File: rt_ipc.c

package info (click to toggle)
rtlinux 3.1pre3-3
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 4,896 kB
  • ctags: 4,228
  • sloc: ansic: 26,204; sh: 2,069; makefile: 1,414; perl: 855; tcl: 489; asm: 380; cpp: 42
file content (856 lines) | stat: -rw-r--r-- 31,449 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/*
 *  rt_ipc.c -- intertask communication primitives for Real-Time Linux
 *
 *  Copyright (C) 1997 Jerry Epplin.  All rights reserved.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *  History:
 *   17-Jul-97 jhe  V0.1 Original.
 *   28-Jul-97 jhe  V0.2 Timeouts on semaphores.  Message queues.
 *   15-Aug-97 jhe  V0.3 rt_ipc fifos.  Modified semantics of timeouts.
 */

#define IPC_VERSION "0.3"

#include <linux/module.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>

#include <asm/system.h>
#include <linux/malloc.h>
#include <rtl_sched.h>
#include <rtl_sync.h>
#include <rtl_fifo.h>
#include <asm/rt_irq.h>

#include "rt_ipc.h"

extern int rtl_schedule(void);

#include <rtl_sync.h>
#ifdef CONFIG_SMP
#error rt_ipc does not work on SMP yet
extern spinlock_t fifo_spinlock;
#define RTL_SPIN_LOCK fifo_spinlock
#endif

#define IPC_DATA_INDEX 0
/*************************************************************************
 * rt_sem_init -- initialize a real-time semaphore
 *
 * Called to initialize a real-time semaphore.  'sem' must point to a
 * statically allocated structure.  'type' is RT_SEM_BINARY or 
 * RT_SEM_COUNTING.  'init_val' is the initial value of the semaphore
 * (usually 0).
 *
 * Returns 0 if successful, -EINVAL if called incorrectly.
 *************************************************************************/
int rt_sem_init(rt_sem_t *sem, RT_SEMTYPE type, int init_val)
{
  int ret = 0;
  if (init_val < 0 || (type == RT_SEM_BINARY && init_val > 1))
    ret = -EINVAL;		/* binary sem must have 0 or 1 */
  else
  {
    sem->magic = RT_SEM_MAGIC;
    sem->val = init_val;
    sem->type = type;
    sem->wait_list = NULL;
  }
  return ret;
}

/*************************************************************************
 * rt_sem_destroy -- remove a real-time semaphore
 *
 * Removes a semaphore previously created with rt_sem_init().  Semaphore
 * deletion safety is implemented; i.e., any tasks blocked on this 
 * semaphore when it is destroyed are allowed to run.
 *
 * Returns 0 if successful, -EINVAL if 'sem' is not a valid rt_sem_t.
 *************************************************************************/
int rt_sem_destroy(rt_sem_t *sem)
{
  int ret = 0;
  if (sem->magic != RT_SEM_MAGIC)
    ret = -EINVAL;
  else
    /* unblock any tasks blocked on this sem */
    while (sem->val < 0)
      rt_sem_post(sem);
  return ret;
}

/*************************************************************************
 * unlink_sem_task -- remove a task from a wait list
 *
 * Removes a task from the list of tasks waiting on a semaphore.
 *************************************************************************/
static void unlink_sem_task(RT_TASK_ENTRY *to_unlink, rt_sem_t *sem)
{
  if (to_unlink->next != NULL)
    to_unlink->next->prev = to_unlink->prev;
  if (to_unlink->prev == NULL)
    sem->wait_list = to_unlink->next;
  else
    to_unlink->prev->next = to_unlink->next;
}

/*************************************************************************
 * unlink_mq_task -- remove a task from a wait list
 *
 * Removes a task from the list of tasks waiting on a message queue.
 *************************************************************************/
static void unlink_mq_task(RT_TASK_ENTRY *to_unlink, rt_mq_t *mq)
{
  if (to_unlink->next != NULL)
    to_unlink->next->prev = to_unlink->prev;
  if (to_unlink->prev == NULL)
    mq->wait_list = to_unlink->next;
  else
    to_unlink->prev->next = to_unlink->next;
}

/* cope with the changed priority system */
#define GET_PRIO(task) (sched_get_priority_max(0) - (*(task))->sched_param.sched_priority)

#define rtl_current (pthread_self()->user[IPC_DATA_INDEX])
/* #define rtl_current ((LOCAL_SCHED)-> rtl_current); */
/*************************************************************************
 * rt_sem_post -- semaphore post operation
 *
 * The semaphore post (sometimes known as 'give', 'signal', or 'V') operation.
 * If tasks are waiting for the semaphore, the one with the highest priority
 * is allowed to run.
 *
 * Returns 0 if successful, or -EINVAL if the semaphore is not valid.
 *************************************************************************/
int rt_sem_post(rt_sem_t *sem)
{
  int ret = 0;
  int flags;
  if (sem->magic != RT_SEM_MAGIC)
    ret = -EINVAL;		/* invalid rt_sem_t structure */
  else
  {
    RT_TASK_ENTRY *to_run = NULL;
    rtl_critical(flags);
    if (sem->val < 0)	/* one or more tasks are waiting for this sem */
    {
      /* find the waiting task with the highest priority */
      RT_TASK_ENTRY *t;
      /* search exhaustively all waiting tasks.  I don't want to keep */
      /* the list in priority order because I don't want to assume    */
      /* the task priorities won't change.                            */
      for (t=sem->wait_list ; t!=NULL ; t=t->next)
        if (to_run == NULL || GET_PRIO(t->task) < GET_PRIO(to_run->task))
          to_run = t;
      /* remove the task to be run from the wait_list */
      unlink_sem_task(to_run, sem);
      /* mark that task as no longer waiting at sem */
      ((RT_TASK_IPC *)(to_run->task))->sem_at = NULL;
    }
    /* binary semaphores never exceed 1 */
    if (sem->val < 1 || sem->type == RT_SEM_COUNTING)
      ++sem->val;
    if (to_run != NULL)
    {
      /* rt_sem_wait() returned because of a post, not */
      /* because of a timeout */
      ((RT_TASK_IPC *)(to_run->task))->timed_out = 0;
      rt_task_wakeup(to_run->task);
    }
    rtl_end_critical(flags);
  }
  return ret;
}

/*************************************************************************
 * rt_sem_wait -- semaphore wait operation (blocking)
 *
 * The semaphore wait (sometimes known as 'take' or 'P') operation.
 * If the semaphore is not available, the calling task blocks until
 * it is.  'timeout' is an optional timeout period.  If 'timeout' is
 * RT_WAIT_FOREVER, the function does not time out.  If 'timeout' is
 * RT_NO_WAIT and the semaphore is not available, rt_sem_wait() returns
 * immediately.  If 'timeout' is any other value, it represent a time 
 * at which the call to rt_sem_wait() should time out.  If that time
 * is reached, rt_sem_wait() returns with -ETIME.
 *
 * Returns 0 if successful, -ETIME if the operation timed out, -EAGAIN if
 * RT_NO_WAIT was specified and the semaphore was not available, or -EINVAL
 * if the semaphore is not valid.
 *************************************************************************/
int rt_sem_wait(rt_sem_t *sem, RTIME timeout)
{
  int ret = 0;
  int flags;
  if (sem->magic != RT_SEM_MAGIC)
    ret = -EINVAL;		/* invalid rt_sem_t structure */
  else
  {
	  rtl_critical(flags);
    if (sem->val <= 0)		/* sem not available -- task must wait */
    {
      if (timeout == RT_NO_WAIT)
        ret = -EAGAIN;
      else
      {
        RT_TASK_ENTRY *to_add = &(((RT_TASK_IPC *)rtl_current)->rte);
        /* put task on wait_list */
        to_add->task = rtl_current;
        to_add->prev = NULL;
        to_add->next = sem->wait_list;
        if (to_add->next != NULL)
          to_add->next->prev = to_add;
        sem->wait_list = to_add;
        /* indicate which sem the task is blocked at */
        ((RT_TASK_IPC *)rtl_current)->sem_at = sem;
        /* and decrement sem value */
        --sem->val;
        /* and finally, block */
        if (timeout == RT_WAIT_FOREVER)
          rt_task_suspend(rtl_current);	/* suspend until post */
        else
        {
          /* assume call timed out.  If this is not the case, */
          /* rt_sem_post() will clear this flag */
          ((RT_TASK_IPC *)rtl_current)->timed_out = 1;
          /* delay until either post occurs or timeout occurs */
          rt_task_delay(timeout);
          if (((RT_TASK_IPC *)rtl_current)->timed_out)
          {
            /* timeout occurred -- undo everything and return */
            unlink_sem_task(to_add, sem);
            ++sem->val;
            ret = -ETIME;
          }
        }
      }
    }
    else
      --sem->val;
   rtl_end_critical(flags);
  }
  return ret;
}

/*************************************************************************
 * rt_sem_trywait -- semaphore wait operation (unblocking)
 *
 * The semaphore wait (sometimes known as 'take' or 'P') operation.
 * The function returns immediately whether or not the semaphore is
 * available.
 *
 * Returns 0 if successful, -EAGAIN if the semaphore is not available,
 * or -EINVAL if the semaphore is not valid.
 *************************************************************************/
int rt_sem_trywait(rt_sem_t *sem)
{
  int ret = 0;
  int flags;
  if (sem->magic != RT_SEM_MAGIC)
    ret = -EINVAL;		/* invalid rt_sem_t structure */
  else
  {
	  rtl_critical(flags);
    if (sem->val <= 0)		/* sem not available -- task must wait */
      ret = -EAGAIN;
    else
      --sem->val;
    rtl_end_critical(flags);
  }
  return ret;
}

/*************************************************************************
 * rt_task_ipc_init -- rt_ipc version of rt_task_init()
 *
 * RT-Linux programs using rt_ipc should use rt_task_ipc_init instead of
 * rt_task_init().  It initializes some rt_ipc variables, then calls
 * rt_task_init().  Note that all parameters are the same as in rt_task_init()
 * except 'task', which is an RT_TASK_IPC instead of an RT_TASK.
 *
 * Returns 0 if successful, -EINVAL if the 'task' structure is already in
 * use by another task, or -ENOMEM if a memory allocation error occurred.
 *************************************************************************/
int rt_task_ipc_init(RT_TASK_IPC *task, void (*fn)(int data), int data,
  int stack_size, int priority)
{
  /* initially task is not blocked on a semaphore */
  int ret;
  task->sem_at = NULL;
  task->magic = RT_TASK_IPC_MAGIC;
  ret = rt_task_init(MAKE_RT_TASK(task), fn, data, stack_size, priority);
  if (ret < 0) {
	  return ret;
  }
  (*MAKE_RT_TASK(task))->user[IPC_DATA_INDEX] = task;
  return 0;
}

/*************************************************************************
 * rt_task_ipc_delete -- rt_ipc version of rt_task_delete()
 *
 * RT-Linux programs using rt_ipc should use rt_task_ipc_delete instead of
 * rt_task_delete().  It removes the task from any semaphore or message queue
 * it is in, then calls rt_task_delete().  Note that its parameter is an
 * RT_TASK_IPC instead of an RT_TASK.
 *
 * Returns 0 if successful, or -EINVAL if 'task' does not refer to a valid
 * task.
 *************************************************************************/
int rt_task_ipc_delete(RT_TASK_IPC *task)
{
  int ret = 0;
  if (task->magic != RT_TASK_IPC_MAGIC)
    ret = EINVAL;
  else
  {
    /* for task deletion safety, must remove task from any sem or mq list */
    int flags;

    rtl_critical(flags);
    if (task->sem_at != NULL)
      unlink_sem_task(&(task->rte), task->sem_at);
    else if (task->mq_at != NULL)
      unlink_mq_task(&(task->rte), task->mq_at);
    rtl_end_critical(flags);
    ret = rt_task_delete(MAKE_RT_TASK(task));
  }
  return ret;
}

/*************************************************************************
 * rt_task_delay -- delay task 
 *
 * Delays the calling task until the time specified in 'duration'.
 *
 * Always returns 0.
 *************************************************************************/
int rt_task_delay(RTIME duration)
{
  int ret = 0;
  int flags;
	  rtl_critical(flags);
  /* mark the task as delayed */
  pthread_self()->period = 0;
  RTL_MARK_SUSPENDED(pthread_self());
  __rtl_setup_timeout(pthread_self(), HRT_FROM_8254(duration));
  /* set the time at which execution may resume */
  rtl_schedule();
  rtl_end_critical(flags);
  return ret;
}

/*************************************************************************
 * rt_mq_init -- initialize a real-time message queue
 *
 * Called to initialize a real-time message queue.  'mq' must point to a
 * statically allocated structure.  'max_msgs' is the maximum number of
 * messages allowed, and 'msg_size' is the size of each message.
 *
 * Returns 0 if successful, -ENOMEM if space for the queue could not be
 * allocated, or -EINVAL if called incorrectly.
 *************************************************************************/
int rt_mq_init(rt_mq_t *mq, int max_msgs, int msg_size)
{
  int ret = 0;
  if (max_msgs <= 0 || msg_size < 0)
    ret = -EINVAL;		/* must be positive */
  else
  {
    mq->magic = RT_MQ_MAGIC;
    mq->wait_list = NULL;
    mq->max_msgs = max_msgs;
    mq->msg_size = msg_size;
    /* for efficiency, the max size of the queue data is allocated */
    /* all in one piece at init time */
    if ((mq->q = kmalloc(max_msgs * msg_size, GFP_KERNEL)) == NULL)
      ret = -ENOMEM;
    else
    {
      mq->status = RT_MQ_EMPTY;
      mq->f = mq->r = mq->q;		/* initialize queue pointers */
    }
  }
  return ret;
}

/*************************************************************************
 * rt_mq_destroy -- remove a real-time message queue
 *
 * Removes a message queue previously created with rt_mq_create().  Message
 * queue deletion safety is implemented; i.e., any tasks blocked on this 
 * message queue when it is destroyed are allowed to run.
 *
 * Returns 0 if successful, -EINVAL if 'sem' is not a valid rt_sem_t.
 *************************************************************************/
int rt_mq_destroy(rt_mq_t *mq)
{
  int ret = 0;
  if (mq->magic != RT_MQ_MAGIC)
    ret = -EINVAL;
  else
  {
    /* unblock any tasks blocked on this message queue */
    while (rt_mq_send(mq, NULL, RT_MQ_NORMAL, RT_NO_WAIT) != 0)
      ;
    while (rt_mq_receive(mq, NULL, RT_NO_WAIT) != 0)
      ;
    kfree_s(mq->q, mq->max_msgs * mq->msg_size);
  }
  return ret;
}

/*************************************************************************
 * enqueue -- enqueue data
 *
 * Enqueues a block of data on the queue 'mq' with priority 'prio'.
 * An RT_MQ_NORMAL block goes to the rear of the queue, while an RT_MQ_URGENT
 * block goes to the front.  The status is set appropriately as RT_MQ_FULL
 * or RT_MQ_NEITHER.  enqueue() should not be called when RT_MQ_FULL.
 *************************************************************************/
static void enqueue(rt_mq_t *mq, char *msg, RT_MQ_PRIO prio)
{
  if (prio == RT_MQ_NORMAL)
  {
    if (msg != NULL)
      memcpy(mq->r, msg, mq->msg_size);
    /* check for wraparound */
    if ((mq->r += mq->msg_size) == mq->q + mq->msg_size * mq->max_msgs)
      mq->r = mq->q;
  }
  else	/* prio == RT_MQ_URGENT */
  {
    /* check for wraparound */
    if (mq->f == mq->q)
      mq->f = mq->q + mq->msg_size * (mq->max_msgs- 1) ;
    else
      mq->f -= mq->msg_size;
    if (msg != NULL)
      memcpy(mq->f, msg, mq->msg_size);
  }
  if (mq->f == mq->r)		/* queue is now full */
    mq->status = RT_MQ_FULL;
  else
    mq->status = RT_MQ_NEITHER;
}

/*************************************************************************
 * dequeue -- dequeue data
 *
 * Dequeues a block of data from the queue 'mq'.  The status is set
 * appropriately as RT_MQ_EMPTY or RT_MQ_NEITHER.  dequeue() should not
 * be called when RT_MQ_EMPTY.
 *************************************************************************/
static void dequeue(rt_mq_t *mq, char *msg)
{
  if (msg != NULL)
    memcpy(msg, mq->f, mq->msg_size);
  /* check for wraparound */
  if ((mq->f += mq->msg_size) == mq->q + mq->msg_size * mq->max_msgs)
    mq->f = mq->q;
  if (mq->r == mq->f)		/* queue is now empty */
    mq->status = RT_MQ_EMPTY;
  else
    mq->status = RT_MQ_NEITHER;
}

/*************************************************************************
 * rt_mq_send -- message queue send operation
 *
 * Enqueues the data 'msg' on the message queue 'mq'.  The data is assumed
 * to be of the size with which rt_mq_init() was called.  If 'prio' is
 * RT_MQ_NORMAL, the data is queued at the end. If 'prio' is RT_MQ_URGENT,
 * the data is forced to the front of the queue.  'wait' specifies an
 * optional timeout period.  If 'wait' is RT_NO_WAIT, rt_mq_send()
 * returns immediately even if no space for the message is present.  If
 * 'wait' is RT_WAIT_FOREVER, no timeout occurs.  If 'wait' is any other
 * value, it reflects the time at which rt_mq_send() will wake up and
 * return with -ETIME.
 *
 * Returns 0 if successful, -ETIME if the operation timed out, -EAGAIN if
 * RT_NO_WAIT was specified and the operation could not be completed
 * immediately, or -EINVAL if the rt_mq_t is not valid.
 *************************************************************************/
int rt_mq_send(rt_mq_t *mq, char *msg, RT_MQ_PRIO prio, RTIME wait)
{
  int ret = 0;
  if (mq->magic != RT_MQ_MAGIC)
    ret = -EINVAL;		/* invalid rt_mq_t structure */
  else
  {
    int flags;

    rtl_critical(flags);
    switch (mq->status)
    {
    case RT_MQ_FULL:	/* q full -- this task must wait */
    {
      if (wait == RT_NO_WAIT)
        ret = -EAGAIN;	/* can't queue it -- just report error */
      else	/* wait is allowed */
      {
        RT_TASK_ENTRY *to_add = &(((RT_TASK_IPC *)rtl_current)->rte);
        /* put task on wait_list */
        to_add->task = rtl_current;
        to_add->prev = NULL;
        to_add->next = mq->wait_list;
        if (to_add->next != NULL)
          to_add->next->prev = to_add;
        mq->wait_list = to_add;
        /* indicate which mq the task is blocked at */
        ((RT_TASK_IPC *)rtl_current)->mq_at = mq;
        if (wait == RT_WAIT_FOREVER)
          rt_task_suspend(rtl_current);	/* suspend until receive */
        else
        {
          /* assume call timed out.  If this is not the case, */
          /* rt_mq_receive() will clear this flag */
          ((RT_TASK_IPC *)rtl_current)->timed_out = 1;
          /* delay until either receive occurs or timeout occurs */
          rt_task_delay(wait);
          if (((RT_TASK_IPC *)rtl_current)->timed_out)
          {
            /* timed out -- undo everything and return */
            unlink_mq_task(to_add, mq);
            ret = -ETIME;
            break;
          }
        }
        /* when again allowed to run, enqueue the data */
        enqueue(mq, msg, prio);		/* finally, enqueue the data */
      }
      break;
    }
    case RT_MQ_EMPTY:	/* q empty -- this operation might unblock a task */
    {
      RT_TASK_ENTRY *t, *to_run;
      enqueue(mq, msg, prio);	/* first, go ahead and enqueue the data */
      /* find the waiting task with the highest priority */
      /* search exhaustively all waiting tasks.  I don't want to keep */
      /* the list in priority order because I don't want to assume    */
      /* the task priorities won't change.                            */
      for (t=mq->wait_list, to_run=NULL ; t!=NULL ; t=t->next)
        if (to_run == NULL || GET_PRIO(t->task) < GET_PRIO(to_run->task))
          to_run = t;
      if (to_run != NULL)
      {
        /* remove the task to be run from the wait_list */
        unlink_mq_task(to_run, mq);
        /* mark that task as no longer waiting at mq */
        ((RT_TASK_IPC *)(to_run->task))->mq_at = NULL;
        /* rt_mq_receive() will return because of a send, not */
        /* because of a timeout */
        ((RT_TASK_IPC *)(to_run->task))->timed_out = 0;
        rt_task_wakeup(to_run->task);
      }
      break;
    }
    case RT_MQ_NEITHER:		/* space exists for new entry -- put it in */
      enqueue(mq, msg, prio);
      break;
    }
    rtl_end_critical(flags);
  }
  return ret;
}

/*************************************************************************
 * rt_mq_receive -- message queue receive operation
 *
 * Dequeues the data 'msg' from the message queue 'mq'.  The data will 
 * be of the size with which rt_mq_init() was called.  'wait' specifies an
 * optional timeout period.  If 'wait' is RT_NO_WAIT, rt_mq_receive()
 * returns immediately even if no messages are present.  If
 * 'wait' is RT_WAIT_FOREVER, no timeout occurs.  If 'wait' is any other
 * value, it reflects the time at which rt_mq_receive() will wake up
 * and return with -ETIME.
 *
 * Returns 0 if successful, -ETIME if the operation timed out, -EAGAIN if
 * RT_NO_WAIT was specified and the operation could not be completed
 * immediately, or -EINVAL if the rt_mq_t is not valid.
 *************************************************************************/
int rt_mq_receive(rt_mq_t *mq, char *msg, RTIME wait)
{
  int ret = 0;
  if (mq->magic != RT_MQ_MAGIC)
    ret = -EINVAL;		/* invalid rt_mq_t structure */
  else
  {
    int flags;

    rtl_critical(flags);
    switch (mq->status)
    {
    case RT_MQ_EMPTY:	/* q empty -- this task must wait */
    {
      if (wait == RT_NO_WAIT)
        ret = -EAGAIN;	/* can't dequeue it -- just report error */
      else	/* wait is allowed */
      {
        RT_TASK_ENTRY *to_add = &(((RT_TASK_IPC *)rtl_current)->rte);
        /* put task on wait_list */
        to_add->task = rtl_current;
        to_add->prev = NULL;
        to_add->next = mq->wait_list;
        if (to_add->next != NULL)
          to_add->next->prev = to_add;
        mq->wait_list = to_add;
        /* indicate which mq the task is blocked at */
        ((RT_TASK_IPC *)rtl_current)->mq_at = mq;
        if (wait == RT_WAIT_FOREVER)
          rt_task_suspend(rtl_current);	/* suspend until receive */
        else
        {
          /* assume call timed out.  If this is not the case, */
          /* rt_mq_send() will clear this flag */
          ((RT_TASK_IPC *)rtl_current)->timed_out = 1;
          /* delay until either send occurs or timeout occurs */
          rt_task_delay(wait);
          if (((RT_TASK_IPC *)rtl_current)->timed_out)
          {
            /* timed out -- undo everything and return */
            unlink_mq_task(to_add, mq);
            ret = -ETIME;
            break;
          }
        }
        /* when again allowed to run, enqueue the data */
        dequeue(mq, msg);		/* finally, dequeue the data */
      }
      break;
    }
    case RT_MQ_FULL:	/* q full -- this operation might unblock a task */
    {
      RT_TASK_ENTRY *t, *to_run;
      dequeue(mq, msg);		/* first, go ahead and dequeue the data */
      /* find the waiting task with the highest priority */
      /* search exhaustively all waiting tasks.  I don't want to keep */
      /* the list in priority order because I don't want to assume    */
      /* the task priorities won't change.                            */
      for (t=mq->wait_list, to_run=NULL ; t!=NULL ; t=t->next)
        if (to_run == NULL || GET_PRIO(t->task) < GET_PRIO(to_run->task))
          to_run = t;
      if (to_run != NULL)
      {
        /* remove the task to be run from the wait_list */
        unlink_mq_task(to_run, mq);
        /* mark that task as no longer waiting at mq */
        ((RT_TASK_IPC *)(to_run->task))->mq_at = NULL;
        /* rt_mq_send() will return because of a receive, not */
        /* because of a timeout */
        ((RT_TASK_IPC *)(to_run->task))->timed_out = 0;
        rt_task_wakeup(to_run->task);
      }
      break;
    }
    case RT_MQ_NEITHER:		/* data is present -- take it out */
      dequeue(mq, msg);
      break;
    }
    rtl_end_critical(flags);
  }
  return ret;
}

typedef struct
{
  rt_sem_t sem;
} RT_IPC_FIFO;		/* structure holding rt_ipc rt-fifo-specific data */

static RT_IPC_FIFO ipc_fifos[IPC_RTF_NO];	/* rt_ipc-specific fifo data */

/*************************************************************************
 * rtf_ipc_handler -- handler for read/write operations on rt_ipc rt-fifo
 *
 * Called when a read or write operation is performed on an rt_ipc rt-fifo
 * by a Linux process.
 *
 * Returns 0.
 *************************************************************************/
static int rtf_ipc_handler(unsigned int fifo)
{
  return rt_sem_post(&ipc_fifos[fifo].sem);
}

/*************************************************************************
 * rtf_ipc_create -- create an rt_ipc rt-fifo
 *
 * Creates the rt_ipc rt-fifo 'fifo'.  This has the same capabilities as
 * the standard RT-Linux rt-fifos but adds blocking.  'size' is the size
 * of the fifo in bytes.  If 'rtl_to_linux' is 1, the fifo is used for
 * transferring data from RT-Linux tasks to a Linux process.  If 'rtl_to_linux'
 * is 0, the fifo is used for transferring data from a Linux process to
 * one or more RT-Linux tasks.
 *
 * Returns 0 if successful, -ENODEV if 'fifo' is not less than IPC_RTF_NO
 * and RTF_NO, -EBUSY if 'fifo' is in use, or -ENOMEM if 'size' bytes could
 * not be allocated.
 *************************************************************************/
int rtf_ipc_create(unsigned int fifo, int size, int rtl_to_linux)
{
  int ret = 0;
  if (fifo >= IPC_RTF_NO)
    ret = -ENODEV;
  else if ((ret = rtf_create(fifo, size)) >= 0)
  {
    /* init the semaphores -- initially no data is ready to receive, but */
    /* data can be sent */
    if ((ret = rt_sem_init(&ipc_fifos[fifo].sem, RT_SEM_BINARY, rtl_to_linux)) >= 0)
      ret = rtf_create_handler(fifo, &rtf_ipc_handler);
  }
  return ret;
}

/*************************************************************************
 * rtf_ipc_destroy -- destroy an rt_ipc rt-fifo
 *
 * Removes the rt_ipc rt-fifo 'fifo' previously created with rt_ipc_create().
 *
 * Returns 0 if successful, -EINVAL if 'fifo' is not a valid fifo identifier.
 *************************************************************************/
int rtf_ipc_destroy(unsigned int fifo)
{
  int ret;
  if ((ret = rt_sem_destroy(&ipc_fifos[fifo].sem)) >= 0)
    ret = rtf_destroy(fifo);
  return ret;
}

/*************************************************************************
 * rtf_receive -- get data from an rt_ipc rt-fifo
 *
 * Gets data from the rt-fifo 'fifo'.  The data, up to size 'count', is put
 * into 'buf'.  If 'timeout' is RT_NO_WAIT, the function returns immediately
 * even if 'count' bytes are not available.  If 'timeout' is RT_WAIT_FOREVER,
 * the function blocks until 'count' bytes are available.  If 'timeout' is
 * any other value, it represents the time at which the function will return
 * with a timeout after unsuccessfully waiting for data.  In any case, as
 * many bytes as possible are returned, even if a timeout occurs or
 * RT_NO_WAIT is specified.
 *
 * Returns -ENODEV if 'fifo' is greater than or equal to RTF_NO, -EINVAL if
 * 'fifo' is not a valid fifo identifier.  If the return value is greater
 * than or equal to zero, it represents the number of bytes received.
 * This might be less than 'count' if the function timed out or RT_NO_WAIT
 * was specified and less than 'count' bytes were available.
 *************************************************************************/
int rtf_receive(unsigned int fifo, void *buf, int count, RTIME timeout)
{
  int ret = 0, bytes_still_to_get=count;
  for ( ; bytes_still_to_get > 0 ; )
  {
    if ((ret = rtf_get(fifo, buf, bytes_still_to_get)) < 0)
      break;
    bytes_still_to_get -= ret;
    buf += ret;
    if (bytes_still_to_get != 0)
      if ((ret = rt_sem_wait(&ipc_fifos[fifo].sem, timeout)) < 0)
        break;
  }
  if (ret == -ETIME || ret == -EAGAIN)
    return count - bytes_still_to_get;
  else if (ret < 0)
    return ret;
  else
  {
    /* Note the questionable assumption -- I signal that data is available    */
    /* for receiving any time rtf_receive() returns successfully.  Thus the   */
    /* assumption is that if 'count' bytes are available, there must be more. */
    /* Obviously wrong if the fifo has exactly 'count' bytes available when   */
    /* called.  I have to make this assumption because I have no way of       */
    /* knowing how many bytes are available in the fifo.  The only effect of  */
    /* this is that a task waiting on the semaphore may go one more time      */
    /* through the loop before again waiting at the semaphore.                */
    if ((ret = rt_sem_post(&ipc_fifos[fifo].sem)) < 0)
      return ret;
    else
      return count;
  }
}

/*************************************************************************
 * rtf_send -- send data to an rt_ipc rt-fifo
 *
 * Sends data to the rt-fifo 'fifo'.  The data, of size 'count', is taken
 * from 'buf'.  If 'timeout' is RT_NO_WAIT, the function returns immediately
 * even if 'count' bytes cannot be sent.  If 'timeout' is RT_WAIT_FOREVER,
 * the function blocks until 'count' bytes can be sent.  If 'timeout' is
 * any other value, it represents the time at which the function will return
 * with a timeout after unsuccessfully waiting to send the data.  If 
 * rtf_send() cannot send the entire block, no data is sent.
 *
 * Returns -ENODEV if 'fifo' is greater than or equal to RTF_NO, -EINVAL if
 * 'fifo' is not a valid fifo identifier.  If the return value is greater
 * than or equal to zero, it represents the number of bytes sent.
 * This might be zero if the function timed out or RT_NO_WAIT
 * was specified and less than 'count' bytes could be sent.
 *************************************************************************/
int rtf_send(unsigned int fifo, void *buf, int count, RTIME timeout)
{
  int ret = 0, bytes_still_to_send=count;
  for ( ; bytes_still_to_send > 0 ; )
  {
    /* Note the asymmetry between rtf_send() and rtf_receive() due to the   */
    /* fact that rtf_put() returns -ENOSPC if it cannot place all bytes on  */
    /* the fifo, whereas rtf_get() returns as many bytes as it can, even if */
    /* it cannot return all bytes requested.  Also, rtf_put() returns the   */
    /* number of bytes not written, whereas rtf_get() returns the number of */
    /* bytes successfully read. */
    ret = rtf_put(fifo, buf, bytes_still_to_send);
    if (ret == -ENOSPC)
      ret = 0;
    else if (ret < 0)
      break;
    /* correct for fact that ret is number of bytes NOT yet sent */
    ret = (bytes_still_to_send - ret);
    bytes_still_to_send -= ret;
    buf += ret;
    if (bytes_still_to_send != 0)
      if ((ret = rt_sem_wait(&ipc_fifos[fifo].sem, timeout)) < 0)
        break;
  }
  if (ret == -ETIME || ret == -EAGAIN)
    return count - bytes_still_to_send;
  else if (ret < 0)
    return ret;
  else
  {
    /* Note the questionable assumption -- I signal that space is available   */
    /* for sending any time rtf_send() returns successfully.  Thus the        */
    /* assumption is that if 'count' bytes could be sent, there must be room  */
    /* for more.  Obviously wrong if the fifo has exactly 'count' bytes empty */
    /* when called.  I have to make this assumption because I have no way of  */
    /* knowing how many bytes are available in the fifo.  The only effect of  */
    /* this is that a task waiting on the semaphore may go one more time      */
    /* through the loop before again waiting at the semaphore.                */
    if ((ret = rt_sem_post(&ipc_fifos[fifo].sem)) < 0)
      return ret;
    else
      return count;
  }
}

int init_module(void)
{
  printk("rt_ipc V" IPC_VERSION " -- IPC primitives for use with Real-Time Linux\n");
  printk("Copyright (C) 1997 Jerry Epplin.  All rights reserved.\n");
  return 0;
}

void cleanup_module(void)
{
  printk("rt_ipc -- removed.\n");
}