution;
}
} else {
_i8254_clock.arch.istimerset = 0;
}
rtl_hard_enable_irq(0);
rtl_spin_unlock_irqrestore (&lock8254, flags);
_i8254_clock.handler(regs);
if (rtl_rt_system_is_idle()) {
_8254_checklinuxirq();
}
return 0;
}
static int _8254_setperiodic (clockid_t c, hrtime_t interval)
{
int flags;
long t;
rtl_spin_lock_irqsave (&lock8254, flags);
t = RTIME_to_8254_ticks (interval);
if(t < 10) {
t = LATCH;
printk("RTL settimer set too low!\n");
}
WRITE_COUNTER_ZERO16 (t);
_i8254_clock.value = gethrtime();
_i8254_clock.resolution = muldiv (t, HRTICKS_PER_SEC, CLOCK_TICK_RATE);
_i8254_clock.arch.istimerset = 1;
rtl_spin_unlock_irqrestore(&lock8254, flags);
return 0;
}
static int _8254_setoneshot (clockid_t c, hrtime_t interval)
{
rtl_irqstate_t flags;
long t;
rtl_spin_lock_irqsave (&lock8254, flags);
if (interval > MAX_LATCH_ONESHOT) {
interval = MAX_LATCH_ONESHOT;
}
t = RTIME_to_8254_ticks (interval);
if (t < 1) {
t = 1;
}
WRITE_COUNTER_ZERO_ONESHOT(t);
_i8254_clock.arch.istimerset = 1;
rtl_spin_unlock_irqrestore(&lock8254, flags);
return 0;
}
int _8254_settimermode (struct rtl_clock *c, int mode)
{
if (mode == _i8254_clock.mode) {
return 0;
}
if (mode == RTL_CLOCK_MODE_PERIODIC) {
outb_p(0x30, 0x43);/* 8254, channel 0, mode 0, lsb+msb */
outb_p(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */
_i8254_clock.mode = mode;
_i8254_clock.gethrtime = periodic_gethrtime;
_i8254_clock.settimer = _8254_setperiodic;
_i8254_clock.arch.count_irqs = 0;
} else if (mode == RTL_CLOCK_MODE_ONESHOT) {
#ifdef CONFIG_RTL_FAST_8254
outb_p(0x10, 0x43); /* 8254, channel 0, mode 0, lsb */
#else
outb_p(0x30, 0x43); /* 8254, channel 0, mode 0, lsb+msb */
#endif
_i8254_clock.mode = mode;
_i8254_clock.gethrtime = oneshot_gethrtime;
_i8254_clock.settimer = _8254_setoneshot;
_i8254_clock.resolution = HRTICKS_PER_SEC / CLOCK_TICK_RATE;
} else {
return -EINVAL;
}
return 0;
}
static int _8254_init (clockid_t clock)
{
int flags;
rtl_no_interrupts (flags);
_i8254_clock.arch.linux_time = gethrtime() + LATCH_NS;
rtl_request_global_irq(0, _8254_irq);
_8254_settimermode (clock, RTL_CLOCK_MODE_ONESHOT);
_i8254_clock.settimer (clock, HRTIME_INFINITY);
rtl_restore_interrupts (flags);
return 0;
}
static void _8254_uninit (clockid_t clock)
{
int flags;
if (clock -> mode == RTL_CLOCK_MODE_UNINITIALIZED) {
return;
}
clock->handler = RTL_CLOCK_DEFAULTS.handler;
rtl_spin_lock_irqsave (&lock8254, flags);
outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
WRITE_COUNTER_ZERO16(LATCH);
rtl_free_global_irq(0);
clock -> mode = RTL_CLOCK_MODE_UNINITIALIZED;
rtl_spin_unlock_irqrestore (&lock8254, flags);
}
/* sort of a constructor */
int rtl_create_clock_8254(void)
{
_i8254_clock = RTL_CLOCK_DEFAULTS;
_i8254_clock.init = _8254_init;
_i8254_clock.uninit = _8254_uninit;
_i8254_clock.settimermode = _8254_settimermode;
return 0;
}
#ifdef __SMP__
/* APIC clocks */
#define LOCAL_TIMER_VECTOR 0x41
static long RTIME_to_apic_ticks(long t)
{
int dummy;
#if HRTICKS_PER_SEC != NSECS_PER_SEC
t <<= 10;
#endif
__asm__("mull %2"
:"=a" (dummy), "=d" (t)
:"g" (scaler_hrtime_to_apic), "0" (t)
);
return (t);
}
static inline int rtl_apic_write_initial_count (long count)
{
unsigned int tmp_value;
tmp_value = apic_read(APIC_TMICT);
apic_write (APIC_TMICT, count);
return 0;
}
static int apic_setoneshot (clockid_t apic, hrtime_t interval)
{
long t;
if (apic != &_apic_clock[rtl_getcpuid()]) {
rtl_printf("apic_setoneshot crosses CPUs!\n");
return -1;
}
if (interval > MAX_LATCH_ONESHOT) {
interval = MAX_LATCH_ONESHOT;
}
t = RTIME_to_apic_ticks (interval);
if (t < 1) {
t = 1;
}
rtl_apic_write_initial_count (t);
apic->arch.istimerset = 1;
return 0;
}
static int apic_setperiodic (clockid_t apic, hrtime_t interval)
{
long t;
t = RTIME_to_apic_ticks (interval);
rtl_apic_write_initial_count (t);
apic->value = gethrtime();
apic->resolution = muldiv (t, NSECS_PER_SEC, apic_ticks_per_sec);
apic->arch.istimerset = 1;
return 0;
}
int apic_settimermode (struct rtl_clock *apic, int mode)
{
unsigned long lvtt1_value;
unsigned int tmp_value;
if (apic != &_apic_clock[rtl_getcpuid()]) {
rtl_printf("apic_settimermode crosses CPUs!\n");
return -EINVAL;
}
if (mode == apic->mode) {
return 0;
}
if (mode == RTL_CLOCK_MODE_PERIODIC) {
apic -> mode = mode;
apic -> gethrtime = periodic_gethrtime;
apic -> settimer = apic_setperiodic;
tmp_value = apic_read(APIC_LVTT);
lvtt1_value = APIC_LVT_TIMER_PERIODIC | LOCAL_TIMER_VECTOR;
apic_write(APIC_LVTT , lvtt1_value);
} else if (mode == RTL_CLOCK_MODE_ONESHOT) {
apic -> mode = mode;
apic -> gethrtime = oneshot_gethrtime;
apic -> settimer = apic_setoneshot;
apic -> resolution = hrtime_resolution;
tmp_value = apic_read(APIC_LVTT);
lvtt1_value = LOCAL_TIMER_VECTOR;
apic_write(APIC_LVTT , lvtt1_value);
} else {
return -EINVAL;
}
return 0;
}
static void apic_checklinuxirq (void)
{
DECLARE_CPUID(cpu_id);
clockid_t apic = &_apic_clock[cpu_id];
hrtime_t t = apic->gethrtime(apic);
if (t > apic->arch.linux_time) {
rtl_local_pend_vec (LOCAL_TIMER_VECTOR,cpu_id);
apic->arch.linux_time += LATCH_NS;
if (t > apic->arch.linux_time) {
ifdebug(TIME) {
rtl_printf("RTL: lost SMP jiffies:");
rtl_printf("\n");
}
apic->arch.linux_time = t;
apic->arch.linux_time += MAX_LATCH_ONESHOT;
}
}
if (!apic -> arch.istimerset) {
apic->settimer (apic, MAX_LATCH_ONESHOT);
}
}
static unsigned int apic_timer_irq(struct pt_regs *r)
{
DECLARE_CPUID(cpu_id);
clockid_t apic = &_apic_clock[cpu_id];
if (apic->mode == RTL_CLOCK_MODE_PERIODIC) {
apic->value += apic->resolution;
} else {
apic->arch.istimerset = 0;
}
apic -> handler (r);
if (rtl_rt_system_is_idle()) {
apic_checklinuxirq();
}
return 0;
}
int volatile apic_init_flag;
static unsigned int apic_init_irq(struct pt_regs *r)
{
DECLARE_CPUID(cpu_id);
CLOCK_APIC->settimermode (CLOCK_APIC, RTL_CLOCK_MODE_ONESHOT);
CLOCK_APIC->settimer (CLOCK_APIC, HRTIME_INFINITY);
rtl_free_local_irq (LOCAL_TIMER_VECTOR, cpu_id);
clear_bit (0, &apic_init_flag);
return 0;
}
/* apics are initialized to the oneshot mode by default */
static int apic_clock_init (clockid_t clk)
{
int flags;
DECLARE_CPUID(cpu_id);
rtl_no_interrupts (flags);
clk->arch.linux_time = gethrtime() + LATCH_NS;
if (clk->arch.apic_cpu == cpu_id) {
clk->settimermode (clk, RTL_CLOCK_MODE_ONESHOT);
clk->settimer (clk, HRTIME_INFINITY);
} else {
set_bit (0, &apic_init_flag);
rtl_request_local_irq (LOCAL_TIMER_VECTOR, apic_init_irq, clk->arch.apic_cpu);
while (test_bit(0, &apic_init_flag));
}
rtl_request_local_irq (LOCAL_TIMER_VECTOR, apic_timer_irq, clk->arch.apic_cpu);
rtl_restore_interrupts (flags);
return 0;
}
static unsigned int apic_uninit_irq(struct pt_regs *r)
{
DECLARE_CPUID(cpu_id);
CLOCK_APIC->settimermode (CLOCK_APIC, RTL_CLOCK_MODE_PERIODIC);
CLOCK_APIC->settimer (CLOCK_APIC, LATCH_NS);
/* rtl_free_local_irq (LOCAL_TIMER_VECTOR, cpu_id); */
free_ipi (cpu_id);
clear_bit (0, &apic_init_flag);
return 0;
}
static void apic_clock_uninit (clockid_t clock)
{
int flags;
DECLARE_CPUID(cpu_id);
if (clock -> mode == RTL_CLOCK_MODE_UNINITIALIZED) {
return;
}
if (clock->arch.apic_cpu == cpu_id) {
rtl_no_interrupts (flags);
clock->handler = RTL_CLOCK_DEFAULTS.handler;
clock->settimermode (clock, RTL_CLOCK_MODE_PERIODIC);
clock->settimer (clock, LATCH_NS);
clock -> mode = RTL_CLOCK_MODE_UNINITIALIZED;
rtl_free_local_irq (LOCAL_TIMER_VECTOR, cpu_id);
rtl_restore_interrupts (flags);
} else {
#if 1
rtl_no_interrupts (flags);
clock->handler = RTL_CLOCK_DEFAULTS.handler;
set_bit (0, &apic_init_flag);
rtl_free_local_irq (LOCAL_TIMER_VECTOR, clock->arch.apic_cpu);
request_ipi (apic_uninit_irq, clock->arch.apic_cpu);
rtl_reschedule(clock->arch.apic_cpu);
/* rtl_request_local_irq (LOCAL_TIMER_VECTOR, apic_uninit_irq, clock - CLOCK_APIC); */
rtl_restore_interrupts (flags);
while (test_bit(0, &apic_init_flag)); /* wait for apic to uninit */
clock -> mode = RTL_CLOCK_MODE_UNINITIALIZED;
#endif
}
}
int rtl_create_clock_apic(int cpu)
{
_apic_clock[cpu] = RTL_CLOCK_DEFAULTS;
_apic_clock[cpu].init = apic_clock_init;
_apic_clock[cpu].uninit = apic_clock_uninit;
_apic_clock[cpu].settimermode = apic_settimermode;
_apic_clock[cpu].arch.apic_cpu = cpu;
return 0;
}
#endif
/* returns a pointer to the clock structure of the best controlling hw clock
* for this CPU */
clockid_t rtl_getbestclock (unsigned int cpu)
{
#ifdef __SMP__
if (smp_found_config) {
return &_apic_clock[cpu];
} else {
return &_i8254_clock;
}
#else
return &_i8254_clock;
#endif
}
spinlock_t rtl_tqueue_lock;
int init_module (void)
{
spin_lock_init (&lock8254);
spin_lock_init (&rtl_tqueue_lock);
rtl_debug = 0;
rtl_delay_mult = muldiv (loops_per_sec, 1 << 31, NSECS_PER_SEC / 2);
init_hrtime();
rtl_create_clock_8254();
#ifdef __SMP__
{
int i;
for (i = 0; i < rtl_num_cpus(); i++) {
int cpu = cpu_logical_map (i);
rtl_create_clock_apic(cpu);
}
}
#endif
rtl_init_standard_clocks();
/* rtl_setdebug(RTLDBG_TIME); */
return 0;
}
void cleanup_module(void)
{
rtl_cleanup_standard_clocks();
#ifdef __SMP__
if (smp_found_config) {
int i;
for (i = 0; i < rtl_num_cpus(); i++) {
int cpu = cpu_logical_map(i);
apic_clock_uninit (&_apic_clock[cpu]);
}
}
#endif
_8254_uninit(&_i8254_clock);
uninit_hrtime();
}
/* the following should really belong to rtl_core */
/* compatibility irq handler table */
#include <asm/rt_irq.h>
RTL_V1_HANDLER rtl_v1_irq[NR_IRQS];
extern unsigned int rtl_compat_irq_handler(unsigned int irq, struct pt_regs *regs)
{
rtl_v1_irq[irq]();
rtl_hard_enable_irq(irq);
return 0;
}
/* debugging */
unsigned int rtl_debug;
#ifdef CONFIG_RTL_DEBUG
void rtl_setdebug (unsigned int state)
{
rtl_debug = state;
}
unsigned int rtl_getdebug (void)
{
return rtl_debug;
}
#endif
/* SMP rescheduling */
#ifdef __SMP__
#define RTL_RESCHEDULE_VECTOR 0x51
int request_ipi (unsigned int (*f)(struct pt_regs *r), int cpu)
{
return rtl_request_local_irq (RTL_RESCHEDULE_VECTOR, f, cpu);
}
int free_ipi (int cpu)
{
return rtl_free_local_irq (RTL_RESCHEDULE_VECTOR, cpu);
}
#endif
|