1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
/*
* RTLinux scheduler
*
* Written by Michael Barabanov, Victor Yodaiken
* Copyright (C) Finite State Machine Labs Inc., 1998-1999
* Released under the terms of the GPL Version 2
*
*/
#ifndef __RTL__SCHED__
#define __RTL__SCHED__
#include <asm/ptrace.h>
#include <linux/version.h>
#if LINUX_VERSION_CODE >= 0x020300
#include <linux/spinlock.h>
#else
#include <asm/spinlock.h>
#endif
#include <asm/bitops.h>
#include <rtl_conf.h>
#include <rtl_limits.h>
#include <rtl_core.h>
#include <rtl_time.h>
#include <arch/rtl_fpu.h>
#include <rtl_spinlock.h>
#include <signal.h>
#include <reserve_cpu.h>
#ifdef __cplusplus
struct sched_param {
int sched_priority;
};
#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2
#else
#include <linux/sched.h>
#endif
#define rtl_sched_param sched_param
#define TIMER_ABSTIME 1
#define RTL_MAX_TIMERS 32
typedef struct rtl_timer_struct *timer_t;
struct rtl_cleanup_struct {
void (*routine)(void*);
void *arg;
struct rtl_cleanup_struct *next;
};
/* threads have no clocks. Clocks belong to schedulers. We can add scheduling
policies in which a scheduler juggles multiple clocks, but there is no advantage
that I can see in allowing a thread to specify its hardware clock
*/
#define RTL_THREAD_MAGIC 0x79433743
struct rtl_thread_struct;
typedef struct rtl_thread_struct *pthread_t;
#include <rtl_posix.h>
struct rtl_thread_struct {
int *stack; /* hardcoded */
int fpu_initialized;
RTL_FPU_CONTEXT fpu_regs;
int uses_fp;
int *kmalloc_stack_bottom;
struct rtl_sched_param sched_param;
struct rtl_thread_struct *next;
int cpu;
hrtime_t resume_time;
hrtime_t period;
hrtime_t timeval;
struct module *creator;
void (*abort)(void *);
void *abortdata;
int threadflags;
rtl_sigset_t pending;
rtl_sigset_t blocked;
void *user[4];
int errno_val;
struct rtl_cleanup_struct *cleanup;
int magic;
struct rtl_posix_thread_struct posix_data;
void *tsd [RTL_PTHREAD_KEYS_MAX];
};
#define RTL_POSIX_DATA(th) (&(th)->posix_data)
#define hrt2ts(hrt) ((const struct timespec *) ({ pthread_self()->timeval = hrt; (&pthread_self()->timeval); }))
#define RTL_PRIO(th) ((th)->sched_param.sched_priority)
enum {RTL_CANCELPENDING, RTL_CANCELTYPE, RTL_THREAD_JOINABLE, RTL_THREAD_FINISHED, RTL_THREAD_TIMERARMED, RTL_THREAD_WAIT_FOR_JOIN, RTL_THREAD_OK_TO_FINISH_JOIN};
#define RTL_MAX_SIGNAL 31 /* this is max for internal RTLinux signals */
/* these are bit positions */
#define RTL_SIGNAL_NULL 0 /* posix wants signal=0 to simply check */
#define RTL_SIGNAL_WAKEUP 1
#define RTL_SIGNAL_CANCEL 2
#define RTL_SIGNAL_SUSPEND 3
#define RTL_SIGNAL_TIMER 5
#define RTL_SIGNAL_READY 6
/*TODO How will this work on PPC */
#define RTL_LINUX_MIN_SIGNAL 256 /* signals to Linux start here. global then local */
#define RTL_LINUX_MAX_SIGNAL 1024
#define RTL_LINUX_MIN_LOCAL_SIGNAL 512
extern int rtl_schedule (void);
#define RTL_TIMED_OUT(x) rtl_sigismember((x), RTL_SIGNAL_TIMER)
#define RTL_SIGINTR(x) (0)
typedef struct rtl_thread_struct RTL_THREAD_STRUCT;
#define RTL_MARK_READY(th) rtl_sigaddset(&(th)->pending, RTL_SIGNAL_READY)
#define RTL_MARK_SUSPENDED(th) rtl_sigdelset(&(th)->pending, RTL_SIGNAL_READY)
struct rtl_sched_cpu_struct {
struct rtl_thread_struct *rtl_current;
struct rtl_thread_struct rtl_linux_task;
struct rtl_thread_struct *rtl_task_fpu_owner; /* the task whose FP context is currently in the FPU unit */
struct rtl_thread_struct *rtl_tasks; /* the queue of RT tasks */
struct rtl_thread_struct *rtl_new_tasks;
clockid_t clock;
spinlock_t rtl_tasks_lock;
int sched_flags;
int sched_user[4]; /* on x86 sched_user[0] is the Linux TS flag */
}/* __attribute__ ((aligned (64)))*/;
typedef struct rtl_sched_cpu_struct schedule_t;
#ifdef CONFIG_SMP
extern struct rtl_sched_cpu_struct rtl_sched [NR_CPUS];
#define sched_data(cpu) (&rtl_sched [cpu])
#define LOCAL_SCHED (&rtl_sched[rtl_getcpuid()])
#else
extern struct rtl_sched_cpu_struct rtl_sched [1];
#define sched_data(cpu) (&rtl_sched[0])
#define LOCAL_SCHED (&rtl_sched[0])
#endif
static inline pthread_t pthread_linux(void)
{
return &(rtl_sched[rtl_getcpuid()].rtl_linux_task);
}
#define RTL_CURRENT (LOCAL_SCHED->rtl_current)
/* RTL-specific function TODO: write POSIX equivalents for these */
extern int pthread_delete_np (pthread_t thread);
extern int pthread_setfp_np (pthread_t thread, int flag);
extern int pthread_wakeup_np (pthread_t thread);
extern int pthread_suspend_np (pthread_t thread);
/* end RTL-specific */
/* POSIX interface */
#define pthread_cleanup_push(p_routine, p_arg) \
{ \
rtl_irqstate_t __flags; \
struct rtl_cleanup_struct __cleanup; \
__cleanup.routine = (p_routine); \
__cleanup.arg = (p_arg); \
rtl_no_interrupts (__flags); \
__cleanup.next = pthread_self()->cleanup; \
pthread_self()->cleanup = &__cleanup; \
rtl_restore_interrupts (__flags);
#define pthread_cleanup_pop(execute) \
rtl_no_interrupts (__flags); \
pthread_self()->cleanup = pthread_self()->cleanup->next; \
if (execute) \
__cleanup.routine(__cleanup.arg); \
rtl_restore_interrupts (__flags); \
}
extern inline int sched_get_priority_max(int policy) { return 1000000; }
extern inline int sched_get_priority_min(int policy) { return 0; }
extern inline pthread_t pthread_self(void) {
return (LOCAL_SCHED)-> rtl_current;
}
extern inline int pthread_equal(pthread_t thread1, pthread_t thread2)
{
return thread1 == thread2;
}
typedef int pthread_key_t;
extern inline int pthread_setspecific(pthread_key_t key, const void *value)
{
pthread_self()->tsd[key] = (void *) value;
return 0;
}
extern inline void *pthread_getspecific(pthread_key_t key)
{
return pthread_self()->tsd[key];
}
#define RTL_PTHREAD_STACK_MIN 8192
#define PTHREAD_CANCEL_ENABLE 0
#define PTHREAD_CANCEL_DISABLE 1
#define PTHREAD_CANCEL_DEFERRED 0
#define PTHREAD_CANCEL_ASYNCHRONOUS 1
#define PTHREAD_CREATE_JOINABLE 0
#define PTHREAD_CREATE_DETACHED 1
extern int pthread_setcancelstate(int state, int *oldstate);
extern int pthread_setcanceltype(int type, int *oldtype);
extern int pthread_cancel (pthread_t thread);
extern void pthread_testcancel(void);
typedef struct STRUCT_PTHREAD_ATTR {
size_t stack_size;
void *stack_addr;
struct rtl_sched_param sched_param;
int cpu;
int use_fp;
rtl_sigset_t initial_state;
int detachstate;
} pthread_attr_t;
extern inline int pthread_attr_init(pthread_attr_t *attr)
{
attr->stack_addr = 0;
attr->stack_size = 20480;
attr->sched_param.sched_priority = sched_get_priority_min(0);
attr->cpu = rtl_getcpuid();
rtl_sigemptyset(&attr->initial_state);
rtl_sigaddset(&attr->initial_state, RTL_SIGNAL_READY);
attr->use_fp = 0;
attr->detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
extern inline int pthread_attr_destroy(pthread_attr_t *attr)
{
return 0;
}
extern inline int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)
{
if (stacksize < RTL_PTHREAD_STACK_MIN) {
return EINVAL;
}
attr->stack_size = stacksize;
return 0;
}
extern inline int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize)
{
*stacksize = attr->stack_size;
return 0;
}
extern int pthread_attr_setfp_np (pthread_attr_t *attr, int flag);
extern inline int pthread_attr_getfp_np (const pthread_attr_t *attr, int *use_fp)
{
*use_fp = attr->use_fp;
return 0;
}
#define pthread_attr_setfp(attr,flag) pthread_attr_setfp_np(attr,flag)
#define pthread_attr_getfp(attr,flag) pthread_attr_getfp_np(attr,flag)
extern inline int pthread_attr_getcpu_np(const pthread_attr_t *attr, int * cpu)
{
*cpu = attr->cpu;
return 0;
}
extern int pthread_attr_setcpu_np(pthread_attr_t *attr, int cpu);
#define pthread_attr_getcpu(attr,cpu) pthread_attr_getcpu_np(attr,cpu)
#define pthread_attr_setcpu(attr,cpu) pthread_attr_setcpu_np(attr,cpu)
extern int pthread_wait_np(void);
extern int pthread_make_periodic_np (pthread_t p, hrtime_t start_time, hrtime_t period);
/* this one is deprecated */
extern inline clockid_t rtl_getschedclock(void)
{
return LOCAL_SCHED->clock;
}
#define CLOCK_RTL_SCHED (LOCAL_SCHED->clock)
#define CLOCK_REALTIME CLOCK_RTL_SCHED
extern int rtl_setclockmode (clockid_t clock, int mode, hrtime_t period);
extern int sched_yield(void);
extern inline int pthread_setschedparam(pthread_t thread, int policy,
const struct rtl_sched_param *param) {
thread->sched_param = *param;
return 0;
}
extern inline int pthread_getschedparam(pthread_t thread, int *policy,
struct rtl_sched_param *param) {
*param = thread->sched_param;
return 0;
}
extern inline int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct rtl_sched_param *param) {
attr->sched_param = *param;
return 0;
}
extern inline int pthread_attr_getschedparam(const pthread_attr_t *attr,
struct rtl_sched_param *param) {
*param = attr->sched_param;
return 0;
}
extern int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
extern int pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr);
struct module;
extern struct module __this_module;
extern int __pthread_create (pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *), void *arg, struct module *mod);
#define pthread_create(thread, attr, start, arg) __pthread_create(thread, attr, start, arg, &__this_module)
#define PTHREAD_CANCELED ((void *) -1)
extern void pthread_exit(void *retval);
int pthread_kill(pthread_t , int signo);
extern inline int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
{
attr->detachstate = detachstate;
return 0;
}
extern inline int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate)
{
*detachstate = attr->detachstate;
return 0;
}
typedef unsigned useconds_t;
extern int usleep(useconds_t useconds);
extern int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);
extern int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
#include <rtl_compat.h>
extern int rtl_reserve_cpus(unsigned cpumask);
extern int rtl_unreserve_cpus(void);
struct task_struct *get_linux_current(void);
#define RTL_SCHED_TIMER_OK 0
#define __rtl_setup_timeout(th,timeout) do { \
(th)->resume_time = (timeout); \
set_bit (RTL_THREAD_TIMERARMED, &(th) -> threadflags); \
clear_bit (RTL_SCHED_TIMER_OK, &sched_data((th)->cpu)->sched_flags); \
} while (0)
static inline hrtime_t __rtl_fix_timeout_for_clock(clockid_t clock, hrtime_t timeout)
{
if (clock == CLOCK_RTL_SCHED) {
return timeout;
}
/* if (clock->mode == RTL_CLOCK_MODE_ONESHOT) {
return timeout - clock->delta;
} */
return timeout - clock_gethrtime(clock) + clock_gethrtime(CLOCK_RTL_SCHED);
}
#endif
|