1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*
* Alpha-specific clock support
*
* Copyright (C) 2000 FSM Labs (http://www.fsmlabs.com/)
* Written by Cort Dougan <cort@fsmlabs.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/timex.h>
#include <linux/mc146818rtc.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/hwrpb.h>
#include <rtl_core.h>
#include <rtl_time.h>
#include <rtl_sync.h>
#include <rtl.h>
MODULE_AUTHOR("Cort Dougan <cort@fsmlabs.com>");
MODULE_DESCRIPTION("RTLinux Alpha Timer Module");
static unsigned long hrtime_last_tick = 0;
static __u32 cycles_last_tick = 0;
struct rtl_clock _i8254_clock;
static unsigned int clock_counter; /* current latch value */
#define wait_value(x) do {; } while ((inb(0x61) & 0x20) != (x))
#define wait_cycle() do { wait_value(0); wait_value(0x20); } while (0)
#define WRITE_COUNTER_ZERO16(x) { \
outb_p(x&0xff,0x40); outb_p((x>>8)&0xff,0x40);\
clock_counter =x; \
}
#define WRITE_COUNTER_ZERO8(x) { \
outb_p(x&0xff,0x40); \
clock_counter =x; \
}
#define WRITE_COUNTER_ZERO_ONESHOT(x) WRITE_COUNTER_ZERO16(x)
#define CLATCH (1024 * 32)
#define NLOOPS 50
#define READ_CNT0(var) \
{ var = inb(0x40); var |= (inb(0x40) << 8); }
#define READ_CNT2(var) \
{ var = inb(0x42); var |= (inb(0x42) << 8); }
#define LATCH2 0x8000
#define LATCH_CNT0() \
outb(0xd2, 0x43);
#define LATCH_CNT0_AND_2() \
outb(0xda, 0x43);
#define LATCH_CNT2() \
outb(0xd8, 0x43);
static inline long RTIME_to_8254_ticks(long t)
{
return t / (NSECS_PER_SEC / CLOCK_TICK_RATE);
}
static int _8254_setperiodic (clockid_t c, hrtime_t interval)
{
long t;
t = RTIME_to_8254_ticks (interval) + 1;
if(t < 2)
t = 2;
else if ( t > 0xffff )
t = 0xffff;
outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
WRITE_COUNTER_ZERO16 (t);
_i8254_clock.value = gethrtime();
_i8254_clock.resolution = interval;
_i8254_clock.arch.istimerset = 1;
return 0;
}
static int _8254_setoneshot (clockid_t c, hrtime_t interval)
{
long t;
t = RTIME_to_8254_ticks (interval);
if (t < 1)
t = 1;
else if (t > 0xffff)
t = 0xffff;
WRITE_COUNTER_ZERO_ONESHOT(t);
_i8254_clock.arch.istimerset = 1;
return 0;
}
int _8254_settimermode (struct rtl_clock *c, int mode)
{
if (mode == RTL_CLOCK_MODE_PERIODIC) {
outb_p(0x30, 0x43);/* 8254, channel 0, mode 0, lsb+msb */
outb_p(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */
_i8254_clock.mode = mode;
_i8254_clock.settimer = _8254_setperiodic;
_i8254_clock.arch.count_irqs = 0;
} else if (mode == RTL_CLOCK_MODE_ONESHOT) {
outb_p(0x30, 0x43); /* 8254, channel 0, mode 0, lsb+msb */
_i8254_clock.mode = mode;
_i8254_clock.settimer = _8254_setoneshot;
_i8254_clock.resolution = HRTICKS_PER_SEC / CLOCK_TICK_RATE;
} else {
return -EINVAL;
}
return 0;
}
static unsigned int _8254_irq(unsigned int irq, struct pt_regs *regs)
{
/* keep track of the cycle timer */
__u32 x;
rdtscl(x);
hrtime_last_tick += ((hrtime_t)(x - cycles_last_tick) * (hrtime_t)NSECS_PER_SEC) / (ulong)hwrpb->cycle_freq;
cycles_last_tick = x;
if (_i8254_clock.mode == RTL_CLOCK_MODE_PERIODIC) {
if (test_and_set_bit(0, &_i8254_clock.arch.count_irqs)) {
_i8254_clock.value += _i8254_clock.resolution;
}
} else {
_i8254_clock.arch.istimerset = 0;
}
rtl_hard_enable_irq(0);
_i8254_clock.handler(regs);
return 0;
}
static int _8254_init (clockid_t clock)
{
int flags;
rtl_no_interrupts (flags);
rdtscl(cycles_last_tick);
if ( rtl_request_global_irq(0, _8254_irq) )
{
printk("_8254_init(): failed to get irq for timer\n");
return -1;
}
_8254_settimermode (clock, RTL_CLOCK_MODE_ONESHOT);
rtl_restore_interrupts (flags);
return 0;
}
static void _8254_uninit (clockid_t clock)
{
if (clock -> mode == RTL_CLOCK_MODE_UNINITIALIZED) {
return;
}
clock->handler = RTL_CLOCK_DEFAULTS.handler;
rtl_free_global_irq(0);
clock -> mode = RTL_CLOCK_MODE_UNINITIALIZED;
}
hrtime_t _gethrtime(struct rtl_clock *c)
{
return gethrtime();
}
hrtime_t gethrtime(void)
{
u32 x = 0;
rdtscl(x);
x -= cycles_last_tick;
return (((ulong)x * (ulong)NSECS_PER_SEC) / (ulong)hwrpb->cycle_freq)
+ hrtime_last_tick;
}
hrtime_t gethrtimeres(void)
{
return NSECS_PER_SEC / hwrpb->cycle_freq;
}
int rtl_create_clock_8254(void)
{
_i8254_clock = RTL_CLOCK_DEFAULTS;
_i8254_clock.gethrtime = _gethrtime;
_i8254_clock.init = _8254_init;
_i8254_clock.uninit = _8254_uninit;
_i8254_clock.settimermode = _8254_settimermode;
return 0;
}
clockid_t rtl_getbestclock (unsigned int cpu)
{
return &_i8254_clock;
}
int init_module (void)
{
rtl_create_clock_8254();
rtl_init_standard_clocks();
return 0;
}
void cleanup_module(void)
{
rtl_cleanup_standard_clocks();
_8254_uninit(&_i8254_clock);
}
|