1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
#
# = bio/sequence/na.rb - nucleic acid sequence class
#
# Copyright:: Copyright (C) 2006
# Toshiaki Katayama <k@bioruby.org>,
# Ryan Raaum <ryan@raaum.org>
# License:: The Ruby License
#
module Bio
autoload :NucleicAcid, 'bio/data/na' unless const_defined?(:NucleicAcid)
autoload :CodonTable, 'bio/data/codontable' unless const_defined?(:CodonTable)
require 'bio/sequence' unless const_defined?(:Sequence)
class Sequence
# = DESCRIPTION
# Bio::Sequence::NA represents a bare Nucleic Acid sequence in bioruby.
#
# = USAGE
# # Create a Nucleic Acid sequence.
# dna = Bio::Sequence.auto('atgcatgcATGCATGCAAAA')
# rna = Bio::Sequence.auto('augcaugcaugcaugcaaaa')
#
# # What are the names of all the bases?
# puts dna.names
# puts rna.names
#
# # What is the GC percentage?
# puts dna.gc_percent
# puts rna.gc_percent
#
# # What is the molecular weight?
# puts dna.molecular_weight
# puts rna.molecular_weight
#
# # What is the reverse complement?
# puts dna.reverse_complement
# puts dna.complement
#
# # Is this sequence DNA or RNA?
# puts dna.rna?
#
# # Translate my sequence (see method docs for many options)
# puts dna.translate
# puts rna.translate
class NA < String
include Bio::Sequence::Common
# Generate an nucleic acid sequence object from a string.
#
# s = Bio::Sequence::NA.new("aagcttggaccgttgaagt")
#
# or maybe (if you have an nucleic acid sequence in a file)
#
# s = Bio::Sequence:NA.new(File.open('dna.txt').read)
#
# Nucleic Acid sequences are *always* all lowercase in bioruby
#
# s = Bio::Sequence::NA.new("AAGcTtGG")
# puts s #=> "aagcttgg"
#
# Whitespace is stripped from the sequence
#
# seq = Bio::Sequence::NA.new("atg\nggg\ttt\r gc")
# puts s #=> "atggggttgc"
# ---
# *Arguments*:
# * (required) _str_: String
# *Returns*:: Bio::Sequence::NA object
def initialize(str)
super
self.downcase!
self.tr!(" \t\n\r",'')
end
# Alias of Bio::Sequence::Common splice method, documented there.
def splicing(position) #:nodoc:
mRNA = super
if mRNA.rna?
mRNA.tr!('t', 'u')
else
mRNA.tr!('u', 't')
end
mRNA
end
# Returns a new complementary sequence object (without reversing).
# The original sequence object is not modified.
#
# s = Bio::Sequence::NA.new('atgc')
# puts s.forward_complement #=> 'tacg'
# puts s #=> 'atgc'
# ---
# *Returns*:: new Bio::Sequence::NA object
def forward_complement
s = self.class.new(self)
s.forward_complement!
s
end
# Converts the current sequence into its complement (without reversing).
# The original sequence object is modified.
#
# seq = Bio::Sequence::NA.new('atgc')
# puts s.forward_complement! #=> 'tacg'
# puts s #=> 'tacg'
# ---
# *Returns*:: current Bio::Sequence::NA object (modified)
def forward_complement!
if self.rna?
self.tr!('augcrymkdhvbswn', 'uacgyrkmhdbvswn')
else
self.tr!('atgcrymkdhvbswn', 'tacgyrkmhdbvswn')
end
self
end
# Returns a new sequence object with the reverse complement
# sequence to the original. The original sequence is not modified.
#
# s = Bio::Sequence::NA.new('atgc')
# puts s.reverse_complement #=> 'gcat'
# puts s #=> 'atgc'
# ---
# *Returns*:: new Bio::Sequence::NA object
def reverse_complement
s = self.class.new(self)
s.reverse_complement!
s
end
# Converts the original sequence into its reverse complement.
# The original sequence is modified.
#
# s = Bio::Sequence::NA.new('atgc')
# puts s.reverse_complement #=> 'gcat'
# puts s #=> 'gcat'
# ---
# *Returns*:: current Bio::Sequence::NA object (modified)
def reverse_complement!
self.reverse!
self.forward_complement!
end
# Alias for Bio::Sequence::NA#reverse_complement
alias complement reverse_complement
# Alias for Bio::Sequence::NA#reverse_complement!
alias complement! reverse_complement!
# Translate into an amino acid sequence.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.translate #=> "MA*"
#
# By default, translate starts in reading frame position 1, but you
# can start in either 2 or 3 as well,
#
# puts s.translate(2) #=> "WR"
# puts s.translate(3) #=> "GV"
#
# You may also translate the reverse complement in one step by using frame
# values of -1, -2, and -3 (or 4, 5, and 6)
#
# puts s.translate(-1) #=> "SRH"
# puts s.translate(4) #=> "SRH"
# puts s.reverse_complement.translate(1) #=> "SRH"
#
# The default codon table in the translate function is the Standard
# Eukaryotic codon table. The translate function takes either a
# number or a Bio::CodonTable object for its table argument.
# The available tables are
# (NCBI[http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t]):
#
# 1. "Standard (Eukaryote)"
# 2. "Vertebrate Mitochondrial"
# 3. "Yeast Mitochondorial"
# 4. "Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma"
# 5. "Invertebrate Mitochondrial"
# 6. "Ciliate Macronuclear and Dasycladacean"
# 9. "Echinoderm Mitochondrial"
# 10. "Euplotid Nuclear"
# 11. "Bacteria"
# 12. "Alternative Yeast Nuclear"
# 13. "Ascidian Mitochondrial"
# 14. "Flatworm Mitochondrial"
# 15. "Blepharisma Macronuclear"
# 16. "Chlorophycean Mitochondrial"
# 21. "Trematode Mitochondrial"
# 22. "Scenedesmus obliquus mitochondrial"
# 23. "Thraustochytrium Mitochondrial"
#
# If you are using anything other than the default table, you must specify
# frame in the translate method call,
#
# puts s.translate #=> "MA*" (using defaults)
# puts s.translate(1,1) #=> "MA*" (same as above, but explicit)
# puts s.translate(1,2) #=> "MAW" (different codon table)
#
# and using a Bio::CodonTable instance in the translate method call,
#
# mt_table = Bio::CodonTable[2]
# puts s.translate(1, mt_table) #=> "MAW"
#
# By default, any invalid or unknown codons (as could happen if the
# sequence contains ambiguities) will be represented by 'X' in the
# translated sequence.
# You may change this to any character of your choice.
#
# s = Bio::Sequence::NA.new('atgcNNtga')
# puts s.translate #=> "MX*"
# puts s.translate(1,1,'9') #=> "M9*"
#
# The translate method considers gaps to be unknown characters and treats
# them as such (i.e. does not collapse sequences prior to translation), so
#
# s = Bio::Sequence::NA.new('atgc--tga')
# puts s.translate #=> "MX*"
# ---
# *Arguments*:
# * (optional) _frame_: one of 1,2,3,4,5,6,-1,-2,-3 (default 1)
# * (optional) _table_: Fixnum in range 1,23 or Bio::CodonTable object
# (default 1)
# * (optional) _unknown_: Character (default 'X')
# *Returns*:: Bio::Sequence::AA object
def translate(frame = 1, table = 1, unknown = 'X')
if table.is_a?(Bio::CodonTable)
ct = table
else
ct = Bio::CodonTable[table]
end
naseq = self.dna
case frame
when 1, 2, 3
from = frame - 1
when 4, 5, 6
from = frame - 4
naseq.complement!
when -1, -2, -3
from = -1 - frame
naseq.complement!
else
from = 0
end
nalen = naseq.length - from
nalen -= nalen % 3
aaseq = naseq[from, nalen].gsub(/.{3}/) {|codon| ct[codon] or unknown}
return Bio::Sequence::AA.new(aaseq)
end
# Returns counts of each codon in the sequence in a hash.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.codon_usage #=> {"gcg"=>1, "tga"=>1, "atg"=>1}
#
# This method does not validate codons! Any three letter group is a 'codon'. So,
#
# s = Bio::Sequence::NA.new('atggNNtga')
# puts s.codon_usage #=> {"tga"=>1, "gnn"=>1, "atg"=>1}
#
# seq = Bio::Sequence::NA.new('atgg--tga')
# puts s.codon_usage #=> {"tga"=>1, "g--"=>1, "atg"=>1}
#
# Also, there is no option to work in any frame other than the first.
# ---
# *Returns*:: Hash object
def codon_usage
hash = Hash.new(0)
self.window_search(3, 3) do |codon|
hash[codon] += 1
end
return hash
end
# Calculate the ratio of GC / ATGC bases as a percentage rounded to
# the nearest whole number. U is regarded as T.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.gc_percent #=> 55
#
# Note that this method only returns an integer value.
# When more digits after decimal points are needed,
# use gc_content and sprintf like below:
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts sprintf("%3.2f", s.gc_content * 100) #=> "55.56"
#
# ---
# *Returns*:: Fixnum
def gc_percent
count = self.composition
at = count['a'] + count['t'] + count['u']
gc = count['g'] + count['c']
return 0 if at + gc == 0
gc = 100 * gc / (at + gc)
return gc
end
# Calculate the ratio of GC / ATGC bases. U is regarded as T.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.gc_content #=> (5/9)
# puts s.gc_content.to_f #=> 0.5555555555555556
#
# In older Ruby versions, Float is always returned.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.gc_content #=> 0.555555555555556
#
# Note that "u" is regarded as "t".
# If there are no ATGC bases in the sequence, 0.0 is returned.
#
# ---
# *Returns*:: Rational or Float
def gc_content
count = self.composition
at = count['a'] + count['t'] + count['u']
gc = count['g'] + count['c']
total = at + gc
return 0.0 if total == 0
return gc.quo(total)
end
# Calculate the ratio of AT / ATGC bases. U is regarded as T.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.at_content #=> 4/9
# puts s.at_content.to_f #=> 0.444444444444444
#
# In older Ruby versions, Float is always returned.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.at_content #=> 0.444444444444444
#
# Note that "u" is regarded as "t".
# If there are no ATGC bases in the sequence, 0.0 is returned.
#
# ---
# *Returns*:: Rational or Float
def at_content
count = self.composition
at = count['a'] + count['t'] + count['u']
gc = count['g'] + count['c']
total = at + gc
return 0.0 if total == 0
return at.quo(total)
end
# Calculate the ratio of (G - C) / (G + C) bases.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.gc_skew #=> 3/5
# puts s.gc_skew.to_f #=> 0.6
#
# In older Ruby versions, Float is always returned.
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.gc_skew #=> 0.6
#
# If there are no GC bases in the sequence, 0.0 is returned.
#
# ---
# *Returns*:: Rational or Float
def gc_skew
count = self.composition
g = count['g']
c = count['c']
gc = g + c
return 0.0 if gc == 0
return (g - c).quo(gc)
end
# Calculate the ratio of (A - T) / (A + T) bases. U is regarded as T.
#
# s = Bio::Sequence::NA.new('atgttgttgttc')
# puts s.at_skew #=> (-3/4)
# puts s.at_skew.to_f #=> -0.75
#
# In older Ruby versions, Float is always returned.
#
# s = Bio::Sequence::NA.new('atgttgttgttc')
# puts s.at_skew #=> -0.75
#
# Note that "u" is regarded as "t".
# If there are no AT bases in the sequence, 0.0 is returned.
#
# ---
# *Returns*:: Rational or Float
def at_skew
count = self.composition
a = count['a']
t = count['t'] + count['u']
at = a + t
return 0.0 if at == 0
return (a - t).quo(at)
end
# Returns an alphabetically sorted array of any non-standard bases
# (other than 'atgcu').
#
# s = Bio::Sequence::NA.new('atgStgQccR')
# puts s.illegal_bases #=> ["q", "r", "s"]
# ---
# *Returns*:: Array object
def illegal_bases
self.scan(/[^atgcu]/).sort.uniq
end
# Estimate molecular weight (using the values from BioPerl's
# SeqStats.pm[http://doc.bioperl.org/releases/bioperl-1.0.1/Bio/Tools/SeqStats.html] module).
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.molecular_weight #=> 2841.00708
#
# RNA and DNA do not have the same molecular weights,
#
# s = Bio::Sequence::NA.new('auggcguga')
# puts s.molecular_weight #=> 2956.94708
# ---
# *Returns*:: Float object
def molecular_weight
if self.rna?
Bio::NucleicAcid.weight(self, true)
else
Bio::NucleicAcid.weight(self)
end
end
# Create a ruby regular expression instance
# (Regexp)[http://corelib.rubyonrails.org/classes/Regexp.html]
#
# s = Bio::Sequence::NA.new('atggcgtga')
# puts s.to_re #=> /atggcgtga/
# ---
# *Returns*:: Regexp object
def to_re
if self.rna?
Bio::NucleicAcid.to_re(self.dna, true)
else
Bio::NucleicAcid.to_re(self)
end
end
# Generate the list of the names of each nucleotide along with the
# sequence (full name). Names used in bioruby are found in the
# Bio::AminoAcid::NAMES hash.
#
# s = Bio::Sequence::NA.new('atg')
# puts s.names #=> ["Adenine", "Thymine", "Guanine"]
# ---
# *Returns*:: Array object
def names
array = []
self.each_byte do |x|
array.push(Bio::NucleicAcid.names[x.chr.upcase])
end
return array
end
# Returns a new sequence object with any 'u' bases changed to 't'.
# The original sequence is not modified.
#
# s = Bio::Sequence::NA.new('augc')
# puts s.dna #=> 'atgc'
# puts s #=> 'augc'
# ---
# *Returns*:: new Bio::Sequence::NA object
def dna
self.tr('u', 't')
end
# Changes any 'u' bases in the original sequence to 't'.
# The original sequence is modified.
#
# s = Bio::Sequence::NA.new('augc')
# puts s.dna! #=> 'atgc'
# puts s #=> 'atgc'
# ---
# *Returns*:: current Bio::Sequence::NA object (modified)
def dna!
self.tr!('u', 't')
end
# Returns a new sequence object with any 't' bases changed to 'u'.
# The original sequence is not modified.
#
# s = Bio::Sequence::NA.new('atgc')
# puts s.dna #=> 'augc'
# puts s #=> 'atgc'
# ---
# *Returns*:: new Bio::Sequence::NA object
def rna
self.tr('t', 'u')
end
# Changes any 't' bases in the original sequence to 'u'.
# The original sequence is modified.
#
# s = Bio::Sequence::NA.new('atgc')
# puts s.dna! #=> 'augc'
# puts s #=> 'augc'
# ---
# *Returns*:: current Bio::Sequence::NA object (modified)
def rna!
self.tr!('t', 'u')
end
def rna?
self.index('u')
end
protected :rna?
# Example:
#
# seq = Bio::Sequence::NA.new('gaattc')
# cuts = seq.cut_with_enzyme('EcoRI')
#
# _or_
#
# seq = Bio::Sequence::NA.new('gaattc')
# cuts = seq.cut_with_enzyme('g^aattc')
# ---
# See Bio::RestrictionEnzyme::Analysis.cut
def cut_with_enzyme(*args)
Bio::RestrictionEnzyme::Analysis.cut(self, *args)
end
alias cut_with_enzymes cut_with_enzyme
end # NA
end # Sequence
end # Bio
|