File: rbBinaryCFPropertyList.rb

package info (click to toggle)
ruby-cfpropertylist 2.2.8-1.1%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 156 kB
  • sloc: ruby: 1,203; makefile: 2
file content (605 lines) | stat: -rw-r--r-- 18,770 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# -*- coding: utf-8 -*-

require 'stringio'

module CFPropertyList
  # Binary PList parser class
  class Binary
    # Read a binary plist file
    def load(opts)
      @unique_table = {}
      @count_objects = 0
      @object_refs = 0

      @written_object_count = 0
      @object_table = []
      @object_ref_size = 0

      @offsets = []

      fd = nil
      if(opts.has_key?(:file))
        fd = File.open(opts[:file],"rb")
        file = opts[:file]
      else
        fd = StringIO.new(opts[:data],"rb")
        file = "<string>"
      end

      # first, we read the trailer: 32 byte from the end
      fd.seek(-32,IO::SEEK_END)
      buff = fd.read(32)

      offset_size, object_ref_size, number_of_objects, top_object, table_offset = buff.unpack "x6CCx4Nx4Nx4N"

      # after that, get the offset table
      fd.seek(table_offset, IO::SEEK_SET)
      coded_offset_table = fd.read(number_of_objects * offset_size)
      raise CFFormatError.new("#{file}: Format error!") unless coded_offset_table.bytesize == number_of_objects * offset_size

      @count_objects = number_of_objects

      # decode offset table
      if(offset_size != 3)
        formats = ["","C*","n*","","N*"]
        @offsets = coded_offset_table.unpack(formats[offset_size])
      else
        @offsets = coded_offset_table.unpack("C*").each_slice(3).map {
          |x,y,z| (x << 16) | (y << 8) | z
        }
      end

      @object_ref_size = object_ref_size
      val = read_binary_object_at(file,fd,top_object)

      fd.close
      val
    end


    # Convert CFPropertyList to binary format; since we have to count our objects we simply unique CFDictionary and CFArray
    def to_str(opts={})
      @unique_table = {}
      @count_objects = 0
      @object_refs = 0

      @written_object_count = 0
      @object_table = []

      @offsets = []

      binary_str = "bplist00"

      @object_refs = count_object_refs(opts[:root])

      opts[:root].to_binary(self)

      next_offset = 8
      offsets = @object_table.map do |object|
        offset = next_offset
        next_offset += object.bytesize
        offset
      end
      binary_str << @object_table.join

      table_offset = next_offset
      offset_size = Binary.bytes_needed(table_offset)

      if offset_size < 8
        # Fast path: encode the entire offset array at once.
        binary_str << offsets.pack((%w(C n N N)[offset_size - 1]) + '*')
      else
        # Slow path: host may be little or big endian, must pack each offset
        # separately.
        offsets.each do |offset|
          binary_str << "#{Binary.pack_it_with_size(offset_size,offset)}"
        end
      end

      binary_str << [offset_size, object_ref_size(@object_refs)].pack("x6CC")
      binary_str << [@object_table.size].pack("x4N")
      binary_str << [0].pack("x4N")
      binary_str << [table_offset].pack("x4N")

      binary_str
    end

    def object_ref_size object_refs
      Binary.bytes_needed(object_refs)
    end

    # read a „null” type (i.e. null byte, marker byte, bool value)
    def read_binary_null_type(length)
      case length
      when 0  then 0 # null byte
      when 8  then CFBoolean.new(false)
      when 9  then CFBoolean.new(true)
      when 15 then 15 # fill type
      else
        raise CFFormatError.new("unknown null type: #{length}")
      end
    end
    protected :read_binary_null_type

    # read a binary int value
    def read_binary_int(fname,fd,length)
      if length > 3
        raise CFFormatError.new("Integer greater than 8 bytes: #{length}")
      end

      nbytes = 1 << length

      buff = fd.read(nbytes)

      CFInteger.new(
        case length
        when 0 then buff.unpack("C")[0]
        when 1 then buff.unpack("n")[0]
        when 2 then buff.unpack("N")[0]
        when 3
          hiword,loword = buff.unpack("NN")
          if (hiword & 0x80000000) != 0
            # 8 byte integers are always signed, and are negative when bit 63 is
            # set. Decoding into either a Fixnum or Bignum is tricky, however,
            # because the size of a Fixnum varies among systems, and Ruby
            # doesn't consider the number to be negative, and won't sign extend.
            -(2**63 - ((hiword & 0x7fffffff) << 32 | loword))
          else
            hiword << 32 | loword
          end
        end
      )
    end
    protected :read_binary_int

    # read a binary real value
    def read_binary_real(fname,fd,length)
      raise CFFormatError.new("Real greater than 8 bytes: #{length}") if length > 3

      nbytes = 1 << length
      buff = fd.read(nbytes)

      CFReal.new(
        case length
        when 0 # 1 byte float? must be an error
          raise CFFormatError.new("got #{length+1} byte float, must be an error!")
        when 1 # 2 byte float? must be an error
          raise CFFormatError.new("got #{length+1} byte float, must be an error!")
        when 2 then
          buff.reverse.unpack("f")[0]
        when 3 then
          buff.reverse.unpack("d")[0]
        else
          fail "unexpected length: #{length}"
        end
      )
    end
    protected :read_binary_real

    # read a binary date value
    def read_binary_date(fname,fd,length)
      raise CFFormatError.new("Date greater than 8 bytes: #{length}") if length > 3

      nbytes = 1 << length
      buff = fd.read(nbytes)

      CFDate.new(
        case length
        when 0 then # 1 byte CFDate is an error
          raise CFFormatError.new("#{length+1} byte CFDate, error")
        when 1 then # 2 byte CFDate is an error
          raise CFFormatError.new("#{length+1} byte CFDate, error")
        when 2 then
          buff.reverse.unpack("f")[0]
        when 3 then
          buff.reverse.unpack("d")[0]
        end,
        CFDate::TIMESTAMP_APPLE
      )
    end
    protected :read_binary_date

    # Read a binary data value
    def read_binary_data(fname,fd,length)
      CFData.new(read_fd(fd, length), CFData::DATA_RAW)
    end
    protected :read_binary_data

    def read_fd fd, length
      length > 0 ? fd.read(length) : ""
    end

    # Read a binary string value
    def read_binary_string(fname,fd,length)
      buff = read_fd fd, length
      @unique_table[buff] = true unless @unique_table.has_key?(buff)
      CFString.new(buff)
    end
    protected :read_binary_string

    # Convert the given string from one charset to another
    def Binary.charset_convert(str,from,to="UTF-8")
      return str.dup.force_encoding(from).encode(to) if str.respond_to?("encode")
      Iconv.conv(to,from,str)
    end

    # Count characters considering character set
    def Binary.charset_strlen(str,charset="UTF-8")
      if str.respond_to?(:encode)
        size = str.length
      else
        utf8_str = Iconv.conv("UTF-8",charset,str)
        size = utf8_str.scan(/./mu).size
      end

      # UTF-16 code units in the range D800-DBFF are the beginning of
      # a surrogate pair, and count as one additional character for
      # length calculation.
      if charset =~ /^UTF-16/
        if str.respond_to?(:encode)
          str.bytes.to_a.each_slice(2) { |pair| size += 1 if (0xd8..0xdb).include?(pair[0]) }
        else
          str.split('').each_slice(2) { |pair| size += 1 if ("\xd8".."\xdb").include?(pair[0]) }
        end
      end

      size
    end

    # Read a unicode string value, coded as UTF-16BE
    def read_binary_unicode_string(fname,fd,length)
      # The problem is: we get the length of the string IN CHARACTERS;
      # since a char in UTF-16 can be 16 or 32 bit long, we don't really know
      # how long the string is in bytes
      buff = fd.read(2*length)

      @unique_table[buff] = true unless @unique_table.has_key?(buff)
      CFString.new(Binary.charset_convert(buff,"UTF-16BE","UTF-8"))
    end
    protected :read_binary_unicode_string

    def unpack_with_size(nbytes, buff)
      format = ["C*", "n*", "N*", "N*"][nbytes - 1];

      if nbytes == 3
        buff = "\0" + buff.scan(/.{1,3}/).join("\0")
      end

      return buff.unpack(format)
    end

    # Read an binary array value, including contained objects
    def read_binary_array(fname,fd,length)
      ary = []

      # first: read object refs
      if(length != 0)
        buff = fd.read(length * @object_ref_size)
        objects = unpack_with_size(@object_ref_size, buff) #buff.unpack(@object_ref_size == 1 ? "C*" : "n*")

        # now: read objects
        0.upto(length-1) do |i|
          object = read_binary_object_at(fname,fd,objects[i])
          ary.push object
        end
      end

      CFArray.new(ary)
    end
    protected :read_binary_array

    # Read a dictionary value, including contained objects
    def read_binary_dict(fname,fd,length)
      dict = {}

      # first: read keys
      if(length != 0) then
        buff = fd.read(length * @object_ref_size)
        keys = unpack_with_size(@object_ref_size, buff)

        # second: read object refs
        buff = fd.read(length * @object_ref_size)
        objects = unpack_with_size(@object_ref_size, buff)

        # read real keys and objects
        0.upto(length-1) do |i|
          key = read_binary_object_at(fname,fd,keys[i])
          object = read_binary_object_at(fname,fd,objects[i])
          dict[key.value] = object
        end
      end

      CFDictionary.new(dict)
    end
    protected :read_binary_dict

    # Read an object type byte, decode it and delegate to the correct
    # reader function
    def read_binary_object(fname,fd)
      # first: read the marker byte
      buff = fd.read(1)

      object_length = buff.unpack("C*")
      object_length = object_length[0] & 0xF

      buff = buff.unpack("H*")
      object_type = buff[0][0].chr

      if(object_type != "0" && object_length == 15) then
        object_length = read_binary_object(fname,fd)
        object_length = object_length.value
      end

      case object_type
      when '0' # null, false, true, fillbyte
        read_binary_null_type(object_length)
      when '1' # integer
        read_binary_int(fname,fd,object_length)
      when '2' # real
        read_binary_real(fname,fd,object_length)
      when '3' # date
        read_binary_date(fname,fd,object_length)
      when '4' # data
        read_binary_data(fname,fd,object_length)
      when '5' # byte string, usually utf8 encoded
        read_binary_string(fname,fd,object_length)
      when '6' # unicode string (utf16be)
        read_binary_unicode_string(fname,fd,object_length)
      when '8'
        CFUid.new(read_binary_int(fname, fd, object_length).value)
      when 'a' # array
        read_binary_array(fname,fd,object_length)
      when 'd' # dictionary
        read_binary_dict(fname,fd,object_length)
      end
    end
    protected :read_binary_object

    # Read an object type byte at position $pos, decode it and delegate to the correct reader function
    def read_binary_object_at(fname,fd,pos)
      position = @offsets[pos]
      fd.seek(position,IO::SEEK_SET)
      read_binary_object(fname,fd)
    end
    protected :read_binary_object_at

    # pack an +int+ of +nbytes+ with size
    def Binary.pack_it_with_size(nbytes,int)
      case nbytes
      when 1 then [int].pack('c')
      when 2 then [int].pack('n')
      when 4 then [int].pack('N')
      when 8
        [int >> 32, int & 0xFFFFFFFF].pack('NN')
      else
        raise CFFormatError.new("Don't know how to pack #{nbytes} byte integer")
      end
    end

    def Binary.pack_int_array_with_size(nbytes, array)
      case nbytes
      when 1 then array.pack('C*')
      when 2 then array.pack('n*')
      when 4 then array.pack('N*')
      when 8
        array.map { |int| [int >> 32, int & 0xFFFFFFFF].pack('NN') }.join
      else
        raise CFFormatError.new("Don't know how to pack #{nbytes} byte integer")
      end
    end

    # calculate how many bytes are needed to save +count+
    def Binary.bytes_needed(count)
      case
      when count < 2**8  then 1
      when count < 2**16 then 2
      when count < 2**32 then 4
      when count < 2**64 then 8
      else
        raise CFFormatError.new("Data size too large: #{count}")
      end
    end

    # Create a type byte for binary format as defined by apple
    def Binary.type_bytes(type, length)
      if length < 15
        [(type << 4) | length].pack('C')
      else
        bytes = [(type << 4) | 0xF]
        if length <= 0xFF
          bytes.push(0x10, length).pack('CCC')                              # 1 byte length
        elsif length <= 0xFFFF
          bytes.push(0x11, length).pack('CCn')                              # 2 byte length
        elsif length <= 0xFFFFFFFF
          bytes.push(0x12, length).pack('CCN')                              # 4 byte length
        elsif length <= 0x7FFFFFFFFFFFFFFF
          bytes.push(0x13, length >> 32, length & 0xFFFFFFFF).pack('CCNN')  # 8 byte length
        else
          raise CFFormatError.new("Integer too large: #{int}")
        end
      end
    end

    def count_object_refs(object)
      case object
      when CFArray
        contained_refs = 0
        object.value.each do |element|
          if CFArray === element || CFDictionary === element
            contained_refs += count_object_refs(element)
          end
        end
        return object.value.size + contained_refs
      when CFDictionary
        contained_refs = 0
        object.value.each_value do |value|
          if CFArray === value || CFDictionary === value
            contained_refs += count_object_refs(value)
          end
        end
        return object.value.keys.size * 2 + contained_refs
      else
        return 0
      end
    end

    def Binary.ascii_string?(str)
      if str.respond_to?(:ascii_only?)
        str.ascii_only?
      else
        str !~ /[\x80-\xFF]/mn
      end
    end

    # Uniques and transforms a string value to binary format and adds it to the object table
    def string_to_binary(val)
      val = val.to_s

      @unique_table[val] ||= begin
        if !Binary.ascii_string?(val)
          val = Binary.charset_convert(val,"UTF-8","UTF-16BE")
          bdata = Binary.type_bytes(0b0110, Binary.charset_strlen(val,"UTF-16BE"))

          val.force_encoding("ASCII-8BIT") if val.respond_to?("encode")
          @object_table[@written_object_count] = bdata << val
        else
          bdata = Binary.type_bytes(0b0101,val.bytesize)
          @object_table[@written_object_count] = bdata << val
        end

        @written_object_count += 1
        @written_object_count - 1
      end
    end

    # Codes an integer to binary format
    def int_to_binary(value)
      nbytes = 0
      nbytes = 1  if value > 0xFF # 1 byte integer
      nbytes += 1 if value > 0xFFFF # 4 byte integer
      nbytes += 1 if value > 0xFFFFFFFF # 8 byte integer
      nbytes = 3  if value < 0 # 8 byte integer, since signed

      Binary.type_bytes(0b0001, nbytes) <<
        if nbytes < 3
          [value].pack(
            if nbytes == 0    then "C"
            elsif nbytes == 1 then "n"
            else "N"
            end
          )
        else
          # 64 bit signed integer; we need the higher and the lower 32 bit of the value
          high_word = value >> 32
          low_word = value & 0xFFFFFFFF
          [high_word,low_word].pack("NN")
        end
    end

    # Codes a real value to binary format
    def real_to_binary(val)
      Binary.type_bytes(0b0010,3) << [val].pack("d").reverse
    end

    # Converts a numeric value to binary and adds it to the object table
    def num_to_binary(value)
      @object_table[@written_object_count] =
        if value.is_a?(CFInteger)
          int_to_binary(value.value)
        else
          real_to_binary(value.value)
        end

      @written_object_count += 1
      @written_object_count - 1
    end

    def uid_to_binary(value)
      nbytes = 0
      nbytes = 1  if value > 0xFF # 1 byte integer
      nbytes += 1 if value > 0xFFFF # 4 byte integer
      nbytes += 1 if value > 0xFFFFFFFF # 8 byte integer
      nbytes = 3  if value < 0 # 8 byte integer, since signed

      @object_table[@written_object_count] = Binary.type_bytes(0b1000, nbytes) <<
        if nbytes < 3
          [value].pack(
            if nbytes == 0    then "C"
            elsif nbytes == 1 then "n"
            else "N"
            end
          )
        else
          # 64 bit signed integer; we need the higher and the lower 32 bit of the value
          high_word = value >> 32
          low_word = value & 0xFFFFFFFF
          [high_word,low_word].pack("NN")
        end

      @written_object_count += 1
      @written_object_count - 1
    end

    # Convert date value (apple format) to binary and adds it to the object table
    def date_to_binary(val)
      val = val.getutc.to_f - CFDate::DATE_DIFF_APPLE_UNIX # CFDate is a real, number of seconds since 01/01/2001 00:00:00 GMT

      @object_table[@written_object_count] =
        (Binary.type_bytes(0b0011, 3) << [val].pack("d").reverse)

      @written_object_count += 1
      @written_object_count - 1
    end

    # Convert a bool value to binary and add it to the object table
    def bool_to_binary(val)

      @object_table[@written_object_count] = val ? "\x9" : "\x8" # 0x9 is 1001, type indicator for true; 0x8 is 1000, type indicator for false
      @written_object_count += 1
      @written_object_count - 1
    end

    # Convert data value to binary format and add it to the object table
    def data_to_binary(val)
      @object_table[@written_object_count] =
        (Binary.type_bytes(0b0100, val.bytesize) << val)

      @written_object_count += 1
      @written_object_count - 1
    end

    # Convert array to binary format and add it to the object table
    def array_to_binary(val)
      saved_object_count = @written_object_count
      @written_object_count += 1
      #@object_refs += val.value.size

      values = val.value.map { |v| v.to_binary(self) }
      bdata = Binary.type_bytes(0b1010, val.value.size) <<
        Binary.pack_int_array_with_size(object_ref_size(@object_refs),
                                        values)

      @object_table[saved_object_count] = bdata
      saved_object_count
    end

    # Convert dictionary to binary format and add it to the object table
    def dict_to_binary(val)
      saved_object_count = @written_object_count
      @written_object_count += 1

      #@object_refs += val.value.keys.size * 2

      keys_and_values = val.value.keys.map { |k| CFString.new(k).to_binary(self) }
      keys_and_values.concat(val.value.values.map { |v| v.to_binary(self) })

      bdata = Binary.type_bytes(0b1101,val.value.size) <<
        Binary.pack_int_array_with_size(object_ref_size(@object_refs), keys_and_values)

      @object_table[saved_object_count] = bdata
      return saved_object_count
    end
  end
end

# eof