1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
# Copyright:: Copyright (c) 2005 Lucas Carlson
# License:: LGPL
require 'set'
require_relative 'category_namer'
require_relative 'backends/bayes_memory_backend'
require_relative 'backends/bayes_redis_backend'
module ClassifierReborn
class Bayes
CategoryNotFoundError = Class.new(StandardError)
# The class can be created with one or more categories, each of which will be
# initialized and given a training method. E.g.,
# b = ClassifierReborn::Bayes.new 'Interesting', 'Uninteresting', 'Spam'
#
# Options available are:
# language: 'en' Used to select language specific stop words
# auto_categorize: false When true, enables ability to dynamically declare a category; the default is true if no initial categories are provided
# enable_threshold: false When true, enables a threshold requirement for classifition
# threshold: 0.0 Default threshold, only used when enabled
# enable_stemmer: true When false, disables word stemming
# stopwords: nil Accepts path to a text file or an array of words, when supplied, overwrites the default stopwords; assign empty string or array to disable stopwords
# backend: BayesMemoryBackend.new Alternatively, BayesRedisBackend.new for persistent storage
def initialize(*args)
@initial_categories = []
options = { language: 'en',
enable_threshold: false,
threshold: 0.0,
enable_stemmer: true,
backend: BayesMemoryBackend.new
}
args.flatten.each do |arg|
if arg.is_a?(Hash)
options.merge!(arg)
else
@initial_categories.push(arg)
end
end
unless options.key?(:auto_categorize)
options[:auto_categorize] = @initial_categories.empty? ? true : false
end
@language = options[:language]
@auto_categorize = options[:auto_categorize]
@enable_threshold = options[:enable_threshold]
@threshold = options[:threshold]
@enable_stemmer = options[:enable_stemmer]
@backend = options[:backend]
populate_initial_categories
if options.key?(:stopwords)
custom_stopwords options[:stopwords]
end
end
# Provides a general training method for all categories specified in Bayes#new
# For example:
# b = ClassifierReborn::Bayes.new 'This', 'That', 'the_other'
# b.train :this, "This text"
# b.train "that", "That text"
# b.train "The other", "The other text"
def train(category, text)
word_hash = Hasher.word_hash(text, @language, @enable_stemmer)
return if word_hash.empty?
category = CategoryNamer.prepare_name(category)
# Add the category dynamically or raise an error
unless category_keys.include?(category)
if @auto_categorize
add_category(category)
else
raise CategoryNotFoundError, "Cannot train; category #{category} does not exist"
end
end
word_hash.each do |word, count|
@backend.update_category_word_frequency(category, word, count)
@backend.update_category_word_count(category, count)
@backend.update_total_words(count)
end
@backend.update_total_trainings(1)
@backend.update_category_training_count(category, 1)
end
# Provides a untraining method for all categories specified in Bayes#new
# Be very careful with this method.
#
# For example:
# b = ClassifierReborn::Bayes.new 'This', 'That', 'the_other'
# b.train :this, "This text"
# b.untrain :this, "This text"
def untrain(category, text)
word_hash = Hasher.word_hash(text, @language, @enable_stemmer)
return if word_hash.empty?
category = CategoryNamer.prepare_name(category)
word_hash.each do |word, count|
next if @backend.total_words < 0
orig = @backend.category_word_frequency(category, word) || 0
@backend.update_category_word_frequency(category, word, -count)
if @backend.category_word_frequency(category, word) <= 0
@backend.delete_category_word(category, word)
count = orig
end
@backend.update_category_word_count(category, -count) if @backend.category_word_count(category) >= count
@backend.update_total_words(-count)
end
@backend.update_total_trainings(-1)
@backend.update_category_training_count(category, -1)
end
# Returns the scores in each category the provided +text+. E.g.,
# b.classifications "I hate bad words and you"
# => {"Uninteresting"=>-12.6997928013932, "Interesting"=>-18.4206807439524}
# The largest of these scores (the one closest to 0) is the one picked out by #classify
def classifications(text)
score = {}
word_hash = Hasher.word_hash(text, @language, @enable_stemmer)
if word_hash.empty?
category_keys.each do |category|
score[category.to_s] = Float::INFINITY
end
return score
end
category_keys.each do |category|
score[category.to_s] = 0
total = (@backend.category_word_count(category) || 1).to_f
word_hash.each do |word, _count|
s = @backend.word_in_category?(category, word) ? @backend.category_word_frequency(category, word) : 0.1
score[category.to_s] += Math.log(s / total)
end
# now add prior probability for the category
s = @backend.category_has_trainings?(category) ? @backend.category_training_count(category) : 0.1
score[category.to_s] += Math.log(s / @backend.total_trainings.to_f)
end
score
end
# Returns the classification of the provided +text+, which is one of the
# categories given in the initializer along with the score. E.g.,
# b.classify "I hate bad words and you"
# => ['Uninteresting', -4.852030263919617]
def classify_with_score(text)
(classifications(text).sort_by { |a| -a[1] })[0]
end
# Return the classification without the score
def classify(text)
result, score = classify_with_score(text)
result = nil if score < @threshold || score == Float::INFINITY if threshold_enabled?
result
end
# Retrieve the current threshold value
attr_reader :threshold
# Dynamically set the threshold value
attr_writer :threshold
# Dynamically enable threshold for classify results
def enable_threshold
@enable_threshold = true
end
# Dynamically disable threshold for classify results
def disable_threshold
@enable_threshold = false
end
# Is threshold processing enabled?
def threshold_enabled?
@enable_threshold
end
# is threshold processing disabled?
def threshold_disabled?
!@enable_threshold
end
# Is word stemming enabled?
def stemmer_enabled?
@enable_stemmer
end
# Is word stemming disabled?
def stemmer_disabled?
!@enable_stemmer
end
# Provides training and untraining methods for the categories specified in Bayes#new
# For example:
# b = ClassifierReborn::Bayes.new 'This', 'That', 'the_other'
# b.train_this "This text"
# b.train_that "That text"
# b.untrain_that "That text"
# b.train_the_other "The other text"
def method_missing(name, *args)
cleaned_name = name.to_s.gsub(/(un)?train_([\w]+)/, '\2')
category = CategoryNamer.prepare_name(cleaned_name)
if category_keys.include?(category)
args.each { |text| eval("#{Regexp.last_match(1)}train(category, text)") }
elsif name.to_s =~ /(un)?train_([\w]+)/
raise StandardError, "No such category: #{category}"
else
super # raise StandardError, "No such method: #{name}"
end
end
# Provides a list of category names
# For example:
# b.categories
# => ["This", "That", "The other"]
def categories
category_keys.collect(&:to_s)
end
# Provides a list of category keys as symbols
# For example:
# b.categories
# => [:This, :That, :"The other"]
def category_keys
@backend.category_keys
end
# Allows you to add categories to the classifier.
# For example:
# b.add_category "Not spam"
#
# WARNING: Adding categories to a trained classifier will
# result in an undertrained category that will tend to match
# more criteria than the trained selective categories. In short,
# try to initialize your categories at initialization.
def add_category(category)
category = CategoryNamer.prepare_name(category)
@backend.add_category(category)
end
alias_method :append_category, :add_category
def reset
@backend.reset
populate_initial_categories
end
private
def populate_initial_categories
@initial_categories.each do |c|
add_category(c)
end
end
# Overwrites the default stopwords for current language with supplied list of stopwords or file
def custom_stopwords(stopwords)
unless stopwords.is_a?(Enumerable)
if stopwords.strip.empty?
stopwords = []
elsif File.exist?(stopwords)
stopwords = File.read(stopwords).force_encoding("utf-8").split
else
return # Do not overwrite the default
end
end
Hasher::STOPWORDS[@language] = Set.new stopwords
end
end
end
|