1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
# Author:: David Fayram (mailto:dfayram@lensmen.net)
# Copyright:: Copyright (c) 2005 David Fayram II
# License:: LGPL
begin
raise LoadError if ENV['NATIVE_VECTOR'] == 'true' # to test the native vector class, try `rake test NATIVE_VECTOR=true`
require 'gsl' # requires https://github.com/SciRuby/rb-gsl
require_relative 'extensions/vector_serialize'
$GSL = true
rescue LoadError
$GSL = false
require_relative 'extensions/vector'
end
require_relative 'lsi/word_list'
require_relative 'lsi/content_node'
require_relative 'lsi/cached_content_node'
require_relative 'lsi/summarizer'
module ClassifierReborn
# This class implements a Latent Semantic Indexer, which can search, classify and cluster
# data based on underlying semantic relations. For more information on the algorithms used,
# please consult Wikipedia[http://en.wikipedia.org/wiki/Latent_Semantic_Indexing].
class LSI
attr_reader :word_list, :cache_node_vectors
attr_accessor :auto_rebuild
# Create a fresh index.
# If you want to call #build_index manually, use
# ClassifierReborn::LSI.new :auto_rebuild => false
# If you want to use ContentNodes with cached vector transpositions, use
# lsi = ClassifierReborn::LSI.new :cache_node_vectors => true
#
def initialize(options = {})
@auto_rebuild = options[:auto_rebuild] != false
@word_list = WordList.new
@items = {}
@version = 0
@built_at_version = -1
@language = options[:language] || 'en'
extend CachedContentNode::InstanceMethods if @cache_node_vectors = options[:cache_node_vectors]
end
# Returns true if the index needs to be rebuilt. The index needs
# to be built after all informaton is added, but before you start
# using it for search, classification and cluster detection.
def needs_rebuild?
(@items.size > 1) && (@version != @built_at_version)
end
# Adds an item to the index. item is assumed to be a string, but
# any item may be indexed so long as it responds to #to_s or if
# you provide an optional block explaining how the indexer can
# fetch fresh string data. This optional block is passed the item,
# so the item may only be a reference to a URL or file name.
#
# For example:
# lsi = ClassifierReborn::LSI.new
# lsi.add_item "This is just plain text"
# lsi.add_item "/home/me/filename.txt" { |x| File.read x }
# ar = ActiveRecordObject.find( :all )
# lsi.add_item ar, *ar.categories { |x| ar.content }
#
def add_item(item, *categories, &block)
clean_word_hash = Hasher.clean_word_hash((block ? block.call(item) : item.to_s), @language)
if clean_word_hash.empty?
puts "Input: '#{item}' is entirely stopwords or words with 2 or fewer characters. Classifier-Reborn cannot handle this document properly."
else
@items[item] = if @cache_node_vectors
CachedContentNode.new(clean_word_hash, *categories)
else
ContentNode.new(clean_word_hash, *categories)
end
@version += 1
build_index if @auto_rebuild
end
end
# A less flexible shorthand for add_item that assumes
# you are passing in a string with no categorries. item
# will be duck typed via to_s .
#
def <<(item)
add_item(item)
end
# Returns categories for a given indexed item. You are free to add and remove
# items from this as you see fit. It does not invalide an index to change its categories.
def categories_for(item)
return [] unless @items[item]
@items[item].categories
end
# Removes an item from the database, if it is indexed.
#
def remove_item(item)
return unless @items.key? item
@items.delete item
@version += 1
end
# Returns an array of items that are indexed.
def items
@items.keys
end
# This function rebuilds the index if needs_rebuild? returns true.
# For very large document spaces, this indexing operation may take some
# time to complete, so it may be wise to place the operation in another
# thread.
#
# As a rule, indexing will be fairly swift on modern machines until
# you have well over 500 documents indexed, or have an incredibly diverse
# vocabulary for your documents.
#
# The optional parameter "cutoff" is a tuning parameter. When the index is
# built, a certain number of s-values are discarded from the system. The
# cutoff parameter tells the indexer how many of these values to keep.
# A value of 1 for cutoff means that no semantic analysis will take place,
# turning the LSI class into a simple vector search engine.
def build_index(cutoff = 0.75)
return unless needs_rebuild?
make_word_list
doc_list = @items.values
tda = doc_list.collect { |node| node.raw_vector_with(@word_list) }
if $GSL
tdm = GSL::Matrix.alloc(*tda).trans
ntdm = build_reduced_matrix(tdm, cutoff)
ntdm.size[1].times do |col|
vec = GSL::Vector.alloc(ntdm.column(col)).row
doc_list[col].lsi_vector = vec
doc_list[col].lsi_norm = vec.normalize
end
else
tdm = Matrix.rows(tda).trans
ntdm = build_reduced_matrix(tdm, cutoff)
ntdm.row_size.times do |col|
doc_list[col].lsi_vector = ntdm.column(col) if doc_list[col]
doc_list[col].lsi_norm = ntdm.column(col).normalize if doc_list[col]
end
end
@built_at_version = @version
end
# This method returns max_chunks entries, ordered by their average semantic rating.
# Essentially, the average distance of each entry from all other entries is calculated,
# the highest are returned.
#
# This can be used to build a summary service, or to provide more information about
# your dataset's general content. For example, if you were to use categorize on the
# results of this data, you could gather information on what your dataset is generally
# about.
def highest_relative_content(max_chunks = 10)
return [] if needs_rebuild?
avg_density = {}
@items.each_key { |item| avg_density[item] = proximity_array_for_content(item).inject(0.0) { |x, y| x + y[1] } }
avg_density.keys.sort_by { |x| avg_density[x] }.reverse[0..max_chunks - 1].map
end
# This function is the primitive that find_related and classify
# build upon. It returns an array of 2-element arrays. The first element
# of this array is a document, and the second is its "score", defining
# how "close" it is to other indexed items.
#
# These values are somewhat arbitrary, having to do with the vector space
# created by your content, so the magnitude is interpretable but not always
# meaningful between indexes.
#
# The parameter doc is the content to compare. If that content is not
# indexed, you can pass an optional block to define how to create the
# text data. See add_item for examples of how this works.
def proximity_array_for_content(doc, &block)
return [] if needs_rebuild?
content_node = node_for_content(doc, &block)
result =
@items.keys.collect do |item|
if $GSL
val = content_node.search_vector * @items[item].transposed_search_vector
else
val = (Matrix[content_node.search_vector] * @items[item].search_vector)[0]
end
[item, val]
end
result.sort_by { |x| x[1] }.reverse
end
# Similar to proximity_array_for_content, this function takes similar
# arguments and returns a similar array. However, it uses the normalized
# calculated vectors instead of their full versions. This is useful when
# you're trying to perform operations on content that is much smaller than
# the text you're working with. search uses this primitive.
def proximity_norms_for_content(doc, &block)
return [] if needs_rebuild?
content_node = node_for_content(doc, &block)
if $GSL && content_node.raw_norm.isnan?.all?
puts "There are no documents that are similar to #{doc}"
else
content_node_norms(content_node)
end
end
def content_node_norms(content_node)
result =
@items.keys.collect do |item|
if $GSL
val = content_node.search_norm * @items[item].search_norm.col
else
val = (Matrix[content_node.search_norm] * @items[item].search_norm)[0]
end
[item, val]
end
result.sort_by { |x| x[1] }.reverse
end
# This function allows for text-based search of your index. Unlike other functions
# like find_related and classify, search only takes short strings. It will also ignore
# factors like repeated words. It is best for short, google-like search terms.
# A search will first priortize lexical relationships, then semantic ones.
#
# While this may seem backwards compared to the other functions that LSI supports,
# it is actually the same algorithm, just applied on a smaller document.
def search(string, max_nearest = 3)
return [] if needs_rebuild?
carry = proximity_norms_for_content(string)
unless carry.nil?
result = carry.collect { |x| x[0] }
result[0..max_nearest - 1]
end
end
# This function takes content and finds other documents
# that are semantically "close", returning an array of documents sorted
# from most to least relavant.
# max_nearest specifies the number of documents to return. A value of
# 0 means that it returns all the indexed documents, sorted by relavence.
#
# This is particularly useful for identifing clusters in your document space.
# For example you may want to identify several "What's Related" items for weblog
# articles, or find paragraphs that relate to each other in an essay.
def find_related(doc, max_nearest = 3, &block)
carry =
proximity_array_for_content(doc, &block).reject { |pair| pair[0].eql? doc }
result = carry.collect { |x| x[0] }
result[0..max_nearest - 1]
end
# Return the most obvious category with the score
def classify_with_score(doc, cutoff = 0.30, &block)
scored_categories(doc, cutoff, &block).last
end
# Return the most obvious category without the score
def classify(doc, cutoff = 0.30, &block)
scored_categories(doc, cutoff, &block).last.first
end
# This function uses a voting system to categorize documents, based on
# the categories of other documents. It uses the same logic as the
# find_related function to find related documents, then returns the
# list of sorted categories.
#
# cutoff signifies the number of documents to consider when clasifying
# text. A cutoff of 1 means that every document in the index votes on
# what category the document is in. This may not always make sense.
#
def scored_categories(doc, cutoff = 0.30, &block)
icutoff = (@items.size * cutoff).round
carry = proximity_array_for_content(doc, &block)
carry = carry[0..icutoff - 1]
votes = Hash.new(0.0)
carry.each do |pair|
@items[pair[0]].categories.each do |category|
votes[category] += pair[1]
end
end
votes.sort_by { |_, score| score }
end
# Prototype, only works on indexed documents.
# I have no clue if this is going to work, but in theory
# it's supposed to.
def highest_ranked_stems(doc, count = 3)
raise 'Requested stem ranking on non-indexed content!' unless @items[doc]
content_vector_array = node_for_content(doc).lsi_vector.to_a
top_n = content_vector_array.sort.reverse[0..count - 1]
top_n.collect { |x| @word_list.word_for_index(content_vector_array.index(x)) }
end
def reset
initialize(auto_rebuild: @auto_rebuild, cache_node_vectors: @cache_node_vectors)
end
private
def build_reduced_matrix(matrix, cutoff = 0.75)
# TODO: Check that M>=N on these dimensions! Transpose helps assure this
u, v, s = matrix.SV_decomp
# TODO: Better than 75% term, please. :\
s_cutoff = s.sort.reverse[(s.size * cutoff).round - 1]
s.size.times do |ord|
s[ord] = 0.0 if s[ord] < s_cutoff
end
# Reconstruct the term document matrix, only with reduced rank
u * ($GSL ? GSL::Matrix : ::Matrix).diag(s) * v.trans
end
def node_for_content(item, &block)
if @items[item]
return @items[item]
else
clean_word_hash = Hasher.clean_word_hash((block ? block.call(item) : item.to_s), @language)
content_node = ContentNode.new(clean_word_hash, &block) # make the node and extract the data
unless needs_rebuild?
content_node.raw_vector_with(@word_list) # make the lsi raw and norm vectors
end
end
content_node
end
def make_word_list
@word_list = WordList.new
@items.each_value do |node|
node.word_hash.each_key { |key| @word_list.add_word(key) }
end
end
end
end
|