1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
/* rtl-stub.c for Alpha, originally taken from alpha-gdbstub.c and modified to
* work with RTLinux debugger. See comments below.
*
* RTLinux Debugger modifications are written by Nathan Paul Simons and are
* (C) Finite State Machine Labs Inc. 2000 business@fsmlabs.com
*
* Released under the terms of GPL 2.
* Open RTLinux makes use of a patented process described in
* US Patent 5,995,745. Use of this process is governed
* by the Open RTLinux Patent License which can be obtained from
* www.fsmlabs.com/PATENT or by sending email to
* licensequestions@fsmlabs.com
*/
/****************************************************************************
THIS SOFTWARE IS NOT COPYRIGHTED
HP offers the following for use in the public domain. HP makes no
warranty with regard to the software or its performance and the
user accepts the software "AS IS" with all faults.
HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
****************************************************************************/
/****************************************************************************
* Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
*
* Module name: remcom.c $
* Revision: 1.34 $
* Date: 91/03/09 12:29:49 $
* Contributor: Lake Stevens Instrument Division$
*
* Description: low level support for gdb debugger. $
*
* Considerations: only works on target hardware $
*
* Written by: Glenn Engel $
* ModuleState: Experimental $
*
* NOTES: See Below $
*
* Modified for FreeBSD by Stu Grossman.
*
* To enable debugger support, two things need to happen. One, a
* call to set_debug_traps() is necessary in order to allow any breakpoints
* or error conditions to be properly intercepted and reported to gdb.
* Two, a breakpoint needs to be generated to begin communication. This
* is most easily accomplished by a call to breakpoint(). Breakpoint()
* simulates a breakpoint by executing a trap #1.
*
* The external function exceptionHandler() is
* used to attach a specific handler to a specific 386 vector number.
* It should use the same privilege level it runs at. It should
* install it as an interrupt gate so that interrupts are masked
* while the handler runs.
* Also, need to assign exceptionHook and oldExceptionHook.
*
* Because gdb will sometimes write to the stack area to execute function
* calls, this program cannot rely on using the supervisor stack so it
* uses its own stack area reserved in the int array remcomStack.
*
*************
*
* The following gdb commands are supported:
*
* command function Return value
*
* g return the value of the CPU registers hex data or ENN
* G set the value of the CPU registers OK or ENN
*
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
*
* c Resume at current address SNN ( signal NN)
* cAA..AA Continue at address AA..AA SNN
*
* s Step one instruction SNN
* sAA..AA Step one instruction from AA..AA SNN
*
* k kill
*
* ? What was the last sigval ? SNN (signal NN)
*
* D detach OK
*
* All commands and responses are sent with a packet which includes a
* checksum. A packet consists of
*
* $<packet info>#<checksum>.
*
* where
* <packet info> :: <characters representing the command or response>
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
*
* When a packet is received, it is first acknowledged with either '+' or '-'.
* '+' indicates a successful transfer. '-' indicates a failed transfer.
*
* Example:
*
* Host: Reply:
* $m0,10#2a +$00010203040506070809101112131415#42
*
****************************************************************************/
#include <linux/string.h>
#include <asm/system.h>
#include <asm/ptrace.h> /* for linux pt_regs struct */
#include <asm/reg.h> /* for EF_* reg num defines */
#include <asm/gentrap.h> /* for GEN_* trap num defines */
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/signal.h>
/* RTLinux support */
#define __NO_VERSION__
#include <linux/module.h>
#include <rtl_sync.h>
#include <rtl_sched.h>
#include <psc.h>
#include "rtl_ex.c"
#define strtoul simple_strtoul
#define rtl_running_linux() (pthread_self() == &LOCAL_SCHED->rtl_linux_task)
int rtl_debug_initialized = 0;
/* end of RTLinux support */
/* Indicate to caller of mem2hex or hex2mem that there has been an
error. */
static volatile int real_mem_err[NR_CPUS];
static volatile int real_mem_err_expected[NR_CPUS];
#define mem_err (real_mem_err[rtl_getcpuid()])
#define mem_err_expected (real_mem_err_expected[rtl_getcpuid()])
/* external low-level support routines */
typedef void (*Function) (void); /* pointer to a function */
extern int putDebugChar(int); /* write a single character */
extern int getDebugChar(void); /* read and return a single char */
extern int rtl_request_traps(int (*rtl_exception_intercept)
(int vector, struct pt_regs * regs));
/* ripped from arch/alpha/kernel/process.c
* XXX we should probably just export show_regs and use the pre-exisiting
* one to cut down on code size -Nathan */
void show_regs(struct pt_regs *regs)
{
printk("\nps: %04lx pc: [<%016lx>]\n", regs->ps, regs->pc);
printk("rp: [<%016lx>] sp: %p\n", regs->r26, regs + 1);
printk(" r0: %016lx r1: %016lx r2: %016lx r3: %016lx\n",
regs->r0, regs->r1, regs->r2, regs->r3);
printk(" r4: %016lx r5: %016lx r6: %016lx r7: %016lx\n",
regs->r4, regs->r5, regs->r6, regs->r7);
printk(" r8: %016lx r16: %016lx r17: %016lx r18: %016lx\n",
regs->r8, regs->r16, regs->r17, regs->r18);
printk("r19: %016lx r20: %016lx r21: %016lx r22: %016lx\n",
regs->r19, regs->r20, regs->r21, regs->r22);
printk("r23: %016lx r24: %016lx r25: %016lx r26: %016lx\n",
regs->r23, regs->r24, regs->r25, regs->r26);
printk("r27: %016lx r28: %016lx r29: %016lx hae: %016lx\n",
regs->r27, regs->r28, regs->gp, regs->hae);
}
/* BUFMAX defines the maximum number of characters in inbound/outbound buffers
* at least NUMREGBYTES*2 are needed for register packets */
#define BUFMAX 1500
int remote_debug = 0;
static const char hexchars[] = "0123456789abcdef";
static int hex(char ch)
{
if ((ch >= 'a') && (ch <= 'f'))
return (ch - 'a' + 10);
if ((ch >= '0') && (ch <= '9'))
return (ch - '0');
if ((ch >= 'A') && (ch <= 'F'))
return (ch - 'A' + 10);
return (-1);
}
/* scan for the sequence $<data>#<checksum> */
static void getpacket(char *buffer)
{
unsigned char checksum;
unsigned char xmitcsum;
int i;
int count;
unsigned char ch;
do {
/* wait around for the start character, ignore all other
* characters */
while ((ch = (getDebugChar() & 0x7f)) != '$');
checksum = 0;
xmitcsum = -1;
count = 0;
/* now, read until a # or end of buffer is found */
while (count < BUFMAX) {
ch = getDebugChar() & 0x7f;
if (ch == '#')
break;
checksum = checksum + ch;
buffer[count] = ch;
count = count + 1;
}
buffer[count] = 0;
if (ch == '#') {
xmitcsum = hex(getDebugChar() & 0x7f) << 4;
xmitcsum += hex(getDebugChar() & 0x7f);
if (checksum != xmitcsum)
putDebugChar('-'); /* failed checksum */
else {
putDebugChar('+'); /* successful xfer */
/* if a sequence char is present, reply the
* sequence ID */
if (buffer[2] == ':') {
putDebugChar(buffer[0]);
putDebugChar(buffer[1]);
/* remove sequence chars from buffer */
count = strlen(buffer);
for (i = 3; i <= count; i++)
buffer[i - 3] = buffer[i];
}
}
}
} while (checksum != xmitcsum);
if (strlen(buffer) >= BUFMAX)
panic("kgdb: buffer overflow");
} /* static void getpacket(char *buffer) */
/* send the packet in buffer. */
static void putpacket(char *buffer)
{
unsigned char checksum;
int count;
unsigned char ch;
if (strlen(buffer) >= BUFMAX)
panic("kgdb: buffer overflow");
/* $<packet info>#<checksum>. */
do {
putDebugChar('$');
checksum = 0;
count = 0;
while ((ch = buffer[count])) {
if (!putDebugChar(ch))
return;
checksum += ch;
count += 1;
}
putDebugChar('#');
putDebugChar(hexchars[checksum >> 4]);
putDebugChar(hexchars[checksum % 16]);
} while ((getDebugChar() & 0x7f) != '+');
} /* static void putpacket(char *buffer) */
int get_char(char *addr)
{
return *addr;
}
void set_char(char *addr, int val)
{
*addr = val;
}
/* convert the memory pointed to by mem into hex, placing result in buf */
/* return a pointer to the last char put in buf (null) */
static char *mem2hex(char *mem, char *buf, int count)
{
unsigned char ch;
int may_fault = 1;
if (mem == 0) {
strcpy(buf, "E03");
return buf;
}
if (may_fault) {
mem_err_expected = 1;
mem_err = 0;
}
while (count-- > 0) {
ch = *mem++;
if (may_fault && mem_err) {
if (remote_debug)
printk
("Mem fault fetching from addr %lx\n",
(long) (mem - 1));
*buf = 0; /* truncate buffer */
return 0;
}
*buf++ = hexchars[ch >> 4];
*buf++ = hexchars[ch & 0xf];
}
*buf = 0;
if (may_fault)
mem_err_expected = 0;
return buf;
}
/* convert the hex array pointed to by buf into binary to be placed in mem */
/* return a pointer to the character AFTER the last byte written */
static char *hex2mem(char *buf, char *mem, int count)
{
unsigned char ch;
while (count-- > 0) {
ch = hex(*buf++) << 4;
ch = ch + hex(*buf++);
set_char(mem++, ch);
}
return mem;
}
/*
* While we find nice hex chars, build an int.
* Return number of chars processed.
*/
static long hexToInt(char **ptr, long *intValue)
{
long numChars = 0;
long hexValue;
*intValue = 0;
while (**ptr) {
hexValue = hex(**ptr);
if (hexValue >= 0) {
*intValue = (*intValue << 4) | hexValue;
numChars++;
} else
break;
(*ptr)++;
}
return (numChars);
}
/* more RTLinux support */
static spinlock_t bp_lock = SPIN_LOCK_UNLOCKED;
#define RTL_MAX_BP 1024
static struct bp_cache_entry {
char *mem;
unsigned char val;
struct bp_cache_entry *next;
} bp_cache[RTL_MAX_BP];
static struct bp_cache_entry *cache_start = 0;
int insert_bp(char *mem)
{
int i;
struct bp_cache_entry *e;
int old;
char buf[3];
if (!mem2hex(mem, buf, 1)) {
return EINVAL; /* memory error */
}
old = strtoul(buf, 0, 16);
for (e = cache_start; e; e = e->next) {
if (e->mem == mem) {
return EINVAL; /* already there */
}
}
for (i = 0; i < RTL_MAX_BP; i++) {
if (bp_cache[i].mem == 0) {
break;
}
}
if (i == RTL_MAX_BP) {
return EINVAL; /* no space */
}
bp_cache[i].val = old;
bp_cache[i].mem = mem;
bp_cache[i].next = cache_start;
cache_start = &bp_cache[i];
set_char(mem, 0xcc);
return 0;
}
#define CONFIG_RTL_DEBUGGER_THREADS
#define CONFIG_RTL_DEBUGGER_Z_PROTOCOL
static int send_exception_info = 0;
static char remcomInBuffer[BUFMAX];
static char remcomOutBuffer[BUFMAX];
static short error;
void debug_error(char *format, char *parm)
{
if (remote_debug)
printk(format, parm);
}
/* Alpha registers are 64 bit wide, so 8 bytes to a register, times 66
* registers we need to keep track of */
#define NUMREGS 66
#define BYTESPERREG 8
#define NUMREGBYTES (BYTESPERREG * NUMREGS)
int remove_bp(char *mem)
{
struct bp_cache_entry *e = cache_start;
struct bp_cache_entry *f = 0;
if (!e) {
return EINVAL;
}
if (e->mem == mem) {
cache_start = e->next;
f = e;
} else {
for (; e->next; e = e->next) {
if (e->next->mem == mem) {
f = e->next;
e->next = f->next;
break;
}
}
}
if (!f) {
return EINVAL;
}
mem_err_expected = 1;
set_char(f->mem, f->val);
if (mem_err) {
return EINVAL;
}
mem_err_expected = 0;
return 0;
} /* int remove_bp(char *mem) */
/* for some reason, the mappings in reg.h are not *completely* correct. That
* is, they don't match up with the mappings in GDB. For instance, EF_PC is
* supposed to be the 64th integer in the gdb_regs array, not the 28th. i
* don't know how gdb possibly works with normal core files, but to get things
* to work here, we are going to *ignore* asm-alpha/regs.h and go with what
* gdb says. -Nathan */
static void regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
gdb_regs[EF_V0] = regs->r0; /* return value */
gdb_regs[EF_T0] = regs->r1; /* temporary registers 1-8 */
gdb_regs[EF_T1] = regs->r2;
gdb_regs[EF_T2] = regs->r3;
gdb_regs[EF_T3] = regs->r4;
gdb_regs[EF_T4] = regs->r5;
gdb_regs[EF_T5] = regs->r6;
gdb_regs[EF_T6] = regs->r7;
gdb_regs[EF_T7] = regs->r8;
gdb_regs[EF_S0] = 0; /* saved regs 9-15; we don't deal */
/* with these */
gdb_regs[EF_S1] = 0;
gdb_regs[EF_S2] = 0;
gdb_regs[EF_S3] = 0;
gdb_regs[EF_S4] = 0;
gdb_regs[EF_S5] = 0;
gdb_regs[EF_S6] = 0;
gdb_regs[16] = regs->r16; /* argument regs 16-21 */
gdb_regs[17] = regs->r17;
gdb_regs[18] = regs->r18;
gdb_regs[19] = regs->r19;
gdb_regs[20] = regs->r20;
gdb_regs[21] = regs->r21;
gdb_regs[22] = regs->r22; /* temporary regs 22-25 */
gdb_regs[23] = regs->r23;
gdb_regs[24] = regs->r24;
gdb_regs[25] = regs->r25;
gdb_regs[26] = regs->r26; /* return address */
gdb_regs[27] = regs->r27; /* procedure value */
gdb_regs[28] = regs->r28; /* assembler temp */
gdb_regs[30] = rdusp(); /* stack pointer */
gdb_regs[65] = regs->ps; /* processor status */
gdb_regs[64] = regs->pc; /* processor counter */
gdb_regs[EF_GP] = regs->gp; /* global pointer */
} /* static void regs_to_gdb_regs(int *gdb_regs, struct pt_regs *regs) */
static void gdb_regs_to_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
regs->r0 = gdb_regs[EF_V0];
regs->r1 = gdb_regs[EF_T0];
regs->r2 = gdb_regs[EF_T1];
regs->r3 = gdb_regs[EF_T2];
regs->r4 = gdb_regs[EF_T3];
regs->r5 = gdb_regs[EF_T4];
regs->r6 = gdb_regs[EF_T5];
regs->r7 = gdb_regs[EF_T6];
regs->r8 = gdb_regs[EF_T7];
regs->r16 = gdb_regs[EF_A0];
regs->r17 = gdb_regs[EF_A1];
regs->r18 = gdb_regs[EF_A2];
regs->r19 = gdb_regs[EF_A3];
regs->r20 = gdb_regs[EF_A4];
regs->r21 = gdb_regs[EF_A5];
regs->r22 = gdb_regs[EF_T8];
regs->r23 = gdb_regs[EF_T9];
regs->r24 = gdb_regs[EF_T10];
regs->r25 = gdb_regs[EF_T11];
regs->r26 = gdb_regs[EF_RA];
regs->r27 = gdb_regs[EF_T12];
regs->r28 = gdb_regs[EF_AT];
regs->ps = gdb_regs[EF_PS];
regs->pc = gdb_regs[EF_PC];
regs->gp = gdb_regs[EF_GP];
} /* static void gdb_regs_to_regs(int *gdb_regs, struct pt_regs *regs) */
static int handle_exception(int exceptionVector,
int signo, struct pt_regs *regs)
{
long addr, length, newPC;
unsigned long flags;
char *ptr;
unsigned long gdb_regs[NUMREGS];
#ifdef CONFIG_RTL_DEBUGGER_THREADS
pthread_t current_thread = pthread_self();
#endif /* CONFIG_RTL_DEBUGGER_THREADS */
rtl_hard_savef_and_cli(flags);
if (user_mode(regs) && !(rtl_is_psc_active())) {
rtl_printf("rtl_debug: got a user-mode exception\n");
return 0;
}
memset(gdb_regs, 0, NUMREGBYTES);
if (remote_debug)
show_regs(regs);
if ((exceptionVector == 6) && (mem_err_expected == 1)) {
mem_err = 1; /* set mem error flag */
mem_err_expected = 0;
conpr("mem2hex() croaked\n");
if (remote_debug)
conpr("Return after memory error\n");
if (remote_debug)
show_regs(regs);
rtl_hard_restore_flags(flags);
return (1);
}
if (rtl_running_linux()) {
rtl_hard_restore_flags(flags);
rtl_printf("rtl_debug: not our fault; Linux's\n");
return 0; /* let Linux handle it's own faults */
}
/* ok, here we know pthread_self() is an RT-thread */
pthread_cleanup_push(&rtl_exit_debugger, 0);
rtl_enter_debugger(exceptionVector, (void *) regs->pc);
/* reply to host that an exception has occurred */
set_bit(0, &send_exception_info);
while (1) {
error = 0;
remcomOutBuffer[0] = 0;
if (test_and_clear_bit(0, &send_exception_info)) {
strcpy(remcomInBuffer, "?");
} else {
getpacket(remcomInBuffer);
/*conpr("getpacket: ");conpr(remcomInBuffer);conpr("\n");*/
}
switch (remcomInBuffer[0]) {
case 'q':
if (!strcmp(remcomInBuffer, "qOffsets") && text
&& data && bss) {
sprintf(remcomOutBuffer,
"Text=%x;Data=%x;Bss=%x",
(unsigned) text, (unsigned) data,
(unsigned) bss);
}
#ifdef CONFIG_RTL_DEBUGGER_THREADS
if (!strcmp(remcomInBuffer, "qC")) {
sprintf(remcomOutBuffer, "QC%x",
(unsigned long) (pthread_self()));
} else if (!strncmp(remcomInBuffer, "qL", 2)) {
/* we assume we have a limit of 31 threads --
* to fit in one packet */
char packethead[17];
pthread_t task;
int ntasks = 0;
int i;
strcpy(remcomOutBuffer, remcomInBuffer);
for (i = 0; i < rtl_num_cpus(); i++) {
int cpu_id = cpu_logical_map(i);
schedule_t *s = &rtl_sched[cpu_id];
spin_lock(&s->rtl_tasks_lock);
task = s->rtl_tasks;
while (task != &s->rtl_linux_task
&& ntasks < 31) {
sprintf((remcomOutBuffer) +
strlen
(remcomOutBuffer),
"00000000%08x",
(unsigned long)
task);
task = task->next;
ntasks++;
}
spin_unlock(&s->rtl_tasks_lock);
}
sprintf(packethead, "qM%02x%01x", ntasks,
1 /* done */ );
memcpy(remcomOutBuffer, packethead,
strlen(packethead));
}
#endif /* CONFIG_RTL_DEBUGGER_THREADS */
break;
#ifdef CONFIG_RTL_DEBUGGER_THREADS
case 'H':
if ( /* remcomInBuffer[1] == 'c' || */
remcomInBuffer[1] == 'g') {
if (remcomInBuffer[2] == '-') {
current_thread =
(pthread_t) -
strtoul(remcomInBuffer + 3, 0,
16);
} else {
current_thread = (pthread_t)
strtoul(remcomInBuffer + 2, 0,
16);
}
debugpr("Hc/g: %x",
(unsigned long) current_thread);
strcpy(remcomOutBuffer, "OK");
}
break;
case 'T':{
pthread_t thread;
if (remcomInBuffer[1] == '-') {
thread =
(pthread_t) -
strtoul(remcomInBuffer + 2, 0,
16);
} else {
thread = (pthread_t)
strtoul(remcomInBuffer + 1, 0,
16);
}
if (!pthread_kill(thread, 0)) {
strcpy(remcomOutBuffer, "OK");
} else {
strcpy(remcomOutBuffer, "ERROR");
}
}
break;
#endif /* CONFIG_RTL_DEBUGGER_THREADS */
#ifdef CONFIG_RTL_DEBUGGER_Z_PROTOCOL
case 'Z':
case 'z':
{
int type = remcomInBuffer[1] - '0';
long address =
strtoul(remcomInBuffer + 3, 0, 16);
int res;
if (type != 0) {
strcpy(remcomOutBuffer, "ERROR");
break;
}
spin_lock(&bp_lock);
if (remcomInBuffer[0] == 'Z') {
res = insert_bp((char *) address);
} else {
remove_bp((char *) address);
res = 0;
}
spin_unlock(&bp_lock);
if (res) {
strcpy(remcomOutBuffer, "ERROR");
} else {
strcpy(remcomOutBuffer, "OK");
}
}
break;
#endif /* CONFIG_RTL_DEBUGGER_Z_PROTOCOL */
case '?':
#ifdef CONFIG_RTL_DEBUGGER_THREADS
sprintf(remcomOutBuffer, "T%02xthread:%x;", signo,
(unsigned long) pthread_self());
#else
remcomOutBuffer[0] = 'S';
remcomOutBuffer[1] = hexchars[signo >> 4];
remcomOutBuffer[2] = hexchars[signo % 16];
remcomOutBuffer[3] = 0;
#endif /* CONFIG_RTL_DEBUGGER_THREADS */
break;
case 'd':
remote_debug = !(remote_debug); /* toggle debug flag */
printk("Remote debug %s\n",
remote_debug ? "on" : "off");
break;
case 'g': /* return the value of the CPU registers */
regs_to_gdb_regs(gdb_regs, regs);
#ifdef CONFIG_RTL_DEBUGGER_THREADS
if (current_thread != pthread_self()) {
gdb_regs[EF_SP] =
(long) current_thread->stack;
gdb_regs[EF_PC] = *(current_thread->stack);
rtl_printf("*(current_thread->stack: %x\n",
(current_thread->stack));
debugpr("reg read for %x",
(unsigned long) current_thread);
}
#endif /* CONFIG_RTL_DEBUGGER_THREADS */
mem2hex((char *) gdb_regs, remcomOutBuffer,
NUMREGBYTES);
break;
case 'G': /* set the value of the CPU registers - return OK */
hex2mem(&remcomInBuffer[1], (char *) gdb_regs,
NUMREGBYTES);
gdb_regs_to_regs(gdb_regs, regs);
strcpy(remcomOutBuffer, "OK");
break;
/* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
case 'm':
/* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
ptr = &remcomInBuffer[1];
if (hexToInt(&ptr, &addr))
if (*(ptr++) == ',')
if (hexToInt(&ptr, &length)) {
ptr = 0;
if (!mem2hex
((char *) addr,
remcomOutBuffer,
length)) {
strcpy
(remcomOutBuffer,
"E03");
debug_error
("memory fault\n",
NULL);
}
}
if (ptr) {
strcpy(remcomOutBuffer, "E01");
debug_error
("malformed read memory command: %s\n",
remcomInBuffer);
}
break;
/* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
case 'M':
/* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
ptr = &remcomInBuffer[1];
if (hexToInt(&ptr, &addr))
if (*(ptr++) == ',')
if (hexToInt(&ptr, &length))
if (*(ptr++) == ':') {
if (!hex2mem
(ptr,
(char *) addr,
length)) {
strcpy
(remcomOutBuffer,
"E03");
debug_error
("memory fault\n",
NULL);
} else {
strcpy
(remcomOutBuffer,
"OK");
}
ptr = 0;
}
if (ptr) {
strcpy(remcomOutBuffer, "E02");
debug_error
("malformed write memory command: %s\n",
remcomInBuffer);
}
break;
/* cAA..AA Continue at address AA..AA(optional) */
/* sAA..AA Step one instruction from AA..AA(optional) */
case 'c':
case 's':
/* try to read optional parameter, pc unchanged if no
* parm */
ptr = &remcomInBuffer[1];
if (hexToInt(&ptr, &addr)) {
if (remote_debug)
printk("Changing EF_PC to 0x%x\n",
addr);
regs->pc = addr;
}
newPC = regs->pc;
/* clear the trace bit */
#if 0
/* XXX don't know how to do these yet. -Nathan
regs->ps &= 0xfffffeff; */
/* set the trace bit if we're stepping */
if (remcomInBuffer[0] == 's')
regs.eflags |= 0x100;
#endif /* 0 */
if (remote_debug) {
printk("Resuming execution\n");
show_regs(regs);
}
debugpr("cont\n");
goto cleanup;
/* kill the program */
case 'k':
goto cleanup;
} /* switch */
/*conpr("putpacket: ");conpr(remcomOutBuffer);conpr("\n");*/
/* reply to the request */
putpacket(remcomOutBuffer);
} /* while (1) */
cleanup:pthread_cleanup_pop(1);
rtl_hard_restore_flags(flags);
return (1);
#undef regs
}
/* we don't have a hard_trap_info struct and we have to use this gigantic
* switch statement because of the special case of generic traps. This also
* means that we have to pass across the registers so that we can get the
* value from r16 to determine which generic trap it is. */
static int computeSignal(unsigned int tt, struct pt_regs *regs)
{
switch (tt) {
case 0: /* breakpoint */
case 1: /* bugcheck */
return SIGTRAP;
case 2: /* gentrap */
switch ((long) regs->r16) {
case GEN_INTOVF:
case GEN_INTDIV:
case GEN_FLTOVF:
case GEN_FLTDIV:
case GEN_FLTUND:
case GEN_FLTINV:
case GEN_FLTINE:
case GEN_ROPRAND:
return SIGFPE;
case GEN_DECOVF:
case GEN_DECDIV:
case GEN_DECINV:
case GEN_ASSERTERR:
case GEN_NULPTRERR:
case GEN_STKOVF:
case GEN_STRLENERR:
case GEN_SUBSTRERR:
case GEN_RANGERR:
case GEN_SUBRNG:
case GEN_SUBRNG1:
case GEN_SUBRNG2:
case GEN_SUBRNG3:
case GEN_SUBRNG4:
case GEN_SUBRNG5:
case GEN_SUBRNG6:
case GEN_SUBRNG7:
return SIGTRAP;
} /* switch ((long) regs->r16) */
case 3: /* FEN fault */
return SIGILL;
case 4: /* opDEC */
return SIGILL;
} /* switch (tt) */
/* don't know what signal to return? SIGHUP to the rescue! */
return SIGHUP;
}
int rtl_debug_exception(int vector, struct pt_regs *regs)
{
int signo = computeSignal(vector, regs);
return handle_exception(vector, signo, regs);
}
int set_debug_traps(void)
{
if (rtl_debug_initialized) {
printk("rtl_debug: already loaded\n");
return -1;
}
rtl_request_traps(&rtl_debug_exception);
rtl_debug_initialized = 1;
return 0;
}
void unset_debug_traps(void)
{
/*
int i;
for (i = 0; i < nbreak; i++) {
debugpr ("unpatching leftover breakpoints\n");
set_char(bp_cache[i].mem, bp_cache[i].val);
}
*/
rtl_request_traps(0);
rtl_debug_initialized = 0;
}
|