1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
#include "bufferpool.h"
#include <glib.h>
#include <stdbool.h>
#include "obj.h"
static_assert((BUFFERPOOL_SHARD_SIZE & (BUFFERPOOL_SHARD_SIZE - 1)) == 0,
"BUFFERPOOL_SHARD_SIZE is not a power of two");
struct bpool_shard;
struct bufferpool {
void *(*alloc)(void);
void (*dealloc)(void *);
unsigned int refs; // sum of all refs from shards, plus the handle itself
rwlock_t shards_lock;
struct bpool_shard **shards;
unsigned int num_shards;
unsigned int max_shards;
unsigned int empty_shard_idx;
};
struct bpool_shard {
struct bufferpool *bp;
unsigned int refs;
void *buf; // actual head of buffer, given to free()
void *empty; // head of usable buffer, head == empty if empty
void *end;
void *head;
unsigned int (*recycle)(void *);
void *arg;
bool full;
};
struct bufferpool *bufferpool_new(void *(*alloc)(void), void (*dealloc)(void *)) {
struct bufferpool *ret = g_new0(__typeof(*ret), 1);
ret->alloc = alloc;
ret->dealloc = dealloc;
ret->refs = 1; // count the bufferpool handle itself as a reference
rwlock_init(&ret->shards_lock);
ret->max_shards = 8;
ret->shards = g_new0(struct bpool_shard *, ret->max_shards);
return ret;
}
// shard has zero refs and is marked as full
static void bufferpool_recycle(struct bpool_shard *shard) {
struct bufferpool *bp = shard->bp;
atomic_set_na(&shard->head, shard->empty);
unsigned int refs = 0;
if (shard->recycle)
refs = shard->recycle(shard->arg);
if (refs) {
atomic_add(&shard->refs, refs);
atomic_add(&bp->refs, refs);
}
else
atomic_set(&shard->full, false);
}
static void bufferpool_dealloc(struct bpool_shard *shard) {
struct bufferpool *bp = shard->bp;
bp->dealloc(shard->buf);
}
static struct bpool_shard *bufferpool_new_shard(struct bufferpool *bp) {
void *buf = bp->alloc();
if (!buf)
return NULL;
// all bottom bits must be zero
assert(((size_t) buf & BUFFERPOOL_BOTTOM_MASK) == 0);
struct bpool_shard *ret = g_new0(__typeof(*ret), 1);
ret->bp = bp;
ret->buf = buf;
ret->end = buf + BUFFERPOOL_SHARD_SIZE;
struct bpool_shard **head = buf;
*head = ret;
static_assert(BUFFERPOOL_ALIGN(sizeof(void *)) == BUFFERPOOL_OVERHEAD,
"wrong BUFFERPOOL_OVERHEAD size");
buf += BUFFERPOOL_ALIGN(sizeof(void *));
ret->empty = buf;
ret->head = buf;
return ret;
}
static void bpool_shard_destroy(struct bpool_shard *shard) {
bufferpool_dealloc(shard);
g_free(shard);
}
// called when references drop to zero
static void __bufferpool_destroy(struct bufferpool *bp) {
for (unsigned int i = 0; i < bp->num_shards; i++) {
struct bpool_shard *shard = bp->shards[i];
bpool_shard_destroy(shard);
}
g_free(bp->shards);
rwlock_destroy(&bp->shards_lock);
g_free(bp);
}
// may destroy bufferpool
static inline void __bufferpool_unref_n(struct bufferpool *bp, unsigned int n) {
assert(atomic_get_na(&bp->refs) >= n);
unsigned int refs = atomic_sub(&bp->refs, n);
if (refs != n)
return;
// no more references
__bufferpool_destroy(bp);
}
static inline void __bufferpool_unref(struct bufferpool *bp) {
__bufferpool_unref_n(bp, 1);
}
static void bufferpool_shard_unref(struct bpool_shard *shard) {
assert(atomic_get_na(&shard->refs) != 0);
bool full = atomic_get(&shard->full);
unsigned int refs = atomic_dec(&shard->refs);
// if shard was set to full and this was the last reference, we can recycle
if (!full || refs != 1)
return;
// return shard to empty list (or reserve again)
bufferpool_recycle(shard);
}
// must hold reference on the bufferpool
// must hold the lock in R, may intermittently be released
static struct bpool_shard *bufferpool_make_shard(struct bufferpool *bp) {
struct bpool_shard *shard = bufferpool_new_shard(bp);
if (!shard) // epic fail
return NULL;
// Find a place to insert it
while (true) {
unsigned int idx = atomic_get_na(&bp->num_shards);
// Is there room to insert?
if (idx < bp->max_shards) {
// Attempt to insert. Slot must be empty
struct bpool_shard *expected = NULL;
if (!atomic_compare_exchange(&bp->shards[idx], &expected, shard))
continue; // Somebody beat us to it. Try again
// Success. Record the new count
atomic_set(&bp->num_shards, idx + 1);
// We now definitely have a new empty shard. Tell everybody to use it
// and return success
atomic_set_na(&bp->empty_shard_idx, idx);
return shard;
}
// Out of room. Now it gets difficult. We must resize
unsigned int old_size = bp->max_shards;
rwlock_unlock_r(&bp->shards_lock);
// Allocate new array first
unsigned int new_size = old_size * 2;
struct bpool_shard **new_shards = g_new(struct bpool_shard *, new_size);
rwlock_lock_w(&bp->shards_lock);
// Double check, somebody might have beaten us
if (bp->max_shards != old_size) {
// OK, just try again
rwlock_unlock_w(&bp->shards_lock);
g_free(new_shards);
rwlock_lock_r(&bp->shards_lock);
continue;
}
// Copy, initialise, and swap
memcpy(new_shards, bp->shards, sizeof(*bp->shards) * old_size);
memset(new_shards + old_size, 0, sizeof(*bp->shards) * (new_size - old_size));
struct bpool_shard **old_shards = bp->shards;
bp->shards = new_shards;
bp->max_shards = new_size;
rwlock_unlock_w(&bp->shards_lock);
g_free(old_shards);
// OK, now try again
rwlock_lock_r(&bp->shards_lock);
}
}
void *bufferpool_alloc(struct bufferpool *bp, size_t len) {
len = BUFFERPOOL_ALIGN(len);
if (len > BUFFERPOOL_SHARD_SIZE - BUFFERPOOL_OVERHEAD)
return NULL;
atomic_inc(&bp->refs);
// Check existing shards if one has enough room. If not, create a new one
rwlock_lock_r(&bp->shards_lock);
// Outer loop: To retry after creating a new shard if it was needed
while (true) {
unsigned int idx = atomic_get_na(&bp->empty_shard_idx);
unsigned int start = idx;
// Inner loop: To cycle through all existing shards, looking for room
while (true) {
if (idx >= atomic_get_na(&bp->num_shards)) {
if (idx == 0)
break; // we don't have any shards
if (start == 0)
break; // circled around, found nothing
idx = 0;
}
struct bpool_shard *shard = atomic_get_na(&bp->shards[idx]);
// Only attempt allocation if known not to be full. This comes first
if (!atomic_get(&shard->full)) {
// Register as a reference
atomic_inc(&shard->refs);
// Attempt to allocate
void *ret = atomic_add(&shard->head, len);
// Was the allocation successful? (Shard not full)
if (ret + len <= shard->end) {
rwlock_unlock_r(&bp->shards_lock);
// remember empty index for next user
if (idx != start)
atomic_set_na(&bp->empty_shard_idx, idx);
return ret;
}
// Shard full. Go to next one and try again
// Set to full first, then drop reference
atomic_set(&shard->full, true);
bufferpool_shard_unref(shard);
}
idx++;
if (idx == start)
break; // exhausted all our options
}
// Found nothing. Must create new shard and put it into the array
if (!bufferpool_make_shard(bp)) {
// disaster struck
rwlock_unlock_r(&bp->shards_lock);
__bufferpool_unref(bp);
return NULL;
}
}
}
// Get a completely empty shard. Create one if needed.
// XXX can be improved to avoid always using entire shards?
// XXX doesn't currently mix with alloc/unref because of "full" being racy
void *bufferpool_reserve(struct bufferpool *bp, unsigned int refs, unsigned int (*recycle)(void *), void *arg) {
atomic_add(&bp->refs, refs);
rwlock_lock_r(&bp->shards_lock);
struct bpool_shard *shard = bufferpool_make_shard(bp);
if (!shard) {
// disaster struck
rwlock_unlock_r(&bp->shards_lock);
__bufferpool_unref(bp);
return NULL;
}
// set references, set recycle callback
assert(atomic_get_na(&shard->refs) == 0);
atomic_set(&shard->refs, refs);
atomic_set(&shard->full, true);
shard->recycle = recycle;
shard->arg = arg;
return shard->empty;
}
static struct bpool_shard *bpool_find_shard(void *p) {
struct bpool_shard **head = (struct bpool_shard **) ((size_t) p & BUFFERPOOL_TOP_MASK);
return *head;
}
void bufferpool_unref(void *p) {
if (!p)
return;
struct bpool_shard *shard = bpool_find_shard(p);
if (!shard) // should only happen during shutdown
return;
bufferpool_shard_unref(shard);
__bufferpool_unref(shard->bp);
}
// currently called from synchronous context relative to bufferpool_destroy, so no need
// to check for delayed destruction
void bufferpool_release(void *p) {
if (!p)
return;
struct bpool_shard *shard = bpool_find_shard(p);
unsigned int refs = atomic_exchange_na(&shard->refs, 0);
__bufferpool_unref_n(shard->bp, refs);
}
void *bufferpool_ref(void *p) {
if (!p)
return NULL;
struct bpool_shard *shard = bpool_find_shard(p);
assert(atomic_get_na(&shard->refs) != 0);
atomic_inc(&shard->refs);
atomic_inc(&shard->bp->refs);
return p;
}
void bufferpool_destroy(struct bufferpool *bp) {
__bufferpool_unref(bp);
}
void bufferpool_init(void) {
}
void bufferpool_cleanup(void) {
}
void *bufferpool_aligned_alloc(void) {
void *m = aligned_alloc(BUFFERPOOL_SHARD_SIZE, BUFFERPOOL_SHARD_SIZE);
assert(m != NULL);
return m;
}
void bufferpool_aligned_free(void *p) {
free(p);
}
|