1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
#
# = bio/db/prosite.rb - PROSITE database class
#
# Copyright:: Copyright (C) 2001 Toshiaki Katayama <k@bioruby.org>
# License:: The Ruby License
#
# $Id:$
#
require 'bio/db'
module Bio
class PROSITE < EMBLDB
# Delimiter
DELIMITER = "\n//\n"
# Delimiter
RS = DELIMITER
# Bio::DB API
TAGSIZE = 5
def initialize(entry)
super(entry, TAGSIZE)
end
# ID Identification (Begins each entry; 1 per entry)
#
# ID ENTRY_NAME; ENTRY_TYPE. (ENTRY_TYPE : PATTERN, MATRIX, RULE)
#
# Returns
def name
unless @data['ID']
@data['ID'], @data['TYPE'] = fetch('ID').chomp('.').split('; ')
end
@data['ID']
end
# Returns
def division
unless @data['TYPE']
name
end
@data['TYPE']
end
# AC Accession number (1 per entry)
#
# AC PSnnnnn;
#
# Returns
def ac
unless @data['AC']
@data['AC'] = fetch('AC').chomp(';')
end
@data['AC']
end
alias entry_id ac
# DT Date (1 per entry)
#
# DT MMM-YYYY (CREATED); MMM-YYYY (DATA UPDATE); MMM-YYYY (INFO UPDATE).
#
# Returns
def dt
field_fetch('DT')
end
alias date dt
# DE Short description (1 per entry)
#
# DE Description.
#
# Returns
def de
field_fetch('DE')
end
alias definition de
# PA Pattern (>=0 per entry)
#
# see - pa2re method
#
# Returns
def pa
field_fetch('PA')
@data['PA'] = fetch('PA') unless @data['PA']
@data['PA'].gsub!(/\s+/, '') if @data['PA']
@data['PA']
end
alias pattern pa
# MA Matrix/profile (>=0 per entry)
#
# see - ma2re method
#
# Returns
def ma
field_fetch('MA')
end
alias profile ma
# RU Rule (>=0 per entry)
#
# RU Rule_Description.
#
# The rule is described in ordinary English and is free-format.
#
# Returns
def ru
field_fetch('RU')
end
alias rule ru
# NR Numerical results (>=0 per entry)
#
# - SWISS-PROT scan statistics of true and false positives/negatives
#
# /RELEASE SWISS-PROT release number and total number of sequence
# entries in that release.
# /TOTAL Total number of hits in SWISS-PROT.
# /POSITIVE Number of hits on proteins that are known to belong to the
# set in consideration.
# /UNKNOWN Number of hits on proteins that could possibly belong to
# the set in consideration.
# /FALSE_POS Number of false hits (on unrelated proteins).
# /FALSE_NEG Number of known missed hits.
# /PARTIAL Number of partial sequences which belong to the set in
# consideration, but which are not hit by the pattern or
# profile because they are partial (fragment) sequences.
#
# Returns
def nr
unless @data['NR']
hash = {} # temporal hash
fetch('NR').scan(%r{/(\S+)=([^;]+);}).each do |k, v|
if v =~ /^(\d+)\((\d+)\)$/
hits = $1.to_i # the number of hits
seqs = $2.to_i # the number of sequences
v = [hits, seqs]
elsif v =~ /([\d\.]+),(\d+)/
sprel = $1 # the number of SWISS-PROT release
spseq = $2.to_i # the number of SWISS-PROT sequences
v = [sprel, spseq]
else
v = v.to_i
end
hash[k] = v
end
@data['NR'] = hash
end
@data['NR']
end
alias statistics nr
# Returns
def release
statistics['RELEASE']
end
# Returns
def swissprot_release_number
release.first
end
# Returns
def swissprot_release_sequences
release.last
end
# Returns
def total
statistics['TOTAL']
end
# Returns
def total_hits
total.first
end
# Returns
def total_sequences
total.last
end
# Returns
def positive
statistics['POSITIVE']
end
# Returns
def positive_hits
positive.first
end
# Returns
def positive_sequences
positive.last
end
# Returns
def unknown
statistics['UNKNOWN']
end
# Returns
def unknown_hits
unknown.first
end
# Returns
def unknown_sequences
unknown.last
end
# Returns
def false_pos
statistics['FALSE_POS']
end
# Returns
def false_positive_hits
false_pos.first
end
# Returns
def false_positive_sequences
false_pos.last
end
# Returns
def false_neg
statistics['FALSE_NEG']
end
alias false_negative_hits false_neg
# Returns
def partial
statistics['PARTIAL']
end
# CC Comments (>=0 per entry)
#
# CC /QUALIFIER=data; /QUALIFIER=data; .......
#
# /TAXO-RANGE Taxonomic range.
# /MAX-REPEAT Maximum known number of repetitions of the pattern in a
# single protein.
# /SITE Indication of an `interesting' site in the pattern.
# /SKIP-FLAG Indication of an entry that can be, in some cases, ignored
# by a program (because it is too unspecific).
#
# Returns
def cc
unless @data['CC']
hash = {} # temporal hash
fetch('CC').scan(%r{/(\S+)=([^;]+);}).each do |k, v|
hash[k] = v
end
@data['CC'] = hash
end
@data['CC']
end
alias comment cc
# Returns
def taxon_range(expand = nil)
range = comment['TAXO-RANGE']
if range and expand
expand = []
range.scan(/./) do |x|
case x
when 'A'; expand.push('archaebacteria')
when 'B'; expand.push('bacteriophages')
when 'E'; expand.push('eukaryotes')
when 'P'; expand.push('prokaryotes')
when 'V'; expand.push('eukaryotic viruses')
end
end
range = expand
end
return range
end
# Returns
def max_repeat
comment['MAX-REPEAT'].to_i
end
# Returns
def site
if comment['SITE']
num, desc = comment['SITE'].split(',')
end
return [num.to_i, desc]
end
# Returns
def skip_flag
if comment['SKIP-FLAG'] == 'TRUE'
return true
end
end
# DR Cross-references to SWISS-PROT (>=0 per entry)
#
# DR AC_NB, ENTRY_NAME, C; AC_NB, ENTRY_NAME, C; AC_NB, ENTRY_NAME, C;
#
# - `AC_NB' is the SWISS-PROT primary accession number of the entry to
# which reference is being made.
# - `ENTRY_NAME' is the SWISS-PROT entry name.
# - `C' is a one character flag that can be one of the following:
#
# T For a true positive.
# N For a false negative; a sequence which belongs to the set under
# consideration, but which has not been picked up by the pattern or
# profile.
# P For a `potential' hit; a sequence that belongs to the set under
# consideration, but which was not picked up because the region(s) that
# are used as a 'fingerprint' (pattern or profile) is not yet available
# in the data bank (partial sequence).
# ? For an unknown; a sequence which possibly could belong to the set under
# consideration.
# F For a false positive; a sequence which does not belong to the set in
# consideration.
#
# Returns
def dr
unless @data['DR']
hash = {} # temporal hash
if fetch('DR')
fetch('DR').scan(/(\w+)\s*, (\w+)\s*, (.);/).each do |a, e, c|
hash[a] = [e, c] # SWISS-PROT : accession, entry, true/false
end
end
@data['DR'] = hash
end
@data['DR']
end
alias sp_xref dr
# Returns
def list_xref(flag, by_name = nil)
ary = []
sp_xref.each do |sp_acc, value|
if value[1] == flag
if by_name
sp_name = value[0]
ary.push(sp_name)
else
ary.push(sp_acc)
end
end
end
return ary
end
# Returns
def list_truepositive(by_name = nil)
list_xref('T', by_name)
end
# Returns
def list_falsenegative(by_name = nil)
list_xref('F', by_name)
end
# Returns
def list_falsepositive(by_name = nil)
list_xref('P', by_name)
end
# Returns
def list_potentialhit(by_name = nil)
list_xref('P', by_name)
end
# Returns
def list_unknown(by_name = nil)
list_xref('?', by_name)
end
# 3D Cross-references to PDB (>=0 per entry)
#
# 3D name; [name2;...]
#
# Returns
def pdb_xref
unless @data['3D']
@data['3D'] = fetch('3D').split(/; */)
end
@data['3D']
end
# DO Pointer to the documentation file (1 per entry)
#
# DO PDOCnnnnn;
#
# Returns
def pdoc_xref
@data['DO'] = fetch('DO').chomp(';')
end
### prosite pattern to regular expression
#
# prosite/prosuser.txt:
#
# The PA (PAttern) lines contains the definition of a PROSITE pattern. The
# patterns are described using the following conventions:
#
# 0) The standard IUPAC one-letter codes for the amino acids are used.
# 0) Ambiguities are indicated by listing the acceptable amino acids for a
# given position, between square parentheses `[ ]'. For example: [ALT]
# stands for Ala or Leu or Thr.
# 1) A period ends the pattern.
# 2) When a pattern is restricted to either the N- or C-terminal of a
# sequence, that pattern either starts with a `<' symbol or respectively
# ends with a `>' symbol.
# 3) Ambiguities are also indicated by listing between a pair of curly
# brackets `{ }' the amino acids that are not accepted at a given
# position. For example: {AM} stands for any amino acid except Ala and
# Met.
# 4) Repetition of an element of the pattern can be indicated by following
# that element with a numerical value or a numerical range between
# parenthesis. Examples: x(3) corresponds to x-x-x, x(2,4) corresponds to
# x-x or x-x-x or x-x-x-x.
# 5) The symbol `x' is used for a position where any amino acid is accepted.
# 6) Each element in a pattern is separated from its neighbor by a `-'.
#
# Examples:
#
# PA [AC]-x-V-x(4)-{ED}.
#
# This pattern is translated as: [Ala or Cys]-any-Val-any-any-any-any-{any
# but Glu or Asp}
#
# PA <A-x-[ST](2)-x(0,1)-V.
#
# This pattern, which must be in the N-terminal of the sequence (`<'), is
# translated as: Ala-any-[Ser or Thr]-[Ser or Thr]-(any or none)-Val
#
def self.pa2re(pattern)
pattern.gsub!(/\s/, '') # remove white spaces
pattern.sub!(/\.$/, '') # (1) remove trailing '.'
pattern.sub!(/^</, '^') # (2) restricted to the N-terminal : `<'
pattern.sub!(/>$/, '$') # (2) restricted to the C-terminal : `>'
pattern.gsub!(/\{(\w+)\}/) { |m|
'[^' + $1 + ']' # (3) not accepted at a given position : '{}'
}
pattern.gsub!(/\(([\d,]+)\)/) { |m|
'{' + $1 + '}' # (4) repetition of an element : (n), (n,m)
}
pattern.tr!('x', '.') # (5) any amino acid is accepted : 'x'
pattern.tr!('-', '') # (6) each element is separated by a '-'
Regexp.new(pattern, Regexp::IGNORECASE)
end
def pa2re(pattern)
self.class.pa2re(pattern)
end
def re
self.class.pa2re(self.pa)
end
### prosite profile to regular expression
#
# prosite/profile.txt:
#
# Returns
def ma2re(matrix)
raise NotImplementedError
end
end # PROSITE
end # Bio
|