File: pathway.rb

package info (click to toggle)
ruby-bio 1.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,480 kB
  • ctags: 9,428
  • sloc: ruby: 74,117; xml: 3,383; makefile: 17; perl: 13; sh: 1
file content (789 lines) | stat: -rw-r--r-- 22,589 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#
# = bio/pathway.rb - Binary relations and Graph algorithms
#
# Copyright:    Copyright (C) 2001
#               Toshiaki Katayama <k@bioruby.org>,
#               Shuichi Kawashima <shuichi@hgc.jp>
# License::     The Ruby License
#
#  $Id:$
#

require 'matrix'

module Bio

# Bio::Pathway is a general graph object initially constructed by the
# list of the ((<Bio::Relation>)) objects.  The basic concept of the
# Bio::Pathway object is to store a graph as an adjacency list (in the
# instance variable @graph), and converting the list into an adjacency
# matrix by calling to_matrix method on demand.  However, in some
# cases, it is convenient to have the original list of the
# ((<Bio::Relation>))s, Bio::Pathway object also stores the list (as
# the instance variable @relations) redundantly.
# 
# Note: you can clear the @relations list by calling clear_relations!
# method to reduce the memory usage, and the content of the @relations
# can be re-generated from the @graph by to_relations method.
class Pathway

  # Initial graph (adjacency list) generation from the list of Relation.
  # 
  # Generate Bio::Pathway object from the list of Bio::Relation objects.
  # If the second argument is true, undirected graph is generated.
  #
  #   r1 = Bio::Relation.new('a', 'b', 1)
  #   r2 = Bio::Relation.new('a', 'c', 5)
  #   r3 = Bio::Relation.new('b', 'c', 3)
  #   list = [ r1, r2, r3 ]
  #   g = Bio::Pathway.new(list, 'undirected')
  #
  def initialize(relations, undirected = false)
    @undirected = undirected
    @relations = relations
    @graph = {}		# adjacency list expression of the graph
    @index = {}		# numbering each node in matrix
    @label = {}		# additional information on each node
    self.to_list		# generate adjacency list
  end

  # Read-only accessor for the internal list of the Bio::Relation objects
  attr_reader :relations

  # Read-only accessor for the adjacency list of the graph.
  attr_reader :graph

  # Read-only accessor for the row/column index (@index) of the
  # adjacency matrix.  Contents of the hash @index is created by
  # calling to_matrix method.
  attr_reader :index

  # Accessor for the hash of the label assigned to the each node.  You can
  # label some of the nodes in the graph by passing a hash to the label
  # and select subgraphs which contain labeled nodes only by subgraph method.
  #
  #   hash = { 1 => 'red', 2 => 'green', 5 => 'black' }
  #   g.label = hash
  #   g.label
  #   g.subgraph    # => new graph consists of the node 1, 2, 5 only
  #
  attr_accessor :label


  # Returns true or false respond to the internal state of the graph.
  def directed?
    @undirected ? false : true
  end

  # Returns true or false respond to the internal state of the graph.
  def undirected?
    @undirected ? true : false
  end

  # Changes the internal state of the graph from 'undirected' to
  # 'directed' and re-generate adjacency list.  The undirected graph
  # can be converted to directed graph, however, the edge between two
  # nodes will be simply doubled to both ends.
  #
  # Note: this method can not be used without the list of the
  # Bio::Relation objects (internally stored in @relations variable).
  # Thus if you already called clear_relations! method, call
  # to_relations first.
  def directed
    if undirected?
      @undirected = false
      self.to_list
    end
  end

  # Changes the internal state of the graph from 'directed' to
  # 'undirected' and re-generate adjacency list.
  # 
  # Note: this method can not be used without the list of the
  # Bio::Relation objects (internally stored in @relations variable).
  # Thus if you already called clear_relations! method, call
  # to_relations first.
  def undirected
    if directed?
      @undirected = true
      self.to_list
    end
  end

  # Clear @relations array to reduce the memory usage.
  def clear_relations!
    @relations.clear
  end

  # Reconstruct @relations from the adjacency list @graph.
  def to_relations
    @relations.clear
    @graph.each_key do |from|
      @graph[from].each do |to, w|
        @relations << Relation.new(from, to, w)
      end
    end
    return @relations
  end


  # Graph (adjacency list) generation from the Relations
  #
  # Generate the adjcancecy list @graph from @relations (called by
  # initialize and in some other cases when @relations has been changed).
  def to_list
    @graph.clear
    @relations.each do |rel|
      append(rel, false)	# append to @graph without push to @relations
    end
  end

  # Add an Bio::Relation object 'rel' to the @graph and @relations.
  # If the second argument is false, @relations is not modified (only
  # useful when genarating @graph from @relations internally).
  def append(rel, add_rel = true)
    @relations.push(rel) if add_rel
    if @graph[rel.from].nil?
      @graph[rel.from] = {}
    end
    if @graph[rel.to].nil?
      @graph[rel.to] = {}
    end
    @graph[rel.from][rel.to] = rel.relation
    @graph[rel.to][rel.from] = rel.relation if @undirected
  end

  # Remove an edge indicated by the Bio::Relation object 'rel' from the
  # @graph and the @relations.
  def delete(rel)
    @relations.delete_if do |x|
      x === rel
    end
    @graph[rel.from].delete(rel.to)
    @graph[rel.to].delete(rel.from) if @undirected
  end

  # Returns the number of the nodes in the graph.
  def nodes
    @graph.keys.length
  end

  # Returns the number of the edges in the graph.
  def edges
    edges = 0
    @graph.each_value do |v|
      edges += v.size
    end
    edges
  end


  # Convert adjacency list to adjacency matrix
  # 
  # Returns the adjacency matrix expression of the graph as a Matrix
  # object.  If the first argument was assigned, the matrix will be
  # filled with the given value.  The second argument indicates the
  # value of the diagonal constituents of the matrix besides the above.
  #
  # The result of this method depends on the order of Hash#each
  # (and each_key, etc.), which may be variable with Ruby version
  # and Ruby interpreter variations (JRuby, etc.).
  # For a workaround to remove such dependency, you can use @index 
  # to set order of Hash keys. Note that this behavior might be
  # changed in the future. Be careful that @index is overwritten by
  # this method.
  # 
  def to_matrix(default_value = nil, diagonal_value = nil)

    #--
    # Note: following code only fills the outer Array with the reference
    # to the same inner Array object.
    #
    #   matrix = Array.new(nodes, Array.new(nodes))
    #
    # so create a new Array object for each row as follows:
    #++

    matrix = Array.new
    nodes.times do
      matrix.push(Array.new(nodes, default_value))
    end

    if diagonal_value
      nodes.times do |i|
        matrix[i][i] = diagonal_value
      end
    end

    # assign index number
    if @index.empty? then
      # assign index number for each node
      @graph.keys.each_with_index do |k, i|
        @index[k] = i
      end
    else
      # begin workaround removing depencency to order of Hash#each
      # assign index number from the preset @index
      indices = @index.to_a
      indices.sort! { |i0, i1| i0[1] <=> i1[1] }
      indices.collect! { |i0| i0[0] }
      @index.clear
      v = 0
      indices.each do |k, i|
        if @graph[k] and !@index[k] then
          @index[k] = v; v += 1
        end
      end
      @graph.each_key do |k|
        unless @index[k] then
          @index[k] = v; v += 1
        end
      end
      # end workaround removing depencency to order of Hash#each
    end

    if @relations.empty?		# only used after clear_relations!
      @graph.each do |from, hash|
        hash.each do |to, relation|
          x = @index[from]
          y = @index[to]
          matrix[x][y] = relation
        end
      end
    else
      @relations.each do |rel|
        x = @index[rel.from]
        y = @index[rel.to]
        matrix[x][y] = rel.relation
        matrix[y][x] = rel.relation if @undirected
      end
    end
    Matrix[*matrix]
  end


  # Pretty printer of the adjacency matrix.
  #
  # The dump_matrix method accepts the same arguments as to_matrix.
  # Useful when you want to check the internal state of the matrix
  # (for debug purpose etc.) easily.
  #
  # This method internally calls to_matrix method.
  # Read documents of to_matrix for important informations.
  #
  def dump_matrix(*arg)
    matrix = self.to_matrix(*arg)
    sorted = @index.sort {|a,b| a[1] <=> b[1]}
    "[# " + sorted.collect{|x| x[0]}.join(", ") + "\n" +
      matrix.to_a.collect{|row| ' ' + row.inspect}.join(",\n") + "\n]"
  end

  # Pretty printer of the adjacency list.
  # 
  # Useful when you want to check the internal state of the adjacency
  # list (for debug purpose etc.) easily.
  #
  # The result of this method depends on the order of Hash#each
  # (and each_key, etc.), which may be variable with Ruby version
  # and Ruby interpreter variations (JRuby, etc.).
  # For a workaround to remove such dependency, you can use @index 
  # to set order of Hash keys. Note that this behavior might be
  # changed in the future. 
  # 
  def dump_list
    # begin workaround removing depencency to order of Hash#each
    if @index.empty? then
      pref = nil
      enum = @graph
    else
      pref = {}.merge(@index)
      i = pref.values.max
      @graph.each_key do |node|
        pref[node] ||= (i += 1)
      end
      graph_to_a = @graph.to_a
      graph_to_a.sort! { |x, y| pref[x[0]] <=> pref[y[0]] }
      enum = graph_to_a
    end
    # end workaround removing depencency to order of Hash#each

    list = ""
    enum.each do |from, hash|
      list << "#{from} => "
      # begin workaround removing depencency to order of Hash#each
      if pref then
        ary = hash.to_a
        ary.sort! { |x,y| pref[x[0]] <=> pref[y[0]] }
        hash = ary
      end
      # end workaround removing depencency to order of Hash#each
      a = []
      hash.each do |to, relation|
        a.push("#{to} (#{relation})")
      end
      list << a.join(", ") + "\n"
    end
    list
  end

  # Select labeled nodes and generate subgraph
  #
  # This method select some nodes and returns new Bio::Pathway object
  # consists of selected nodes only.  If the list of the nodes (as
  # Array) is assigned as the argument, use the list to select the
  # nodes from the graph.  If no argument is assigned, internal
  # property of the graph @label is used to select the nodes.
  #
  #   hash = { 'a' => 'secret', 'b' => 'important', 'c' => 'important' }
  #   g.label = hash
  #   g.subgraph
  #   list = [ 'a', 'b', 'c' ]
  #    g.subgraph(list)
  #
  def subgraph(list = nil)
    if list
      @label.clear
      list.each do |node|
        @label[node] = true
      end
    end
    sub_graph = Pathway.new([], @undirected)
    @graph.each do |from, hash|
      next unless @label[from]
      sub_graph.graph[from] ||= {}
      hash.each do |to, relation|
        next unless @label[to]
        sub_graph.append(Relation.new(from, to, relation))
      end
    end
    return sub_graph
  end


  # Not implemented yet.
  def common_subgraph(graph)
    raise NotImplementedError
  end


  # Not implemented yet.
  def clique
    raise NotImplementedError
  end


  # Returns completeness of the edge density among the surrounded nodes.
  #
  # Calculates the value of cliquishness around the 'node'.  This value
  # indicates completeness of the edge density among the surrounded nodes.
  #
  # Note: cliquishness (clustering coefficient) for a directed graph
  # is also calculated.
  # Reference: http://en.wikipedia.org/wiki/Clustering_coefficient
  # 
  # Note: Cliquishness (clustering coefficient) for a node that has
  # only one neighbor node is undefined. Currently, it returns NaN,
  # but the behavior may be changed in the future.
  #
  def cliquishness(node)
    neighbors = @graph[node].keys
    sg = subgraph(neighbors)
    if sg.graph.size != 0
      edges = sg.edges
      nodes = neighbors.size
      complete = (nodes * (nodes - 1))
      return edges.quo(complete)
    else
      return 0.0
    end
  end

  # Returns frequency of the nodes having same number of edges as hash
  #
  # Calculates the frequency of the nodes having the same number of edges
  # and returns the value as Hash.
  def small_world
    freq = Hash.new(0)
    @graph.each_value do |v|
      freq[v.size] += 1
    end
    return freq
  end

  # Breadth first search solves steps and path to the each node and
  # forms a tree contains all reachable vertices from the root node.
  # This method returns the result in 2 hashes - 1st one shows the
  # steps from root node and 2nd hash shows the structure of the tree.
  #
  # The weight of the edges are not considered in this method.
  def breadth_first_search(root)
    visited = {}
    distance = {}
    predecessor = {}

    visited[root] = true
    distance[root] = 0
    predecessor[root] = nil

    queue = [ root ]

    while from = queue.shift
      next unless @graph[from]
      @graph[from].each_key do |to|
        unless visited[to]
          visited[to] = true
          distance[to] = distance[from] + 1
          predecessor[to] = from
          queue.push(to)
        end
      end
    end
    return distance, predecessor
  end

  # Alias for the breadth_first_search method.
  alias bfs breadth_first_search


  # Calculates the shortest path between two nodes by using
  # breadth_first_search method and returns steps and the path as Array.
  def bfs_shortest_path(node1, node2)
    distance, route = breadth_first_search(node1)
    step = distance[node2]
    node = node2
    path = [ node2 ]
    while node != node1 and route[node]
      node = route[node]
      path.unshift(node)
    end
    return step, path
  end


  # Depth first search yields much information about the structure of
  # the graph especially on the classification of the edges.  This
  # method returns 5 hashes - 1st one shows the timestamps of each
  # node containing the first discoverd time and the search finished
  # time in an array.  The 2nd, 3rd, 4th, and 5th hashes contain 'tree
  # edges', 'back edges', 'cross edges', 'forward edges' respectively.
  #
  # If $DEBUG is true (e.g. ruby -d), this method prints the progression
  # of the search.
  # 
  # The weight of the edges are not considered in this method.
  #
  # Note: The result of this method depends on the order of Hash#each
  # (and each_key, etc.), which may be variable with Ruby version
  # and Ruby interpreter variations (JRuby, etc.).
  # For a workaround to remove such dependency, you can use @index 
  # to set order of Hash keys. Note that this bahavior might be
  # changed in the future.
  def depth_first_search
    visited = {}
    timestamp = {}
    tree_edges = {}
    back_edges = {}
    cross_edges = {}
    forward_edges = {}
    count = 0

    # begin workaround removing depencency to order of Hash#each
    if @index.empty? then
      preference_of_nodes = nil
    else
      preference_of_nodes = {}.merge(@index)
      i = preference_of_nodes.values.max
      @graph.each_key do |node0|
        preference_of_nodes[node0] ||= (i += 1)
      end
    end
    # end workaround removing depencency to order of Hash#each

    dfs_visit = Proc.new { |from|
      visited[from] = true
      timestamp[from] = [count += 1]
      ary = @graph[from].keys
      # begin workaround removing depencency to order of Hash#each
      if preference_of_nodes then
        ary = ary.sort_by { |node0| preference_of_nodes[node0] }
      end
      # end workaround removing depencency to order of Hash#each
      ary.each do |to|
        if visited[to]
          if timestamp[to].size > 1
            if timestamp[from].first < timestamp[to].first
      	# forward edge (black)
      	p "#{from} -> #{to} : forward edge" if $DEBUG
      	forward_edges[from] = to
            else
      	# cross edge (black)
      	p "#{from} -> #{to} : cross edge" if $DEBUG
      	cross_edges[from] = to
            end
          else
            # back edge (gray)
            p "#{from} -> #{to} : back edge" if $DEBUG
            back_edges[from] = to
          end
        else
          # tree edge (white)
          p "#{from} -> #{to} : tree edge" if $DEBUG
          tree_edges[to] = from
          dfs_visit.call(to)
        end
      end
      timestamp[from].push(count += 1)
    }

    ary = @graph.keys
    # begin workaround removing depencency to order of Hash#each
    if preference_of_nodes then
      ary = ary.sort_by { |node0| preference_of_nodes[node0] }
    end
    # end workaround removing depencency to order of Hash#each
    ary.each do |node|
      unless visited[node]
        dfs_visit.call(node)
      end
    end
    return timestamp, tree_edges, back_edges, cross_edges, forward_edges
  end

  # Alias for the depth_first_search method.
  alias dfs depth_first_search


  # Topological sort of the directed acyclic graphs ("dags") by using
  # depth_first_search.
  def dfs_topological_sort
    # sorted by finished time reversely and collect node names only
    timestamp, = self.depth_first_search
    timestamp.sort {|a,b| b[1][1] <=> a[1][1]}.collect {|x| x.first }
  end


  # Dijkstra method to solve the shortest path problem in the weighted graph.
  def dijkstra(root)
    distance, predecessor = initialize_single_source(root)
    @graph[root].each do |k, v|
      distance[k] = v
      predecessor[k] = root
    end
    queue = distance.dup
    queue.delete(root)

    while queue.size != 0
      min = queue.min {|a, b| a[1] <=> b[1]}
      u = min[0]		# extranct a node having minimal distance
      @graph[u].each do |k, v|
        # relaxing procedure of root -> 'u' -> 'k'
        if distance[k] > distance[u] + v
          distance[k] = distance[u] + v
          predecessor[k] = u
        end
      end
      queue.delete(u)
    end
    return distance, predecessor
  end

  # Bellman-Ford method for solving the single-source shortest-paths
  # problem in the graph in which edge weights can be negative.
  def bellman_ford(root)
    distance, predecessor = initialize_single_source(root)
    (self.nodes - 1).times do
      @graph.each_key do |u|
        @graph[u].each do |v, w|
          # relaxing procedure of root -> 'u' -> 'v'
          if distance[v] > distance[u] + w
            distance[v] = distance[u] + w
            predecessor[v] = u
          end
        end
      end
    end
    # negative cyclic loop check
    @graph.each_key do |u|
      @graph[u].each do |v, w|
        if distance[v] > distance[u] + w
          return false
        end
      end
    end
    return distance, predecessor
  end


  # Floyd-Wardshall alogrithm for solving the all-pairs shortest-paths
  # problem on a directed graph G = (V, E).
  def floyd_warshall
    inf = 1 / 0.0

    m = self.to_matrix(inf, 0)
    d = m.dup
    n = self.nodes
    for k in 0 .. n - 1 do
      for i in 0 .. n - 1 do
        for j in 0 .. n - 1 do
          if d[i, j] > d[i, k] + d[k, j]
            d[i, j] = d[i, k] + d[k, j]
          end
        end
      end
    end
    return d
  end

  # Alias for the floyd_warshall method.
  alias floyd floyd_warshall

  # Kruskal method for finding minimam spaninng trees
  def kruskal
    # initialize
    rel = self.to_relations.sort{|a, b| a <=> b}
    index = []
    for i in 0 .. (rel.size - 1) do
      for j in (i + 1) .. (rel.size - 1) do
        if rel[i] == rel[j]
          index << j
        end
      end
    end
    index.sort{|x, y| y<=>x}.each do |idx|
      rel[idx, 1] = []
    end
    mst = []
    seen = Hash.new()
    @graph.each_key do |x|
      seen[x] = nil
    end
    i = 1
    # initialize end

    rel.each do |r|
      if seen[r.node[0]] == nil
        seen[r.node[0]] = 0
      end
      if seen[r.node[1]] == nil
        seen[r.node[1]] = 0
      end
      if seen[r.node[0]] == seen[r.node[1]] && seen[r.node[0]] == 0
        mst << r
        seen[r.node[0]] = i
        seen[r.node[1]] = i
      elsif seen[r.node[0]] != seen[r.node[1]]
        mst << r
        v1 = seen[r.node[0]].dup
        v2 = seen[r.node[1]].dup
        seen.each do |k, v|
          if v == v1 || v == v2
            seen[k] = i
          end
        end
      end
      i += 1
    end
    return Pathway.new(mst)
  end


  private


  def initialize_single_source(root)
    inf = 1 / 0.0				# inf.infinite? -> true

    distance = {}
    predecessor = {}

    @graph.each_key do |k|
      distance[k] = inf
      predecessor[k] = nil
    end
    distance[root] = 0
    return distance, predecessor
  end

end # Pathway



# Bio::Relation is a simple object storing two nodes and the relation of them.
# The nodes and the edge (relation) can be any Ruby object.  You can also
# compare Bio::Relation objects if the edges have Comparable property.
class Relation

  # Create new binary relation object consists of the two object 'node1'
  # and 'node2' with the 'edge' object as the relation of them.
  def initialize(node1, node2, edge)
    @node = [node1, node2]
    @edge = edge
  end
  attr_accessor :node, :edge

  # Returns one node.
  def from
    @node[0]
  end

  # Returns another node.
  def to
    @node[1]
  end

  def relation
    @edge
  end

  # Used by eql? method
  def hash
    @node.sort.push(@edge).hash
  end

  # Compare with another Bio::Relation object whether havind same edges
  # and same nodes.  The == method compares Bio::Relation object's id,
  # however this case equality === method compares the internal property
  # of the Bio::Relation object.
  def ===(rel)
    if self.edge == rel.edge
      if self.node[0] == rel.node[0] and self.node[1] == rel.node[1]
        return true
      elsif self.node[0] == rel.node[1] and self.node[1] == rel.node[0]
        return true
      else
        return false
      end
    else
      return false
    end
  end

  # Method eql? is an alias of the === method and is used with hash method
  # to make uniq arry of the Bio::Relation objects.
  #
  #   a1 = Bio::Relation.new('a', 'b', 1)
  #   a2 = Bio::Relation.new('b', 'a', 1)
  #   a3 = Bio::Relation.new('b', 'c', 1)
  # p [ a1, a2, a3 ].uniq
  alias eql? ===

  # Used by the each method to compare with another Bio::Relation object.
  # This method is only usable when the edge objects have the property of
  # the module Comparable.
  def <=>(rel)
    unless self.edge.kind_of? Comparable
      raise "[Error] edges are not comparable"
    end
    if self.edge > rel.edge
      return 1
    elsif self.edge < rel.edge
      return -1
    elsif self.edge == rel.edge
      return 0
    end
  end

end # Relation

end # Bio