File: na.rb

package info (click to toggle)
ruby-bio 2.0.6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,108 kB
  • sloc: ruby: 68,331; perl: 13; makefile: 11; sh: 1
file content (540 lines) | stat: -rw-r--r-- 16,093 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#
# = bio/sequence/na.rb - nucleic acid sequence class
#
# Copyright::   Copyright (C) 2006
#               Toshiaki Katayama <k@bioruby.org>,
#               Ryan Raaum <ryan@raaum.org>
# License::     The Ruby License
#

module Bio

  autoload :NucleicAcid, 'bio/data/na' unless const_defined?(:NucleicAcid)
  autoload :CodonTable,  'bio/data/codontable' unless const_defined?(:CodonTable)

  require 'bio/sequence' unless const_defined?(:Sequence)

class Sequence


# = DESCRIPTION
# Bio::Sequence::NA represents a bare Nucleic Acid sequence in bioruby.
#
# = USAGE
#   # Create a Nucleic Acid sequence.
#   dna = Bio::Sequence.auto('atgcatgcATGCATGCAAAA')
#   rna = Bio::Sequence.auto('augcaugcaugcaugcaaaa')
#
#   # What are the names of all the bases?
#   puts dna.names
#   puts rna.names
#
#   # What is the GC percentage?
#   puts dna.gc_percent
#   puts rna.gc_percent
#
#   # What is the molecular weight?
#   puts dna.molecular_weight
#   puts rna.molecular_weight
#
#   # What is the reverse complement?
#   puts dna.reverse_complement
#   puts dna.complement
#
#   # Is this sequence DNA or RNA?
#   puts dna.rna?
#
#   # Translate my sequence (see method docs for many options)
#   puts dna.translate
#   puts rna.translate
class NA < String

  include Bio::Sequence::Common

  # Generate an nucleic acid sequence object from a string.
  #
  #   s = Bio::Sequence::NA.new("aagcttggaccgttgaagt")
  #
  # or maybe (if you have an nucleic acid sequence in a file)
  #
  #   s = Bio::Sequence:NA.new(File.open('dna.txt').read)
  #
  # Nucleic Acid sequences are *always* all lowercase in bioruby
  #
  #   s = Bio::Sequence::NA.new("AAGcTtGG")
  #   puts s                                  #=> "aagcttgg"
  #
  # Whitespace is stripped from the sequence
  #
  #   seq = Bio::Sequence::NA.new("atg\nggg\ttt\r  gc")
  #   puts s                                  #=> "atggggttgc"
  # ---
  # *Arguments*:
  # * (required) _str_: String
  # *Returns*:: Bio::Sequence::NA object
  def initialize(str)
    super
    self.downcase!
    self.tr!(" \t\n\r",'')
  end

  # Alias of Bio::Sequence::Common splice method, documented there.
  def splicing(position) #:nodoc:
    mRNA = super
    if mRNA.rna?
      mRNA.tr!('t', 'u')
    else
      mRNA.tr!('u', 't')
    end
    mRNA
  end

  # Returns a new complementary sequence object (without reversing).
  # The original sequence object is not modified.
  #
  #   s = Bio::Sequence::NA.new('atgc')
  #   puts s.forward_complement               #=> 'tacg'
  #   puts s                                  #=> 'atgc'
  # ---
  # *Returns*:: new Bio::Sequence::NA object
  def forward_complement
    s = self.class.new(self)
    s.forward_complement!
    s
  end

  # Converts the current sequence into its complement (without reversing).
  # The original sequence object is modified.
  #
  #   seq = Bio::Sequence::NA.new('atgc')
  #   puts s.forward_complement!              #=> 'tacg'
  #   puts s                                  #=> 'tacg'
  # ---
  # *Returns*:: current Bio::Sequence::NA object (modified)
  def forward_complement!
    if self.rna?
      self.tr!('augcrymkdhvbswn', 'uacgyrkmhdbvswn')
    else
      self.tr!('atgcrymkdhvbswn', 'tacgyrkmhdbvswn')
    end
    self
  end

  # Returns a new sequence object with the reverse complement 
  # sequence to the original.  The original sequence is not modified.
  #
  #   s = Bio::Sequence::NA.new('atgc')
  #   puts s.reverse_complement               #=> 'gcat'
  #   puts s                                  #=> 'atgc'
  # ---
  # *Returns*:: new Bio::Sequence::NA object
  def reverse_complement
    s = self.class.new(self)
    s.reverse_complement!
    s
  end

  # Converts the original sequence into its reverse complement.  
  # The original sequence is modified.
  #
  #   s = Bio::Sequence::NA.new('atgc')
  #   puts s.reverse_complement               #=> 'gcat'
  #   puts s                                  #=> 'gcat'
  # ---
  # *Returns*:: current Bio::Sequence::NA object (modified)
  def reverse_complement!
    self.reverse!
    self.forward_complement!
  end

  # Alias for Bio::Sequence::NA#reverse_complement
  alias complement reverse_complement
  
  # Alias for Bio::Sequence::NA#reverse_complement!
  alias complement! reverse_complement!


  # Translate into an amino acid sequence.
  #   
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.translate                        #=> "MA*"
  #
  # By default, translate starts in reading frame position 1, but you
  # can start in either 2 or 3 as well,
  #
  #   puts s.translate(2)                     #=> "WR"
  #   puts s.translate(3)                     #=> "GV"
  #
  # You may also translate the reverse complement in one step by using frame
  # values of -1, -2, and -3 (or 4, 5, and 6)
  #
  #   puts s.translate(-1)                    #=> "SRH"
  #   puts s.translate(4)                     #=> "SRH"
  #   puts s.reverse_complement.translate(1)  #=> "SRH"
  #
  # The default codon table in the translate function is the Standard
  # Eukaryotic codon table.  The translate function takes either a 
  # number or a Bio::CodonTable object for its table argument. 
  # The available tables are 
  # (NCBI[http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t]):
  #
  #   1. "Standard (Eukaryote)"
  #   2. "Vertebrate Mitochondrial"
  #   3. "Yeast Mitochondorial"
  #   4. "Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma"
  #   5. "Invertebrate Mitochondrial"
  #   6. "Ciliate Macronuclear and Dasycladacean"
  #   9. "Echinoderm Mitochondrial"
  #   10. "Euplotid Nuclear"
  #   11. "Bacteria"
  #   12. "Alternative Yeast Nuclear"
  #   13. "Ascidian Mitochondrial"
  #   14. "Flatworm Mitochondrial"
  #   15. "Blepharisma Macronuclear"
  #   16. "Chlorophycean Mitochondrial"
  #   21. "Trematode Mitochondrial"
  #   22. "Scenedesmus obliquus mitochondrial"
  #   23. "Thraustochytrium Mitochondrial"
  #
  # If you are using anything other than the default table, you must specify 
  # frame in the translate method call,
  #
  #   puts s.translate                #=> "MA*"  (using defaults)
  #   puts s.translate(1,1)           #=> "MA*"  (same as above, but explicit)
  #   puts s.translate(1,2)           #=> "MAW"  (different codon table)
  #
  # and using a Bio::CodonTable instance in the translate method call,
  #
  #   mt_table = Bio::CodonTable[2]
  #   puts s.translate(1, mt_table)           #=> "MAW"
  #
  # By default, any invalid or unknown codons (as could happen if the 
  # sequence contains ambiguities) will be represented by 'X' in the 
  # translated sequence. 
  # You may change this to any character of your choice.
  #
  #   s = Bio::Sequence::NA.new('atgcNNtga')
  #   puts s.translate                        #=> "MX*"
  #   puts s.translate(1,1,'9')               #=> "M9*"
  #
  # The translate method considers gaps to be unknown characters and treats 
  # them as such (i.e. does not collapse sequences prior to translation), so
  #
  #   s = Bio::Sequence::NA.new('atgc--tga')
  #   puts s.translate                        #=> "MX*"
  # ---
  # *Arguments*:
  # * (optional) _frame_:  one of 1,2,3,4,5,6,-1,-2,-3 (default 1)
  # * (optional) _table_: Fixnum in range 1,23 or Bio::CodonTable object
  #   (default 1)
  # * (optional) _unknown_: Character (default 'X')
  # *Returns*:: Bio::Sequence::AA object
  def translate(frame = 1, table = 1, unknown = 'X')
    if table.is_a?(Bio::CodonTable)
      ct = table
    else
      ct = Bio::CodonTable[table]
    end
    naseq = self.dna
    case frame
    when 1, 2, 3
      from = frame - 1
    when 4, 5, 6
      from = frame - 4
      naseq.complement!
    when -1, -2, -3
      from = -1 - frame
      naseq.complement!
    else
      from = 0
    end
    nalen = naseq.length - from
    nalen -= nalen % 3
    aaseq = naseq[from, nalen].gsub(/.{3}/) {|codon| ct[codon] or unknown}
    return Bio::Sequence::AA.new(aaseq)
  end

  # Returns counts of each codon in the sequence in a hash.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.codon_usage                #=> {"gcg"=>1, "tga"=>1, "atg"=>1}
  #
  # This method does not validate codons!  Any three letter group is a 'codon'. So,
  #
  #   s = Bio::Sequence::NA.new('atggNNtga')
  #   puts s.codon_usage                #=> {"tga"=>1, "gnn"=>1, "atg"=>1}
  #
  #   seq = Bio::Sequence::NA.new('atgg--tga')
  #   puts s.codon_usage                #=> {"tga"=>1, "g--"=>1, "atg"=>1}
  #
  # Also, there is no option to work in any frame other than the first.
  # ---
  # *Returns*:: Hash object
  def codon_usage
    hash = Hash.new(0)
    self.window_search(3, 3) do |codon|
      hash[codon] += 1
    end
    return hash
  end

  # Calculate the ratio of GC / ATGC bases as a percentage rounded to 
  # the nearest whole number. U is regarded as T.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.gc_percent                       #=> 55
  #
  # Note that this method only returns an integer value.
  # When more digits after decimal points are needed,
  # use gc_content and sprintf like below:
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts sprintf("%3.2f", s.gc_content * 100)  #=> "55.56"
  # 
  # ---
  # *Returns*:: Fixnum
  def gc_percent
    count = self.composition
    at = count['a'] + count['t'] + count['u']
    gc = count['g'] + count['c']
    return 0 if at + gc == 0
    gc = 100 * gc / (at + gc)
    return gc
  end

  # Calculate the ratio of GC / ATGC bases. U is regarded as T.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.gc_content                       #=> (5/9)
  #   puts s.gc_content.to_f                  #=> 0.5555555555555556
  #
  # In older Ruby versions, Float is always returned.
  #   
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.gc_content                       #=> 0.555555555555556
  #
  # Note that "u" is regarded as "t".
  # If there are no ATGC bases in the sequence, 0.0 is returned.
  #
  # ---
  # *Returns*:: Rational or Float
  def gc_content
    count = self.composition
    at = count['a'] + count['t'] + count['u']
    gc = count['g'] + count['c']
    total = at + gc
    return 0.0 if total == 0
    return gc.quo(total)
  end

  # Calculate the ratio of AT / ATGC bases. U is regarded as T.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.at_content                       #=> 4/9
  #   puts s.at_content.to_f                  #=> 0.444444444444444
  #
  # In older Ruby versions, Float is always returned.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.at_content                       #=> 0.444444444444444
  #
  # Note that "u" is regarded as "t".
  # If there are no ATGC bases in the sequence, 0.0 is returned.
  #
  # ---
  # *Returns*:: Rational or Float
  def at_content
    count = self.composition
    at = count['a'] + count['t'] + count['u']
    gc = count['g'] + count['c']
    total = at + gc
    return 0.0 if total == 0
    return at.quo(total)
  end

  # Calculate the ratio of (G - C) / (G + C) bases.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.gc_skew                          #=> 3/5
  #   puts s.gc_skew.to_f                     #=> 0.6
  #
  # In older Ruby versions, Float is always returned.
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.gc_skew                          #=> 0.6
  #
  # If there are no GC bases in the sequence, 0.0 is returned.
  #
  # ---
  # *Returns*:: Rational or Float
  def gc_skew
    count = self.composition
    g = count['g']
    c = count['c']
    gc = g + c
    return 0.0 if gc == 0
    return (g - c).quo(gc)
  end

  # Calculate the ratio of (A - T) / (A + T) bases. U is regarded as T.
  #
  #   s = Bio::Sequence::NA.new('atgttgttgttc')
  #   puts s.at_skew                          #=> (-3/4)
  #   puts s.at_skew.to_f                     #=> -0.75
  #
  # In older Ruby versions, Float is always returned.
  #
  #   s = Bio::Sequence::NA.new('atgttgttgttc')
  #   puts s.at_skew                          #=> -0.75
  #
  # Note that "u" is regarded as "t".
  # If there are no AT bases in the sequence, 0.0 is returned.
  #
  # ---
  # *Returns*:: Rational or Float
  def at_skew
    count = self.composition
    a = count['a']
    t = count['t'] + count['u']
    at = a + t
    return 0.0 if at == 0
    return (a - t).quo(at)
  end

  # Returns an alphabetically sorted array of any non-standard bases 
  # (other than 'atgcu').
  #
  #   s = Bio::Sequence::NA.new('atgStgQccR')
  #   puts s.illegal_bases                    #=> ["q", "r", "s"]
  # ---
  # *Returns*:: Array object
  def illegal_bases
    self.scan(/[^atgcu]/).sort.uniq
  end

  # Estimate molecular weight (using the values from BioPerl's 
  # SeqStats.pm[http://doc.bioperl.org/releases/bioperl-1.0.1/Bio/Tools/SeqStats.html] module).
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.molecular_weight                 #=> 2841.00708
  #
  # RNA and DNA do not have the same molecular weights,
  #
  #   s = Bio::Sequence::NA.new('auggcguga')
  #   puts s.molecular_weight                 #=> 2956.94708
  # ---
  # *Returns*:: Float object
  def molecular_weight
    if self.rna?
      Bio::NucleicAcid.weight(self, true)
    else
      Bio::NucleicAcid.weight(self)
    end
  end

  # Create a ruby regular expression instance 
  # (Regexp)[http://corelib.rubyonrails.org/classes/Regexp.html]  
  #
  #   s = Bio::Sequence::NA.new('atggcgtga')
  #   puts s.to_re                            #=> /atggcgtga/
  # ---
  # *Returns*:: Regexp object
  def to_re
    if self.rna?
      Bio::NucleicAcid.to_re(self.dna, true)
    else
      Bio::NucleicAcid.to_re(self)
    end
  end

  # Generate the list of the names of each nucleotide along with the
  # sequence (full name).  Names used in bioruby are found in the
  # Bio::AminoAcid::NAMES hash.
  #
  #   s = Bio::Sequence::NA.new('atg')
  #   puts s.names                    #=> ["Adenine", "Thymine", "Guanine"]
  # ---
  # *Returns*:: Array object
  def names
    array = []
    self.each_byte do |x|
      array.push(Bio::NucleicAcid.names[x.chr.upcase])
    end
    return array
  end

  # Returns a new sequence object with any 'u' bases changed to 't'.
  # The original sequence is not modified.
  #
  #   s = Bio::Sequence::NA.new('augc')
  #   puts s.dna                              #=> 'atgc'
  #   puts s                                  #=> 'augc'
  # ---
  # *Returns*:: new Bio::Sequence::NA object
  def dna
    self.tr('u', 't')
  end

  # Changes any 'u' bases in the original sequence to 't'.
  # The original sequence is modified.
  #
  #   s = Bio::Sequence::NA.new('augc')
  #   puts s.dna!                             #=> 'atgc'
  #   puts s                                  #=> 'atgc'
  # ---
  # *Returns*:: current Bio::Sequence::NA object (modified)
  def dna!
    self.tr!('u', 't')
  end

  # Returns a new sequence object with any 't' bases changed to 'u'.
  # The original sequence is not modified.
  #
  #   s = Bio::Sequence::NA.new('atgc')
  #   puts s.dna                              #=> 'augc'  
  #   puts s                                  #=> 'atgc'
  # ---
  # *Returns*:: new Bio::Sequence::NA object
  def rna
    self.tr('t', 'u')
  end

  # Changes any 't' bases in the original sequence to 'u'.
  # The original sequence is modified.
  #
  #   s = Bio::Sequence::NA.new('atgc')
  #   puts s.dna!                             #=> 'augc'
  #   puts s                                  #=> 'augc'
  # ---
  # *Returns*:: current Bio::Sequence::NA object (modified)
  def rna!
    self.tr!('t', 'u')
  end

  def rna?
    self.index('u')
  end
  protected :rna?

  # Example:
  #
  #   seq = Bio::Sequence::NA.new('gaattc')
  #   cuts = seq.cut_with_enzyme('EcoRI')
  #
  # _or_
  #
  #   seq = Bio::Sequence::NA.new('gaattc')
  #   cuts = seq.cut_with_enzyme('g^aattc')
  # ---
  # See Bio::RestrictionEnzyme::Analysis.cut
  def cut_with_enzyme(*args)
    Bio::RestrictionEnzyme::Analysis.cut(self, *args)
  end
  alias cut_with_enzymes cut_with_enzyme

end # NA

end # Sequence

end # Bio