File: sequence.rb

package info (click to toggle)
ruby-bio 2.0.6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,108 kB
  • sloc: ruby: 68,331; perl: 13; makefile: 11; sh: 1
file content (477 lines) | stat: -rw-r--r-- 16,257 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#
# = bio/sequence.rb - biological sequence class
#
# Copyright::   Copyright (C) 2000-2006
#               Toshiaki Katayama <k@bioruby.org>,
#               Yoshinori K. Okuji <okuji@enbug.org>,
#               Naohisa Goto <ng@bioruby.org>,
#               Ryan Raaum <ryan@raaum.org>,
#               Jan Aerts <jan.aerts@bbsrc.ac.uk>
# License::     The Ruby License
#

module Bio

# = DESCRIPTION
# Bio::Sequence objects represent annotated sequences in bioruby.
# A Bio::Sequence object is a wrapper around the actual sequence, 
# represented as either a Bio::Sequence::NA or a Bio::Sequence::AA object.
# For most users, this encapsulation will be completely transparent.
# Bio::Sequence responds to all methods defined for Bio::Sequence::NA/AA
# objects using the same arguments and returning the same values (even though 
# these methods are not documented specifically for Bio::Sequence).
#
# = USAGE
#   # Create a nucleic or amino acid sequence
#   dna = Bio::Sequence.auto('atgcatgcATGCATGCAAAA')
#   rna = Bio::Sequence.auto('augcaugcaugcaugcaaaa')
#   aa = Bio::Sequence.auto('ACDEFGHIKLMNPQRSTVWYU')
# 
#   # Print it out
#   puts dna.to_s
#   puts aa.to_s
# 
#   # Get a subsequence, bioinformatics style (first nucleotide is '1')
#   puts dna.subseq(2,6)
# 
#   # Get a subsequence, informatics style (first nucleotide is '0')
#   puts dna[2,6]
# 
#   # Print in FASTA format
#   puts dna.output(:fasta)
# 
#   # Print all codons
#   dna.window_search(3,3) do |codon|
#     puts codon
#   end
# 
#   # Splice or otherwise mangle your sequence
#   puts dna.splicing("complement(join(1..5,16..20))")
#   puts rna.splicing("complement(join(1..5,16..20))")
# 
#   # Convert a sequence containing ambiguity codes into a 
#   # regular expression you can use for subsequent searching
#   puts aa.to_re
# 
#   # These should speak for themselves
#   puts dna.complement
#   puts dna.composition
#   puts dna.molecular_weight
#   puts dna.translate
#   puts dna.gc_percent
class Sequence

  autoload :Common,  'bio/sequence/common'
  autoload :NA,      'bio/sequence/na'
  autoload :AA,      'bio/sequence/aa'
  autoload :Generic, 'bio/sequence/generic'
  autoload :Format,  'bio/sequence/format'
  autoload :Adapter, 'bio/sequence/adapter'
  autoload :QualityScore, 'bio/sequence/quality_score'
  autoload :SequenceMasker, 'bio/sequence/sequence_masker'

  #--
  # require "bio/sequence/compat.rb" here to avoid circular require and
  # possible superclass mismatch of AA class
  #++
  require 'bio/sequence/compat'

  include Format
  include SequenceMasker

  # Create a new Bio::Sequence object
  #
  #   s = Bio::Sequence.new('atgc')
  #   puts s                                  #=> 'atgc'
  #
  # Note that this method does not intialize the contained sequence
  # as any kind of bioruby object, only as a simple string
  #
  #   puts s.seq.class                        #=> String
  #
  # See Bio::Sequence#na, Bio::Sequence#aa, and Bio::Sequence#auto 
  # for methods to transform the basic String of a just created 
  # Bio::Sequence object to a proper bioruby object
  # ---
  # *Arguments*:
  # * (required) _str_: String or Bio::Sequence::NA/AA object
  # *Returns*:: Bio::Sequence object
  def initialize(str)
    @seq = str
  end

  # Pass any unknown method calls to the wrapped sequence object.  see
  # http://www.rubycentral.com/book/ref_c_object.html#Object.method_missing
  def method_missing(sym, *args, &block) #:nodoc:
    begin
      seq.__send__(sym, *args, &block)
    rescue NoMethodError => evar
      lineno = __LINE__ - 2
      file = __FILE__
      bt_here = [ "#{file}:#{lineno}:in \`__send__\'",
                  "#{file}:#{lineno}:in \`method_missing\'"
                ]
      if bt_here == evar.backtrace[0, 2] then
        bt = evar.backtrace[2..-1]
        evar = evar.class.new("undefined method \`#{sym.to_s}\' for #{self.inspect}")
        evar.set_backtrace(bt)
      end
      #p lineno
      #p file
      #p bt_here
      #p evar.backtrace
      raise(evar)
    end
  end
  
  # The sequence identifier (String).  For example, for a sequence
  # of Genbank origin, this is the locus name.
  # For a sequence of EMBL origin, this is the primary accession number.
  attr_accessor :entry_id
  
  # A String with a description of the sequence (String)
  attr_accessor :definition
  
  # Features (An Array of Bio::Feature objects)
  attr_accessor :features
  
  # References (An Array of Bio::Reference objects)
  attr_accessor :references
  
  # Comments (String or an Array of String)
  attr_accessor :comments
  
  # Keywords (An Array of String)
  attr_accessor :keywords
  
  # Links to other database entries.
  # (An Array of Bio::Sequence::DBLink objects)
  attr_accessor :dblinks

  # Bio::Sequence::NA/AA
  attr_accessor :moltype
  
  # The sequence object, usually Bio::Sequence::NA/AA, 
  # but could be a simple String
  attr_accessor :seq

  # Quality scores of the bases/residues in the sequence.
  # (Array containing Integer, or nil)
  attr_accessor :quality_scores

  # The meaning (calculation method) of the quality scores stored in
  # the <tt>quality_scores</tt> attribute.
  # Maybe one of :phred, :solexa, or nil.
  #
  # Note that if it is nil, and <tt>error_probabilities</tt> is empty,
  # some methods implicitly assumes that it is :phred (PHRED score).
  attr_accessor :quality_score_type

  # Error probabilities of the bases/residues in the sequence.
  # (Array containing Float, or nil)
  attr_accessor :error_probabilities

  #---
  # Attributes below have been added during BioHackathon2008
  #+++
  
  # Version number of the sequence (String or Integer).
  # Unlike <tt>entry_version</tt>, <tt>sequence_version</tt> will be changed
  # when the submitter of the sequence updates the entry.
  # Normally, the same entry taken from different databases (EMBL, GenBank,
  # and DDBJ) may have the same sequence_version.
  attr_accessor :sequence_version

  # Topology (String). "circular", "linear", or nil.
  attr_accessor :topology

  # Strandedness (String). "single" (single-stranded),
  # "double" (double-stranded), "mixed" (mixed-stranded), or nil.
  attr_accessor :strandedness

  # molecular type (String). "DNA" or "RNA" for nucleotide sequence.
  attr_accessor :molecule_type

  # Data Class defined by EMBL (String)
  # See http://www.ebi.ac.uk/embl/Documentation/User_manual/usrman.html#3_1
  attr_accessor :data_class

  # Taxonomic Division defined by EMBL/GenBank/DDBJ (String)
  # See http://www.ebi.ac.uk/embl/Documentation/User_manual/usrman.html#3_2
  attr_accessor :division

  # Primary accession number (String)
  attr_accessor :primary_accession

  # Secondary accession numbers (Array of String)
  attr_accessor :secondary_accessions

  # Created date of the sequence entry (Date, DateTime, Time, or String)
  attr_accessor :date_created

  # Last modified date of the sequence entry (Date, DateTime, Time, or String)
  attr_accessor :date_modified

  # Release information when created (String)
  attr_accessor :release_created

  # Release information when last-modified (String)
  attr_accessor :release_modified

  # Version of the entry (String or Integer).
  # Unlike <tt>sequence_version</tt>, <tt>entry_version</tt> is a database
  # maintainer's internal version number.
  # The version number will be changed when the database maintainer
  # modifies the entry.
  # The same enrty in EMBL, GenBank, and DDBJ may have different
  # entry_version.
  attr_accessor :entry_version

  # Organism species (String). For example, "Escherichia coli".
  attr_accessor :species

  # Organism classification, taxonomic classification of the source organism.
  # (Array of String)
  attr_accessor :classification
  alias taxonomy classification

  # (not well supported) Organelle information (String).
  attr_accessor :organelle

  # Namespace of the sequence IDs described in entry_id, primary_accession,
  # and secondary_accessions methods (String).
  # For example, 'EMBL', 'GenBank', 'DDBJ', 'RefSeq'.
  attr_accessor :id_namespace

  # Sequence identifiers which are not described in entry_id,
  # primary_accession,and secondary_accessions methods
  # (Array of Bio::Sequence::DBLink objects).
  # For example, NCBI GI number can be stored.
  # Note that only identifiers of the entry itself should be stored.
  # For database cross references, <tt>dblinks</tt> should be used.
  attr_accessor :other_seqids

  # Guess the type of sequence, Amino Acid or Nucleic Acid, and create a 
  # new sequence object (Bio::Sequence::AA or Bio::Sequence::NA) on the basis
  # of this guess.  This method will change the current Bio::Sequence object.
  #
  #   s = Bio::Sequence.new('atgc')
  #   puts s.seq.class                        #=> String
  #   s.auto
  #   puts s.seq.class                        #=> Bio::Sequence::NA
  # ---
  # *Returns*:: Bio::Sequence::NA/AA object
  def auto
    @moltype = guess
    if @moltype == NA
      @seq = NA.new(seq)
    else
      @seq = AA.new(seq)
    end
  end

  # Given a sequence String, guess its type, Amino Acid or Nucleic Acid, and
  # return a new Bio::Sequence object wrapping a sequence of the guessed type
  # (either Bio::Sequence::AA or Bio::Sequence::NA)
  # 
  #   s = Bio::Sequence.auto('atgc')
  #   puts s.seq.class                        #=> Bio::Sequence::NA
  # ---
  # *Arguments*:
  # * (required) _str_: String *or* Bio::Sequence::NA/AA object
  # *Returns*:: Bio::Sequence object
  def self.auto(str)
    seq = self.new(str)
    seq.auto
    return seq
  end

  # Guess the class of the current sequence.  Returns the class
  # (Bio::Sequence::AA or Bio::Sequence::NA) guessed.  In general, used by
  # developers only, but if you know what you are doing, feel free.
  # 
  #   s = Bio::Sequence.new('atgc')
  #   puts s.guess                            #=> Bio::Sequence::NA
  #
  # There are three parameters: `threshold`, `length`, and `index`.  
  #
  # The `threshold` value (defaults to 0.9) is the frequency of 
  # nucleic acid bases [AGCTUagctu] required in the sequence for this method
  # to produce a Bio::Sequence::NA "guess".  In the default case, if less
  # than 90% of the bases (after excluding [Nn]) are in the set [AGCTUagctu],
  # then the guess is Bio::Sequence::AA.
  # 
  #   s = Bio::Sequence.new('atgcatgcqq')
  #   puts s.guess                            #=> Bio::Sequence::AA
  #   puts s.guess(0.8)                       #=> Bio::Sequence::AA
  #   puts s.guess(0.7)                       #=> Bio::Sequence::NA
  #
  # The `length` value is how much of the total sequence to use in the
  # guess (default 10000).  If your sequence is very long, you may 
  # want to use a smaller amount to reduce the computational burden.
  #
  #   s = Bio::Sequence.new(A VERY LONG SEQUENCE)
  #   puts s.guess(0.9, 1000)  # limit the guess to the first 1000 positions
  #
  # The `index` value is where to start the guess.  Perhaps you know there
  # are a lot of gaps at the start...
  #
  #   s = Bio::Sequence.new('-----atgcc')
  #   puts s.guess                            #=> Bio::Sequence::AA
  #   puts s.guess(0.9,10000,5)               #=> Bio::Sequence::NA
  # ---
  # *Arguments*:
  # * (optional) _threshold_: Float in range 0,1 (default 0.9)
  # * (optional) _length_: Fixnum (default 10000)
  # * (optional) _index_: Fixnum (default 1)
  # *Returns*:: Bio::Sequence::NA/AA
  def guess(threshold = 0.9, length = 10000, index = 0)
    str = seq.to_s[index,length].to_s.extend Bio::Sequence::Common
    cmp = str.composition

    bases = cmp['A'] + cmp['T'] + cmp['G'] + cmp['C'] + cmp['U'] +
            cmp['a'] + cmp['t'] + cmp['g'] + cmp['c'] + cmp['u']

    total = str.length - cmp['N'] - cmp['n']

    if bases.to_f / total > threshold
      return NA
    else
      return AA
    end
  end 

  # Guess the class of a given sequence.  Returns the class
  # (Bio::Sequence::AA or Bio::Sequence::NA) guessed.  In general, used by
  # developers only, but if you know what you are doing, feel free.
  # 
  #   puts .guess('atgc')        #=> Bio::Sequence::NA
  #
  # There are three optional parameters: `threshold`, `length`, and `index`.  
  #
  # The `threshold` value (defaults to 0.9) is the frequency of 
  # nucleic acid bases [AGCTUagctu] required in the sequence for this method
  # to produce a Bio::Sequence::NA "guess".  In the default case, if less
  # than 90% of the bases (after excluding [Nn]) are in the set [AGCTUagctu],
  # then the guess is Bio::Sequence::AA.
  # 
  #   puts Bio::Sequence.guess('atgcatgcqq')      #=> Bio::Sequence::AA
  #   puts Bio::Sequence.guess('atgcatgcqq', 0.8) #=> Bio::Sequence::AA
  #   puts Bio::Sequence.guess('atgcatgcqq', 0.7) #=> Bio::Sequence::NA
  #
  # The `length` value is how much of the total sequence to use in the
  # guess (default 10000).  If your sequence is very long, you may 
  # want to use a smaller amount to reduce the computational burden.
  #
  #   # limit the guess to the first 1000 positions
  #   puts Bio::Sequence.guess('A VERY LONG SEQUENCE', 0.9, 1000)  
  #
  # The `index` value is where to start the guess.  Perhaps you know there
  # are a lot of gaps at the start...
  #
  #   puts Bio::Sequence.guess('-----atgcc')             #=> Bio::Sequence::AA
  #   puts Bio::Sequence.guess('-----atgcc',0.9,10000,5) #=> Bio::Sequence::NA
  # ---
  # *Arguments*:
  # * (required) _str_: String *or* Bio::Sequence::NA/AA object
  # * (optional) _threshold_: Float in range 0,1 (default 0.9)
  # * (optional) _length_: Fixnum (default 10000)
  # * (optional) _index_: Fixnum (default 1)
  # *Returns*:: Bio::Sequence::NA/AA
  def self.guess(str, *args)
    self.new(str).guess(*args)
  end

  # Transform the sequence wrapped in the current Bio::Sequence object
  # into a Bio::Sequence::NA object.  This method will change the current
  # object.  This method does not validate your choice, so be careful!
  #
  #   s = Bio::Sequence.new('RRLE')
  #   puts s.seq.class                        #=> String
  #   s.na
  #   puts s.seq.class                        #=> Bio::Sequence::NA !!!
  #
  # However, if you know your sequence type, this method may be 
  # constructively used after initialization,
  #
  #   s = Bio::Sequence.new('atgc')
  #   s.na
  # ---
  # *Returns*:: Bio::Sequence::NA
  def na
    @seq = NA.new(seq)
    @moltype = NA
  end

  # Transform the sequence wrapped in the current Bio::Sequence object
  # into a Bio::Sequence::NA object.  This method will change the current
  # object.  This method does not validate your choice, so be careful!
  #
  #   s = Bio::Sequence.new('atgc')
  #   puts s.seq.class                        #=> String
  #   s.aa
  #   puts s.seq.class                        #=> Bio::Sequence::AA !!!
  #
  # However, if you know your sequence type, this method may be 
  # constructively used after initialization,
  #
  #   s = Bio::Sequence.new('RRLE')
  #   s.aa
  # ---
  # *Returns*:: Bio::Sequence::AA
  def aa
    @seq = AA.new(seq)
    @moltype = AA
  end

  # Create a new Bio::Sequence object from a formatted string
  # (GenBank, EMBL, fasta format, etc.)
  #
  #   s = Bio::Sequence.input(str)
  # ---
  # *Arguments*:
  # * (required) _str_: string
  # * (optional) _format_: format specification (class or nil)
  # *Returns*:: Bio::Sequence object
  def self.input(str, format = nil)
    if format then
      klass = format
    else
      klass = Bio::FlatFile::AutoDetect.default.autodetect(str)
    end
    obj = klass.new(str)
    obj.to_biosequence
  end

  # alias of Bio::Sequence.input
  def self.read(str, format = nil)
    input(str, format)
  end

  # accession numbers of the sequence
  #
  # *Returns*:: Array of String
  def accessions
    [ primary_accession, secondary_accessions ].flatten.compact
  end

  # Normally, users should not call this method directly.
  # Use Bio::*#to_biosequence (e.g. Bio::GenBank#to_biosequence).
  #
  # Creates a new Bio::Sequence object from database data with an
  # adapter module.
  def self.adapter(source_data, adapter_module)
    biosequence = self.new(nil)
    biosequence.instance_eval {
      remove_instance_variable(:@seq)
      @source_data = source_data
    }
    biosequence.extend(adapter_module)
    biosequence
  end

end # Sequence


end # Bio