1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
/*
* Copyright (c) 2010, Andrea Mazzoleni. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* Trie optimized for cache utilization.
*
* This trie is a standard implementation that stores elements in the order defined
* by the key.
*
* It needs an external allocator for the inner nodes in the trie.
*
* You can control the number of branches of each node using the ::TOMMY_TRIE_TREE_MAX
* define. More branches imply more speed, but a bigger memory occupation.
*
* Compared to ::tommy_trie_inplace you have to provide a ::tommy_allocator allocator.
* Note that the C malloc() is too slow to futfill this role.
*
* To initialize the trie you have to call tommy_allocator_init() to initialize
* the allocator, and tommy_trie_init() for the trie.
*
* \code
* tommy_allocator alloc;
* tommy_trie trie;
*
* tommy_allocator_init(&alloc, TOMMY_TRIE_BLOCK_SIZE, TOMMY_TRIE_BLOCK_SIZE);
*
* tommy_trie_init(&trie, &alloc);
* \endcode
*
* To insert elements in the trie you have to call tommy_trie_insert() for
* each element.
* In the insertion call you have to specify the address of the node, the
* address of the object, and the key value to use.
* The address of the object is used to initialize the tommy_node::data field
* of the node, and the key to initialize the tommy_node::key field.
*
* \code
* struct object {
* int value;
* // other fields
* tommy_node node;
* };
*
* struct object* obj = malloc(sizeof(struct object)); // creates the object
*
* obj->value = ...; // initializes the object
*
* tommy_trie_insert(&trie, &obj->node, obj, obj->value); // inserts the object
* \endcode
*
* To find and element in the trie you have to call tommy_trie_search() providing
* the key to search.
*
* \code
* int value_to_find = 1;
* struct object* obj = tommy_trie_search(&trie, value_to_find);
* if (!obj) {
* // not found
* } else {
* // found
* }
* \endcode
*
* To iterate over all the elements in the trie with the same key, you have to
* use tommy_trie_bucket() and follow the tommy_node::next pointer until NULL.
*
* \code
* int value_to_find = 1;
* tommy_node* i = tommy_trie_bucket(&trie, value_to_find);
* while (i) {
* struct object* obj = i->data; // gets the object pointer
*
* printf("%d\n", obj->value); // process the object
*
* i = i->next; // goes to the next element
* }
* \endcode
*
* To remove an element from the trie you have to call tommy_trie_remove()
* providing the key to search and remove.
*
* \code
* struct object* obj = tommy_trie_remove(&trie, value_to_remove);
* if (obj) {
* free(obj); // frees the object allocated memory
* }
* \endcode
*
* To destroy the trie you have to remove all the elements, and deinitialize
* the allocator using tommy_allocator_done().
*
* \code
* tommy_allocator_done(&alloc);
* \endcode
*
* Note that you cannot iterate over all the elements in the trie using the
* trie itself. You have to insert all the elements also in a ::tommy_list,
* and use the list to iterate. See the \ref multiindex example for more detail.
*/
#ifndef __TOMMYTRIE_H
#define __TOMMYTRIE_H
#include "tommytypes.h"
#include "tommyalloc.h"
/******************************************************************************/
/* trie */
/**
* Number of branches on each inner node. It must be a power of 2.
* Suggested values are 8, 16 and 32.
* Any inner node, excluding leafs, contains a pointer to each branch.
*
* The default size is choosen to exactly fit a typical cache line of 64 bytes.
*/
#define TOMMY_TRIE_TREE_MAX (64 / sizeof(void*))
/**
* Trie block size.
* You must use this value to initialize the allocator.
*/
#define TOMMY_TRIE_BLOCK_SIZE (TOMMY_TRIE_TREE_MAX * sizeof(void*))
/** \internal
* Number of bits for each branch.
*/
#define TOMMY_TRIE_TREE_BIT TOMMY_ILOG2(TOMMY_TRIE_TREE_MAX)
/** \internal
* Number of bits of the first level.
*/
#define TOMMY_TRIE_BUCKET_BIT ((TOMMY_KEY_BIT % TOMMY_TRIE_TREE_BIT) + TOMMY_TRIE_TREE_BIT)
/** \internal
* Number of branches of the first level.
* It's like a inner branch, but bigger to get any remainder bits.
*/
#define TOMMY_TRIE_BUCKET_MAX (1 << TOMMY_TRIE_BUCKET_BIT)
/**
* Trie node.
* This is the node that you have to include inside your objects.
*/
typedef tommy_node tommy_trie_node;
/**
* Trie container type.
* \note Don't use internal fields directly, but access the container only using functions.
*/
typedef struct tommy_trie_struct {
tommy_trie_node* bucket[TOMMY_TRIE_BUCKET_MAX]; /**< First tree level. */
tommy_count_t count; /**< Number of elements. */
tommy_count_t node_count; /**< Number of nodes. */
tommy_allocator* alloc; /**< Allocator for internal nodes. */
} tommy_trie;
/**
* Initializes the trie.
* You have to provide an allocator initialized with *both* the size and align with TOMMY_TRIE_BLOCK_SIZE.
* You can share this allocator with other tries.
*
* The tries is completely allocated through the allocator, and it doesn't need to be deinitialized.
* \param alloc Allocator initialized with *both* the size and align with TOMMY_TRIE_BLOCK_SIZE.
*/
void tommy_trie_init(tommy_trie* trie, tommy_allocator* alloc);
/**
* Inserts an element in the trie.
* You have to provide the pointer of the node embedded into the object,
* the pointer to the object and the key to use.
* \param node Pointer to the node embedded into the object to insert.
* \param data Pointer to the object to insert.
* \param key Key to use to insert the object.
*/
void tommy_trie_insert(tommy_trie* trie, tommy_trie_node* node, void* data, tommy_key_t key);
/**
* Searches and removes the first element with the specified key.
* If the element is not found, 0 is returned.
* If more equal elements are present, the first one is removed.
* This operation is faster than calling tommy_trie_bucket() and tommy_trie_remove_existing() separately.
* \param key Key of the element to find and remove.
* \return The removed element, or 0 if not found.
*/
void* tommy_trie_remove(tommy_trie* trie, tommy_key_t key);
/**
* Gets the bucket of the specified key.
* The bucket is guaranteed to contain ALL and ONLY the elements with the specified key.
* You can access elements in the bucket following the ::next pointer until 0.
* \param key Key of the element to find.
* \return The head of the bucket, or 0 if empty.
*/
tommy_trie_node* tommy_trie_bucket(tommy_trie* trie, tommy_key_t key);
/**
* Searches an element in the trie.
* You have to provide the key of the element you want to find.
* If more elements with the same key are present, the first one is returned.
* \param key Key of the element to find.
* \return The first element found, or 0 if none.
*/
tommy_inline void* tommy_trie_search(tommy_trie* trie, tommy_key_t key)
{
tommy_trie_node* i = tommy_trie_bucket(trie, key);
if (!i)
return 0;
return i->data;
}
/**
* Removes an element from the trie.
* You must already have the address of the element to remove.
* \return The tommy_node::data field of the node removed.
*/
void* tommy_trie_remove_existing(tommy_trie* trie, tommy_trie_node* node);
/**
* Gets the number of elements.
*/
tommy_inline tommy_count_t tommy_trie_count(tommy_trie* trie)
{
return trie->count;
}
/**
* Gets the size of allocated memory.
* It includes the size of the ::tommy_trie_node of the stored elements.
*/
tommy_size_t tommy_trie_memory_usage(tommy_trie* trie);
#endif
|