1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
#
# = bio/pathway.rb - Binary relations and Graph algorithms
#
# Copyright: Copyright (C) 2001
# Toshiaki Katayama <k@bioruby.org>,
# Shuichi Kawashima <shuichi@hgc.jp>
# License:: The Ruby License
#
# $Id:$
#
require 'matrix'
module Bio
# Bio::Pathway is a general graph object initially constructed by the
# list of the ((<Bio::Relation>)) objects. The basic concept of the
# Bio::Pathway object is to store a graph as an adjacency list (in the
# instance variable @graph), and converting the list into an adjacency
# matrix by calling to_matrix method on demand. However, in some
# cases, it is convenient to have the original list of the
# ((<Bio::Relation>))s, Bio::Pathway object also stores the list (as
# the instance variable @relations) redundantly.
#
# Note: you can clear the @relations list by calling clear_relations!
# method to reduce the memory usage, and the content of the @relations
# can be re-generated from the @graph by to_relations method.
class Pathway
# Initial graph (adjacency list) generation from the list of Relation.
#
# Generate Bio::Pathway object from the list of Bio::Relation objects.
# If the second argument is true, undirected graph is generated.
#
# r1 = Bio::Relation.new('a', 'b', 1)
# r2 = Bio::Relation.new('a', 'c', 5)
# r3 = Bio::Relation.new('b', 'c', 3)
# list = [ r1, r2, r3 ]
# g = Bio::Pathway.new(list, 'undirected')
#
def initialize(relations, undirected = false)
@undirected = undirected
@relations = relations
@graph = {} # adjacency list expression of the graph
@index = {} # numbering each node in matrix
@label = {} # additional information on each node
self.to_list # generate adjacency list
end
# Read-only accessor for the internal list of the Bio::Relation objects
attr_reader :relations
# Read-only accessor for the adjacency list of the graph.
attr_reader :graph
# Read-only accessor for the row/column index (@index) of the
# adjacency matrix. Contents of the hash @index is created by
# calling to_matrix method.
attr_reader :index
# Accessor for the hash of the label assigned to the each node. You can
# label some of the nodes in the graph by passing a hash to the label
# and select subgraphs which contain labeled nodes only by subgraph method.
#
# hash = { 1 => 'red', 2 => 'green', 5 => 'black' }
# g.label = hash
# g.label
# g.subgraph # => new graph consists of the node 1, 2, 5 only
#
attr_accessor :label
# Returns true or false respond to the internal state of the graph.
def directed?
@undirected ? false : true
end
# Returns true or false respond to the internal state of the graph.
def undirected?
@undirected ? true : false
end
# Changes the internal state of the graph from 'undirected' to
# 'directed' and re-generate adjacency list. The undirected graph
# can be converted to directed graph, however, the edge between two
# nodes will be simply doubled to both ends.
#
# Note: this method can not be used without the list of the
# Bio::Relation objects (internally stored in @relations variable).
# Thus if you already called clear_relations! method, call
# to_relations first.
def directed
if undirected?
@undirected = false
self.to_list
end
end
# Changes the internal state of the graph from 'directed' to
# 'undirected' and re-generate adjacency list.
#
# Note: this method can not be used without the list of the
# Bio::Relation objects (internally stored in @relations variable).
# Thus if you already called clear_relations! method, call
# to_relations first.
def undirected
if directed?
@undirected = true
self.to_list
end
end
# Clear @relations array to reduce the memory usage.
def clear_relations!
@relations.clear
end
# Reconstruct @relations from the adjacency list @graph.
def to_relations
@relations.clear
@graph.each_key do |from|
@graph[from].each do |to, w|
@relations << Relation.new(from, to, w)
end
end
return @relations
end
# Graph (adjacency list) generation from the Relations
#
# Generate the adjcancecy list @graph from @relations (called by
# initialize and in some other cases when @relations has been changed).
def to_list
@graph.clear
@relations.each do |rel|
append(rel, false) # append to @graph without push to @relations
end
end
# Add an Bio::Relation object 'rel' to the @graph and @relations.
# If the second argument is false, @relations is not modified (only
# useful when genarating @graph from @relations internally).
def append(rel, add_rel = true)
@relations.push(rel) if add_rel
if @graph[rel.from].nil?
@graph[rel.from] = {}
end
if @graph[rel.to].nil?
@graph[rel.to] = {}
end
@graph[rel.from][rel.to] = rel.relation
@graph[rel.to][rel.from] = rel.relation if @undirected
end
# Remove an edge indicated by the Bio::Relation object 'rel' from the
# @graph and the @relations.
def delete(rel)
@relations.delete_if do |x|
x === rel
end
@graph[rel.from].delete(rel.to)
@graph[rel.to].delete(rel.from) if @undirected
end
# Returns the number of the nodes in the graph.
def nodes
@graph.keys.length
end
# Returns the number of the edges in the graph.
def edges
edges = 0
@graph.each_value do |v|
edges += v.size
end
edges
end
# Convert adjacency list to adjacency matrix
#
# Returns the adjacency matrix expression of the graph as a Matrix
# object. If the first argument was assigned, the matrix will be
# filled with the given value. The second argument indicates the
# value of the diagonal constituents of the matrix besides the above.
#
# The result of this method depends on the order of Hash#each
# (and each_key, etc.), which may be variable with Ruby version
# and Ruby interpreter variations (JRuby, etc.).
# For a workaround to remove such dependency, you can use @index
# to set order of Hash keys. Note that this behavior might be
# changed in the future. Be careful that @index is overwritten by
# this method.
#
def to_matrix(default_value = nil, diagonal_value = nil)
#--
# Note: following code only fills the outer Array with the reference
# to the same inner Array object.
#
# matrix = Array.new(nodes, Array.new(nodes))
#
# so create a new Array object for each row as follows:
#++
matrix = Array.new
nodes.times do
matrix.push(Array.new(nodes, default_value))
end
if diagonal_value
nodes.times do |i|
matrix[i][i] = diagonal_value
end
end
# assign index number
if @index.empty? then
# assign index number for each node
@graph.keys.each_with_index do |k, i|
@index[k] = i
end
else
# begin workaround removing depencency to order of Hash#each
# assign index number from the preset @index
indices = @index.to_a
indices.sort! { |i0, i1| i0[1] <=> i1[1] }
indices.collect! { |i0| i0[0] }
@index.clear
v = 0
indices.each do |k, i|
if @graph[k] and !@index[k] then
@index[k] = v; v += 1
end
end
@graph.each_key do |k|
unless @index[k] then
@index[k] = v; v += 1
end
end
# end workaround removing depencency to order of Hash#each
end
if @relations.empty? # only used after clear_relations!
@graph.each do |from, hash|
hash.each do |to, relation|
x = @index[from]
y = @index[to]
matrix[x][y] = relation
end
end
else
@relations.each do |rel|
x = @index[rel.from]
y = @index[rel.to]
matrix[x][y] = rel.relation
matrix[y][x] = rel.relation if @undirected
end
end
Matrix[*matrix]
end
# Pretty printer of the adjacency matrix.
#
# The dump_matrix method accepts the same arguments as to_matrix.
# Useful when you want to check the internal state of the matrix
# (for debug purpose etc.) easily.
#
# This method internally calls to_matrix method.
# Read documents of to_matrix for important informations.
#
def dump_matrix(*arg)
matrix = self.to_matrix(*arg)
sorted = @index.sort {|a,b| a[1] <=> b[1]}
"[# " + sorted.collect{|x| x[0]}.join(", ") + "\n" +
matrix.to_a.collect{|row| ' ' + row.inspect}.join(",\n") + "\n]"
end
# Pretty printer of the adjacency list.
#
# Useful when you want to check the internal state of the adjacency
# list (for debug purpose etc.) easily.
#
# The result of this method depends on the order of Hash#each
# (and each_key, etc.), which may be variable with Ruby version
# and Ruby interpreter variations (JRuby, etc.).
# For a workaround to remove such dependency, you can use @index
# to set order of Hash keys. Note that this behavior might be
# changed in the future.
#
def dump_list
# begin workaround removing depencency to order of Hash#each
if @index.empty? then
pref = nil
enum = @graph
else
pref = {}.merge(@index)
i = pref.values.max
@graph.each_key do |node|
pref[node] ||= (i += 1)
end
graph_to_a = @graph.to_a
graph_to_a.sort! { |x, y| pref[x[0]] <=> pref[y[0]] }
enum = graph_to_a
end
# end workaround removing depencency to order of Hash#each
list = ""
enum.each do |from, hash|
list << "#{from} => "
# begin workaround removing depencency to order of Hash#each
if pref then
ary = hash.to_a
ary.sort! { |x,y| pref[x[0]] <=> pref[y[0]] }
hash = ary
end
# end workaround removing depencency to order of Hash#each
a = []
hash.each do |to, relation|
a.push("#{to} (#{relation})")
end
list << a.join(", ") + "\n"
end
list
end
# Select labeled nodes and generate subgraph
#
# This method select some nodes and returns new Bio::Pathway object
# consists of selected nodes only. If the list of the nodes (as
# Array) is assigned as the argument, use the list to select the
# nodes from the graph. If no argument is assigned, internal
# property of the graph @label is used to select the nodes.
#
# hash = { 'a' => 'secret', 'b' => 'important', 'c' => 'important' }
# g.label = hash
# g.subgraph
# list = [ 'a', 'b', 'c' ]
# g.subgraph(list)
#
def subgraph(list = nil)
if list
@label.clear
list.each do |node|
@label[node] = true
end
end
sub_graph = Pathway.new([], @undirected)
@graph.each do |from, hash|
next unless @label[from]
sub_graph.graph[from] ||= {}
hash.each do |to, relation|
next unless @label[to]
sub_graph.append(Relation.new(from, to, relation))
end
end
return sub_graph
end
# Not implemented yet.
def common_subgraph(graph)
raise NotImplementedError
end
# Not implemented yet.
def clique
raise NotImplementedError
end
# Returns completeness of the edge density among the surrounded nodes.
#
# Calculates the value of cliquishness around the 'node'. This value
# indicates completeness of the edge density among the surrounded nodes.
#
# Note: cliquishness (clustering coefficient) for a directed graph
# is also calculated.
# Reference: http://en.wikipedia.org/wiki/Clustering_coefficient
#
# Note: Cliquishness (clustering coefficient) for a node that has
# only one neighbor node is undefined. Currently, it returns NaN,
# but the behavior may be changed in the future.
#
def cliquishness(node)
neighbors = @graph[node].keys
sg = subgraph(neighbors)
if sg.graph.size != 0
edges = sg.edges
nodes = neighbors.size
complete = (nodes * (nodes - 1))
return edges.quo(complete)
else
return 0.0
end
end
# Returns frequency of the nodes having same number of edges as hash
#
# Calculates the frequency of the nodes having the same number of edges
# and returns the value as Hash.
def small_world
freq = Hash.new(0)
@graph.each_value do |v|
freq[v.size] += 1
end
return freq
end
# Breadth first search solves steps and path to the each node and
# forms a tree contains all reachable vertices from the root node.
# This method returns the result in 2 hashes - 1st one shows the
# steps from root node and 2nd hash shows the structure of the tree.
#
# The weight of the edges are not considered in this method.
def breadth_first_search(root)
visited = {}
distance = {}
predecessor = {}
visited[root] = true
distance[root] = 0
predecessor[root] = nil
queue = [ root ]
while from = queue.shift
next unless @graph[from]
@graph[from].each_key do |to|
unless visited[to]
visited[to] = true
distance[to] = distance[from] + 1
predecessor[to] = from
queue.push(to)
end
end
end
return distance, predecessor
end
# Alias for the breadth_first_search method.
alias bfs breadth_first_search
# Calculates the shortest path between two nodes by using
# breadth_first_search method and returns steps and the path as Array.
def bfs_shortest_path(node1, node2)
distance, route = breadth_first_search(node1)
step = distance[node2]
node = node2
path = [ node2 ]
while node != node1 and route[node]
node = route[node]
path.unshift(node)
end
return step, path
end
# Depth first search yields much information about the structure of
# the graph especially on the classification of the edges. This
# method returns 5 hashes - 1st one shows the timestamps of each
# node containing the first discoverd time and the search finished
# time in an array. The 2nd, 3rd, 4th, and 5th hashes contain 'tree
# edges', 'back edges', 'cross edges', 'forward edges' respectively.
#
# If $DEBUG is true (e.g. ruby -d), this method prints the progression
# of the search.
#
# The weight of the edges are not considered in this method.
#
# Note: The result of this method depends on the order of Hash#each
# (and each_key, etc.), which may be variable with Ruby version
# and Ruby interpreter variations (JRuby, etc.).
# For a workaround to remove such dependency, you can use @index
# to set order of Hash keys. Note that this bahavior might be
# changed in the future.
def depth_first_search
visited = {}
timestamp = {}
tree_edges = {}
back_edges = {}
cross_edges = {}
forward_edges = {}
count = 0
# begin workaround removing depencency to order of Hash#each
if @index.empty? then
preference_of_nodes = nil
else
preference_of_nodes = {}.merge(@index)
i = preference_of_nodes.values.max
@graph.each_key do |node0|
preference_of_nodes[node0] ||= (i += 1)
end
end
# end workaround removing depencency to order of Hash#each
dfs_visit = Proc.new { |from|
visited[from] = true
timestamp[from] = [count += 1]
ary = @graph[from].keys
# begin workaround removing depencency to order of Hash#each
if preference_of_nodes then
ary = ary.sort_by { |node0| preference_of_nodes[node0] }
end
# end workaround removing depencency to order of Hash#each
ary.each do |to|
if visited[to]
if timestamp[to].size > 1
if timestamp[from].first < timestamp[to].first
# forward edge (black)
p "#{from} -> #{to} : forward edge" if $DEBUG
forward_edges[from] = to
else
# cross edge (black)
p "#{from} -> #{to} : cross edge" if $DEBUG
cross_edges[from] = to
end
else
# back edge (gray)
p "#{from} -> #{to} : back edge" if $DEBUG
back_edges[from] = to
end
else
# tree edge (white)
p "#{from} -> #{to} : tree edge" if $DEBUG
tree_edges[to] = from
dfs_visit.call(to)
end
end
timestamp[from].push(count += 1)
}
ary = @graph.keys
# begin workaround removing depencency to order of Hash#each
if preference_of_nodes then
ary = ary.sort_by { |node0| preference_of_nodes[node0] }
end
# end workaround removing depencency to order of Hash#each
ary.each do |node|
unless visited[node]
dfs_visit.call(node)
end
end
return timestamp, tree_edges, back_edges, cross_edges, forward_edges
end
# Alias for the depth_first_search method.
alias dfs depth_first_search
# Topological sort of the directed acyclic graphs ("dags") by using
# depth_first_search.
def dfs_topological_sort
# sorted by finished time reversely and collect node names only
timestamp, = self.depth_first_search
timestamp.sort {|a,b| b[1][1] <=> a[1][1]}.collect {|x| x.first }
end
# Dijkstra method to solve the shortest path problem in the weighted graph.
def dijkstra(root)
distance, predecessor = initialize_single_source(root)
@graph[root].each do |k, v|
distance[k] = v
predecessor[k] = root
end
queue = distance.dup
queue.delete(root)
while queue.size != 0
min = queue.min {|a, b| a[1] <=> b[1]}
u = min[0] # extranct a node having minimal distance
@graph[u].each do |k, v|
# relaxing procedure of root -> 'u' -> 'k'
if distance[k] > distance[u] + v
distance[k] = distance[u] + v
predecessor[k] = u
end
end
queue.delete(u)
end
return distance, predecessor
end
# Bellman-Ford method for solving the single-source shortest-paths
# problem in the graph in which edge weights can be negative.
def bellman_ford(root)
distance, predecessor = initialize_single_source(root)
(self.nodes - 1).times do
@graph.each_key do |u|
@graph[u].each do |v, w|
# relaxing procedure of root -> 'u' -> 'v'
if distance[v] > distance[u] + w
distance[v] = distance[u] + w
predecessor[v] = u
end
end
end
end
# negative cyclic loop check
@graph.each_key do |u|
@graph[u].each do |v, w|
if distance[v] > distance[u] + w
return false
end
end
end
return distance, predecessor
end
# Floyd-Wardshall alogrithm for solving the all-pairs shortest-paths
# problem on a directed graph G = (V, E).
def floyd_warshall
inf = 1 / 0.0
m = self.to_matrix(inf, 0)
d = m.dup
n = self.nodes
for k in 0 .. n - 1 do
for i in 0 .. n - 1 do
for j in 0 .. n - 1 do
if d[i, j] > d[i, k] + d[k, j]
d[i, j] = d[i, k] + d[k, j]
end
end
end
end
return d
end
# Alias for the floyd_warshall method.
alias floyd floyd_warshall
# Kruskal method for finding minimam spaninng trees
def kruskal
# initialize
rel = self.to_relations.sort{|a, b| a <=> b}
index = []
for i in 0 .. (rel.size - 1) do
for j in (i + 1) .. (rel.size - 1) do
if rel[i] == rel[j]
index << j
end
end
end
index.sort{|x, y| y<=>x}.each do |idx|
rel[idx, 1] = []
end
mst = []
seen = Hash.new()
@graph.each_key do |x|
seen[x] = nil
end
i = 1
# initialize end
rel.each do |r|
if seen[r.node[0]] == nil
seen[r.node[0]] = 0
end
if seen[r.node[1]] == nil
seen[r.node[1]] = 0
end
if seen[r.node[0]] == seen[r.node[1]] && seen[r.node[0]] == 0
mst << r
seen[r.node[0]] = i
seen[r.node[1]] = i
elsif seen[r.node[0]] != seen[r.node[1]]
mst << r
v1 = seen[r.node[0]].dup
v2 = seen[r.node[1]].dup
seen.each do |k, v|
if v == v1 || v == v2
seen[k] = i
end
end
end
i += 1
end
return Pathway.new(mst)
end
private
def initialize_single_source(root)
inf = 1 / 0.0 # inf.infinite? -> true
distance = {}
predecessor = {}
@graph.each_key do |k|
distance[k] = inf
predecessor[k] = nil
end
distance[root] = 0
return distance, predecessor
end
end # Pathway
# Bio::Relation is a simple object storing two nodes and the relation of them.
# The nodes and the edge (relation) can be any Ruby object. You can also
# compare Bio::Relation objects if the edges have Comparable property.
class Relation
# Create new binary relation object consists of the two object 'node1'
# and 'node2' with the 'edge' object as the relation of them.
def initialize(node1, node2, edge)
@node = [node1, node2]
@edge = edge
end
attr_accessor :node, :edge
# Returns one node.
def from
@node[0]
end
# Returns another node.
def to
@node[1]
end
def relation
@edge
end
# Used by eql? method
def hash
@node.sort.push(@edge).hash
end
# Compare with another Bio::Relation object whether havind same edges
# and same nodes. The == method compares Bio::Relation object's id,
# however this case equality === method compares the internal property
# of the Bio::Relation object.
def ===(rel)
if self.edge == rel.edge
if self.node[0] == rel.node[0] and self.node[1] == rel.node[1]
return true
elsif self.node[0] == rel.node[1] and self.node[1] == rel.node[0]
return true
else
return false
end
else
return false
end
end
# Method eql? is an alias of the === method and is used with hash method
# to make uniq arry of the Bio::Relation objects.
#
# a1 = Bio::Relation.new('a', 'b', 1)
# a2 = Bio::Relation.new('b', 'a', 1)
# a3 = Bio::Relation.new('b', 'c', 1)
# p [ a1, a2, a3 ].uniq
alias eql? ===
# Used by the each method to compare with another Bio::Relation object.
# This method is only usable when the edge objects have the property of
# the module Comparable.
def <=>(rel)
unless self.edge.kind_of? Comparable
raise "[Error] edges are not comparable"
end
if self.edge > rel.edge
return 1
elsif self.edge < rel.edge
return -1
elsif self.edge == rel.edge
return 0
end
end
end # Relation
end # Bio
|