1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
require 'concurrent/constants'
require 'concurrent/thread_safe/util'
require 'concurrent/thread_safe/util/adder'
require 'concurrent/thread_safe/util/cheap_lockable'
require 'concurrent/thread_safe/util/power_of_two_tuple'
require 'concurrent/thread_safe/util/volatile'
require 'concurrent/thread_safe/util/xor_shift_random'
module Concurrent
# @!visibility private
module Collection
# A Ruby port of the Doug Lea's jsr166e.ConcurrentHashMapV8 class version 1.59
# available in public domain.
#
# Original source code available here:
# http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/jsr166e/ConcurrentHashMapV8.java?revision=1.59
#
# The Ruby port skips out the +TreeBin+ (red-black trees for use in bins whose
# size exceeds a threshold).
#
# A hash table supporting full concurrency of retrievals and high expected
# concurrency for updates. However, even though all operations are
# thread-safe, retrieval operations do _not_ entail locking, and there is
# _not_ any support for locking the entire table in a way that prevents all
# access.
#
# Retrieval operations generally do not block, so may overlap with update
# operations. Retrievals reflect the results of the most recently _completed_
# update operations holding upon their onset. (More formally, an update
# operation for a given key bears a _happens-before_ relation with any (non
# +nil+) retrieval for that key reporting the updated value.) For aggregate
# operations such as +clear()+, concurrent retrievals may reflect insertion or
# removal of only some entries. Similarly, the +each_pair+ iterator yields
# elements reflecting the state of the hash table at some point at or since
# the start of the +each_pair+. Bear in mind that the results of aggregate
# status methods including +size()+ and +empty?+} are typically useful only
# when a map is not undergoing concurrent updates in other threads. Otherwise
# the results of these methods reflect transient states that may be adequate
# for monitoring or estimation purposes, but not for program control.
#
# The table is dynamically expanded when there are too many collisions (i.e.,
# keys that have distinct hash codes but fall into the same slot modulo the
# table size), with the expected average effect of maintaining roughly two
# bins per mapping (corresponding to a 0.75 load factor threshold for
# resizing). There may be much variance around this average as mappings are
# added and removed, but overall, this maintains a commonly accepted
# time/space tradeoff for hash tables. However, resizing this or any other
# kind of hash table may be a relatively slow operation. When possible, it is
# a good idea to provide a size estimate as an optional :initial_capacity
# initializer argument. An additional optional :load_factor constructor
# argument provides a further means of customizing initial table capacity by
# specifying the table density to be used in calculating the amount of space
# to allocate for the given number of elements. Note that using many keys with
# exactly the same +hash+ is a sure way to slow down performance of any hash
# table.
#
# ## Design overview
#
# The primary design goal of this hash table is to maintain concurrent
# readability (typically method +[]+, but also iteration and related methods)
# while minimizing update contention. Secondary goals are to keep space
# consumption about the same or better than plain +Hash+, and to support high
# initial insertion rates on an empty table by many threads.
#
# Each key-value mapping is held in a +Node+. The validation-based approach
# explained below leads to a lot of code sprawl because retry-control
# precludes factoring into smaller methods.
#
# The table is lazily initialized to a power-of-two size upon the first
# insertion. Each bin in the table normally contains a list of +Node+s (most
# often, the list has only zero or one +Node+). Table accesses require
# volatile/atomic reads, writes, and CASes. The lists of nodes within bins are
# always accurately traversable under volatile reads, so long as lookups check
# hash code and non-nullness of value before checking key equality.
#
# We use the top two bits of +Node+ hash fields for control purposes -- they
# are available anyway because of addressing constraints. As explained further
# below, these top bits are used as follows:
#
# - 00 - Normal
# - 01 - Locked
# - 11 - Locked and may have a thread waiting for lock
# - 10 - +Node+ is a forwarding node
#
# The lower 28 bits of each +Node+'s hash field contain a the key's hash code,
# except for forwarding nodes, for which the lower bits are zero (and so
# always have hash field == +MOVED+).
#
# Insertion (via +[]=+ or its variants) of the first node in an empty bin is
# performed by just CASing it to the bin. This is by far the most common case
# for put operations under most key/hash distributions. Other update
# operations (insert, delete, and replace) require locks. We do not want to
# waste the space required to associate a distinct lock object with each bin,
# so instead use the first node of a bin list itself as a lock. Blocking
# support for these locks relies +Concurrent::ThreadSafe::Util::CheapLockable. However, we also need a
# +try_lock+ construction, so we overlay these by using bits of the +Node+
# hash field for lock control (see above), and so normally use builtin
# monitors only for blocking and signalling using
# +cheap_wait+/+cheap_broadcast+ constructions. See +Node#try_await_lock+.
#
# Using the first node of a list as a lock does not by itself suffice though:
# When a node is locked, any update must first validate that it is still the
# first node after locking it, and retry if not. Because new nodes are always
# appended to lists, once a node is first in a bin, it remains first until
# deleted or the bin becomes invalidated (upon resizing). However, operations
# that only conditionally update may inspect nodes until the point of update.
# This is a converse of sorts to the lazy locking technique described by
# Herlihy & Shavit.
#
# The main disadvantage of per-bin locks is that other update operations on
# other nodes in a bin list protected by the same lock can stall, for example
# when user +eql?+ or mapping functions take a long time. However,
# statistically, under random hash codes, this is not a common problem.
# Ideally, the frequency of nodes in bins follows a Poisson distribution
# (http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of
# about 0.5 on average, given the resizing threshold of 0.75, although with a
# large variance because of resizing granularity. Ignoring variance, the
# expected occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
# factorial(k)). The first values are:
#
# - 0: 0.60653066
# - 1: 0.30326533
# - 2: 0.07581633
# - 3: 0.01263606
# - 4: 0.00157952
# - 5: 0.00015795
# - 6: 0.00001316
# - 7: 0.00000094
# - 8: 0.00000006
# - more: less than 1 in ten million
#
# Lock contention probability for two threads accessing distinct elements is
# roughly 1 / (8 * #elements) under random hashes.
#
# The table is resized when occupancy exceeds a percentage threshold
# (nominally, 0.75, but see below). Only a single thread performs the resize
# (using field +size_control+, to arrange exclusion), but the table otherwise
# remains usable for reads and updates. Resizing proceeds by transferring
# bins, one by one, from the table to the next table. Because we are using
# power-of-two expansion, the elements from each bin must either stay at same
# index, or move with a power of two offset. We eliminate unnecessary node
# creation by catching cases where old nodes can be reused because their next
# fields won't change. On average, only about one-sixth of them need cloning
# when a table doubles. The nodes they replace will be garbage collectable as
# soon as they are no longer referenced by any reader thread that may be in
# the midst of concurrently traversing table. Upon transfer, the old table bin
# contains only a special forwarding node (with hash field +MOVED+) that
# contains the next table as its key. On encountering a forwarding node,
# access and update operations restart, using the new table.
#
# Each bin transfer requires its bin lock. However, unlike other cases, a
# transfer can skip a bin if it fails to acquire its lock, and revisit it
# later. Method +rebuild+ maintains a buffer of TRANSFER_BUFFER_SIZE bins that
# have been skipped because of failure to acquire a lock, and blocks only if
# none are available (i.e., only very rarely). The transfer operation must
# also ensure that all accessible bins in both the old and new table are
# usable by any traversal. When there are no lock acquisition failures, this
# is arranged simply by proceeding from the last bin (+table.size - 1+) up
# towards the first. Upon seeing a forwarding node, traversals arrange to move
# to the new table without revisiting nodes. However, when any node is skipped
# during a transfer, all earlier table bins may have become visible, so are
# initialized with a reverse-forwarding node back to the old table until the
# new ones are established. (This sometimes requires transiently locking a
# forwarding node, which is possible under the above encoding.) These more
# expensive mechanics trigger only when necessary.
#
# The traversal scheme also applies to partial traversals of
# ranges of bins (via an alternate Traverser constructor)
# to support partitioned aggregate operations. Also, read-only
# operations give up if ever forwarded to a null table, which
# provides support for shutdown-style clearing, which is also not
# currently implemented.
#
# Lazy table initialization minimizes footprint until first use.
#
# The element count is maintained using a +Concurrent::ThreadSafe::Util::Adder+,
# which avoids contention on updates but can encounter cache thrashing
# if read too frequently during concurrent access. To avoid reading so
# often, resizing is attempted either when a bin lock is
# contended, or upon adding to a bin already holding two or more
# nodes (checked before adding in the +x_if_absent+ methods, after
# adding in others). Under uniform hash distributions, the
# probability of this occurring at threshold is around 13%,
# meaning that only about 1 in 8 puts check threshold (and after
# resizing, many fewer do so). But this approximation has high
# variance for small table sizes, so we check on any collision
# for sizes <= 64. The bulk putAll operation further reduces
# contention by only committing count updates upon these size
# checks.
#
# @!visibility private
class AtomicReferenceMapBackend
# @!visibility private
class Table < Concurrent::ThreadSafe::Util::PowerOfTwoTuple
def cas_new_node(i, hash, key, value)
cas(i, nil, Node.new(hash, key, value))
end
def try_to_cas_in_computed(i, hash, key)
succeeded = false
new_value = nil
new_node = Node.new(locked_hash = hash | LOCKED, key, NULL)
if cas(i, nil, new_node)
begin
if NULL == (new_value = yield(NULL))
was_null = true
else
new_node.value = new_value
end
succeeded = true
ensure
volatile_set(i, nil) if !succeeded || was_null
new_node.unlock_via_hash(locked_hash, hash)
end
end
return succeeded, new_value
end
def try_lock_via_hash(i, node, node_hash)
node.try_lock_via_hash(node_hash) do
yield if volatile_get(i) == node
end
end
def delete_node_at(i, node, predecessor_node)
if predecessor_node
predecessor_node.next = node.next
else
volatile_set(i, node.next)
end
end
end
# Key-value entry. Nodes with a hash field of +MOVED+ are special, and do
# not contain user keys or values. Otherwise, keys are never +nil+, and
# +NULL+ +value+ fields indicate that a node is in the process of being
# deleted or created. For purposes of read-only access, a key may be read
# before a value, but can only be used after checking value to be +!= NULL+.
#
# @!visibility private
class Node
extend Concurrent::ThreadSafe::Util::Volatile
attr_volatile :hash, :value, :next
include Concurrent::ThreadSafe::Util::CheapLockable
bit_shift = Concurrent::ThreadSafe::Util::FIXNUM_BIT_SIZE - 2 # need 2 bits for ourselves
# Encodings for special uses of Node hash fields. See above for explanation.
MOVED = ('10' << ('0' * bit_shift)).to_i(2) # hash field for forwarding nodes
LOCKED = ('01' << ('0' * bit_shift)).to_i(2) # set/tested only as a bit
WAITING = ('11' << ('0' * bit_shift)).to_i(2) # both bits set/tested together
HASH_BITS = ('00' << ('1' * bit_shift)).to_i(2) # usable bits of normal node hash
SPIN_LOCK_ATTEMPTS = Concurrent::ThreadSafe::Util::CPU_COUNT > 1 ? Concurrent::ThreadSafe::Util::CPU_COUNT * 2 : 0
attr_reader :key
def initialize(hash, key, value, next_node = nil)
super()
@key = key
self.lazy_set_hash(hash)
self.lazy_set_value(value)
self.next = next_node
end
# Spins a while if +LOCKED+ bit set and this node is the first of its bin,
# and then sets +WAITING+ bits on hash field and blocks (once) if they are
# still set. It is OK for this method to return even if lock is not
# available upon exit, which enables these simple single-wait mechanics.
#
# The corresponding signalling operation is performed within callers: Upon
# detecting that +WAITING+ has been set when unlocking lock (via a failed
# CAS from non-waiting +LOCKED+ state), unlockers acquire the
# +cheap_synchronize+ lock and perform a +cheap_broadcast+.
def try_await_lock(table, i)
if table && i >= 0 && i < table.size # bounds check, TODO: why are we bounds checking?
spins = SPIN_LOCK_ATTEMPTS
randomizer = base_randomizer = Concurrent::ThreadSafe::Util::XorShiftRandom.get
while equal?(table.volatile_get(i)) && self.class.locked_hash?(my_hash = hash)
if spins >= 0
if (randomizer = (randomizer >> 1)).even? # spin at random
if (spins -= 1) == 0
Thread.pass # yield before blocking
else
randomizer = base_randomizer = Concurrent::ThreadSafe::Util::XorShiftRandom.xorshift(base_randomizer) if randomizer.zero?
end
end
elsif cas_hash(my_hash, my_hash | WAITING)
force_acquire_lock(table, i)
break
end
end
end
end
def key?(key)
@key.eql?(key)
end
def matches?(key, hash)
pure_hash == hash && key?(key)
end
def pure_hash
hash & HASH_BITS
end
def try_lock_via_hash(node_hash = hash)
if cas_hash(node_hash, locked_hash = node_hash | LOCKED)
begin
yield
ensure
unlock_via_hash(locked_hash, node_hash)
end
end
end
def locked?
self.class.locked_hash?(hash)
end
def unlock_via_hash(locked_hash, node_hash)
unless cas_hash(locked_hash, node_hash)
self.hash = node_hash
cheap_synchronize { cheap_broadcast }
end
end
private
def force_acquire_lock(table, i)
cheap_synchronize do
if equal?(table.volatile_get(i)) && (hash & WAITING) == WAITING
cheap_wait
else
cheap_broadcast # possibly won race vs signaller
end
end
end
class << self
def locked_hash?(hash)
(hash & LOCKED) != 0
end
end
end
# shorthands
MOVED = Node::MOVED
LOCKED = Node::LOCKED
WAITING = Node::WAITING
HASH_BITS = Node::HASH_BITS
NOW_RESIZING = -1
DEFAULT_CAPACITY = 16
MAX_CAPACITY = Concurrent::ThreadSafe::Util::MAX_INT
# The buffer size for skipped bins during transfers. The
# value is arbitrary but should be large enough to avoid
# most locking stalls during resizes.
TRANSFER_BUFFER_SIZE = 32
extend Concurrent::ThreadSafe::Util::Volatile
attr_volatile :table, # The array of bins. Lazily initialized upon first insertion. Size is always a power of two.
# Table initialization and resizing control. When negative, the
# table is being initialized or resized. Otherwise, when table is
# null, holds the initial table size to use upon creation, or 0
# for default. After initialization, holds the next element count
# value upon which to resize the table.
:size_control
def initialize(options = nil)
super()
@counter = Concurrent::ThreadSafe::Util::Adder.new
initial_capacity = options && options[:initial_capacity] || DEFAULT_CAPACITY
self.size_control = (capacity = table_size_for(initial_capacity)) > MAX_CAPACITY ? MAX_CAPACITY : capacity
end
def get_or_default(key, else_value = nil)
hash = key_hash(key)
current_table = table
while current_table
node = current_table.volatile_get_by_hash(hash)
current_table =
while node
if (node_hash = node.hash) == MOVED
break node.key
elsif (node_hash & HASH_BITS) == hash && node.key?(key) && NULL != (value = node.value)
return value
end
node = node.next
end
end
else_value
end
def [](key)
get_or_default(key)
end
def key?(key)
get_or_default(key, NULL) != NULL
end
def []=(key, value)
get_and_set(key, value)
value
end
def compute_if_absent(key)
hash = key_hash(key)
current_table = table || initialize_table
while true
if !(node = current_table.volatile_get(i = current_table.hash_to_index(hash)))
succeeded, new_value = current_table.try_to_cas_in_computed(i, hash, key) { yield }
if succeeded
increment_size
return new_value
end
elsif (node_hash = node.hash) == MOVED
current_table = node.key
elsif NULL != (current_value = find_value_in_node_list(node, key, hash, node_hash & HASH_BITS))
return current_value
elsif Node.locked_hash?(node_hash)
try_await_lock(current_table, i, node)
else
succeeded, value = attempt_internal_compute_if_absent(key, hash, current_table, i, node, node_hash) { yield }
return value if succeeded
end
end
end
def compute_if_present(key)
new_value = nil
internal_replace(key) do |old_value|
if (new_value = yield(NULL == old_value ? nil : old_value)).nil?
NULL
else
new_value
end
end
new_value
end
def compute(key)
internal_compute(key) do |old_value|
if (new_value = yield(NULL == old_value ? nil : old_value)).nil?
NULL
else
new_value
end
end
end
def merge_pair(key, value)
internal_compute(key) do |old_value|
if NULL == old_value || !(value = yield(old_value)).nil?
value
else
NULL
end
end
end
def replace_pair(key, old_value, new_value)
NULL != internal_replace(key, old_value) { new_value }
end
def replace_if_exists(key, new_value)
if (result = internal_replace(key) { new_value }) && NULL != result
result
end
end
def get_and_set(key, value) # internalPut in the original CHMV8
hash = key_hash(key)
current_table = table || initialize_table
while true
if !(node = current_table.volatile_get(i = current_table.hash_to_index(hash)))
if current_table.cas_new_node(i, hash, key, value)
increment_size
break
end
elsif (node_hash = node.hash) == MOVED
current_table = node.key
elsif Node.locked_hash?(node_hash)
try_await_lock(current_table, i, node)
else
succeeded, old_value = attempt_get_and_set(key, value, hash, current_table, i, node, node_hash)
break old_value if succeeded
end
end
end
def delete(key)
replace_if_exists(key, NULL)
end
def delete_pair(key, value)
result = internal_replace(key, value) { NULL }
if result && NULL != result
!!result
else
false
end
end
def each_pair
return self unless current_table = table
current_table_size = base_size = current_table.size
i = base_index = 0
while base_index < base_size
if node = current_table.volatile_get(i)
if node.hash == MOVED
current_table = node.key
current_table_size = current_table.size
else
begin
if NULL != (value = node.value) # skip deleted or special nodes
yield node.key, value
end
end while node = node.next
end
end
if (i_with_base = i + base_size) < current_table_size
i = i_with_base # visit upper slots if present
else
i = base_index += 1
end
end
self
end
def size
(sum = @counter.sum) < 0 ? 0 : sum # ignore transient negative values
end
def empty?
size == 0
end
# Implementation for clear. Steps through each bin, removing all nodes.
def clear
return self unless current_table = table
current_table_size = current_table.size
deleted_count = i = 0
while i < current_table_size
if !(node = current_table.volatile_get(i))
i += 1
elsif (node_hash = node.hash) == MOVED
current_table = node.key
current_table_size = current_table.size
elsif Node.locked_hash?(node_hash)
decrement_size(deleted_count) # opportunistically update count
deleted_count = 0
node.try_await_lock(current_table, i)
else
current_table.try_lock_via_hash(i, node, node_hash) do
begin
deleted_count += 1 if NULL != node.value # recheck under lock
node.value = nil
end while node = node.next
current_table.volatile_set(i, nil)
i += 1
end
end
end
decrement_size(deleted_count)
self
end
private
# Internal versions of the insertion methods, each a
# little more complicated than the last. All have
# the same basic structure:
# 1. If table uninitialized, create
# 2. If bin empty, try to CAS new node
# 3. If bin stale, use new table
# 4. Lock and validate; if valid, scan and add or update
#
# The others interweave other checks and/or alternative actions:
# * Plain +get_and_set+ checks for and performs resize after insertion.
# * compute_if_absent prescans for mapping without lock (and fails to add
# if present), which also makes pre-emptive resize checks worthwhile.
#
# Someday when details settle down a bit more, it might be worth
# some factoring to reduce sprawl.
def internal_replace(key, expected_old_value = NULL, &block)
hash = key_hash(key)
current_table = table
while current_table
if !(node = current_table.volatile_get(i = current_table.hash_to_index(hash)))
break
elsif (node_hash = node.hash) == MOVED
current_table = node.key
elsif (node_hash & HASH_BITS) != hash && !node.next # precheck
break # rules out possible existence
elsif Node.locked_hash?(node_hash)
try_await_lock(current_table, i, node)
else
succeeded, old_value = attempt_internal_replace(key, expected_old_value, hash, current_table, i, node, node_hash, &block)
return old_value if succeeded
end
end
NULL
end
def attempt_internal_replace(key, expected_old_value, hash, current_table, i, node, node_hash)
current_table.try_lock_via_hash(i, node, node_hash) do
predecessor_node = nil
old_value = NULL
begin
if node.matches?(key, hash) && NULL != (current_value = node.value)
if NULL == expected_old_value || expected_old_value == current_value # NULL == expected_old_value means whatever value
old_value = current_value
if NULL == (node.value = yield(old_value))
current_table.delete_node_at(i, node, predecessor_node)
decrement_size
end
end
break
end
predecessor_node = node
end while node = node.next
return true, old_value
end
end
def find_value_in_node_list(node, key, hash, pure_hash)
do_check_for_resize = false
while true
if pure_hash == hash && node.key?(key) && NULL != (value = node.value)
return value
elsif node = node.next
do_check_for_resize = true # at least 2 nodes -> check for resize
pure_hash = node.pure_hash
else
return NULL
end
end
ensure
check_for_resize if do_check_for_resize
end
def internal_compute(key, &block)
hash = key_hash(key)
current_table = table || initialize_table
while true
if !(node = current_table.volatile_get(i = current_table.hash_to_index(hash)))
succeeded, new_value = current_table.try_to_cas_in_computed(i, hash, key, &block)
if succeeded
if NULL == new_value
break nil
else
increment_size
break new_value
end
end
elsif (node_hash = node.hash) == MOVED
current_table = node.key
elsif Node.locked_hash?(node_hash)
try_await_lock(current_table, i, node)
else
succeeded, new_value = attempt_compute(key, hash, current_table, i, node, node_hash, &block)
break new_value if succeeded
end
end
end
def attempt_internal_compute_if_absent(key, hash, current_table, i, node, node_hash)
added = false
current_table.try_lock_via_hash(i, node, node_hash) do
while true
if node.matches?(key, hash) && NULL != (value = node.value)
return true, value
end
last = node
unless node = node.next
last.next = Node.new(hash, key, value = yield)
added = true
increment_size
return true, value
end
end
end
ensure
check_for_resize if added
end
def attempt_compute(key, hash, current_table, i, node, node_hash)
added = false
current_table.try_lock_via_hash(i, node, node_hash) do
predecessor_node = nil
while true
if node.matches?(key, hash) && NULL != (value = node.value)
if NULL == (node.value = value = yield(value))
current_table.delete_node_at(i, node, predecessor_node)
decrement_size
value = nil
end
return true, value
end
predecessor_node = node
unless node = node.next
if NULL == (value = yield(NULL))
value = nil
else
predecessor_node.next = Node.new(hash, key, value)
added = true
increment_size
end
return true, value
end
end
end
ensure
check_for_resize if added
end
def attempt_get_and_set(key, value, hash, current_table, i, node, node_hash)
node_nesting = nil
current_table.try_lock_via_hash(i, node, node_hash) do
node_nesting = 1
old_value = nil
found_old_value = false
while node
if node.matches?(key, hash) && NULL != (old_value = node.value)
found_old_value = true
node.value = value
break
end
last = node
unless node = node.next
last.next = Node.new(hash, key, value)
break
end
node_nesting += 1
end
return true, old_value if found_old_value
increment_size
true
end
ensure
check_for_resize if node_nesting && (node_nesting > 1 || current_table.size <= 64)
end
def initialize_copy(other)
super
@counter = Concurrent::ThreadSafe::Util::Adder.new
self.table = nil
self.size_control = (other_table = other.table) ? other_table.size : DEFAULT_CAPACITY
self
end
def try_await_lock(current_table, i, node)
check_for_resize # try resizing if can't get lock
node.try_await_lock(current_table, i)
end
def key_hash(key)
key.hash & HASH_BITS
end
# Returns a power of two table size for the given desired capacity.
def table_size_for(entry_count)
size = 2
size <<= 1 while size < entry_count
size
end
# Initializes table, using the size recorded in +size_control+.
def initialize_table
until current_table ||= table
if (size_ctrl = size_control) == NOW_RESIZING
Thread.pass # lost initialization race; just spin
else
try_in_resize_lock(current_table, size_ctrl) do
initial_size = size_ctrl > 0 ? size_ctrl : DEFAULT_CAPACITY
current_table = self.table = Table.new(initial_size)
initial_size - (initial_size >> 2) # 75% load factor
end
end
end
current_table
end
# If table is too small and not already resizing, creates next table and
# transfers bins. Rechecks occupancy after a transfer to see if another
# resize is already needed because resizings are lagging additions.
def check_for_resize
while (current_table = table) && MAX_CAPACITY > (table_size = current_table.size) && NOW_RESIZING != (size_ctrl = size_control) && size_ctrl < @counter.sum
try_in_resize_lock(current_table, size_ctrl) do
self.table = rebuild(current_table)
(table_size << 1) - (table_size >> 1) # 75% load factor
end
end
end
def try_in_resize_lock(current_table, size_ctrl)
if cas_size_control(size_ctrl, NOW_RESIZING)
begin
if current_table == table # recheck under lock
size_ctrl = yield # get new size_control
end
ensure
self.size_control = size_ctrl
end
end
end
# Moves and/or copies the nodes in each bin to new table. See above for explanation.
def rebuild(table)
old_table_size = table.size
new_table = table.next_in_size_table
# puts "#{old_table_size} -> #{new_table.size}"
forwarder = Node.new(MOVED, new_table, NULL)
rev_forwarder = nil
locked_indexes = nil # holds bins to revisit; nil until needed
locked_arr_idx = 0
bin = old_table_size - 1
i = bin
while true
if !(node = table.volatile_get(i))
# no lock needed (or available) if bin >= 0, because we're not popping values from locked_indexes until we've run through the whole table
redo unless (bin >= 0 ? table.cas(i, nil, forwarder) : lock_and_clean_up_reverse_forwarders(table, old_table_size, new_table, i, forwarder))
elsif Node.locked_hash?(node_hash = node.hash)
locked_indexes ||= ::Array.new
if bin < 0 && locked_arr_idx > 0
locked_arr_idx -= 1
i, locked_indexes[locked_arr_idx] = locked_indexes[locked_arr_idx], i # swap with another bin
redo
end
if bin < 0 || locked_indexes.size >= TRANSFER_BUFFER_SIZE
node.try_await_lock(table, i) # no other options -- block
redo
end
rev_forwarder ||= Node.new(MOVED, table, NULL)
redo unless table.volatile_get(i) == node && node.locked? # recheck before adding to list
locked_indexes << i
new_table.volatile_set(i, rev_forwarder)
new_table.volatile_set(i + old_table_size, rev_forwarder)
else
redo unless split_old_bin(table, new_table, i, node, node_hash, forwarder)
end
if bin > 0
i = (bin -= 1)
elsif locked_indexes && !locked_indexes.empty?
bin = -1
i = locked_indexes.pop
locked_arr_idx = locked_indexes.size - 1
else
return new_table
end
end
end
def lock_and_clean_up_reverse_forwarders(old_table, old_table_size, new_table, i, forwarder)
# transiently use a locked forwarding node
locked_forwarder = Node.new(moved_locked_hash = MOVED | LOCKED, new_table, NULL)
if old_table.cas(i, nil, locked_forwarder)
new_table.volatile_set(i, nil) # kill the potential reverse forwarders
new_table.volatile_set(i + old_table_size, nil) # kill the potential reverse forwarders
old_table.volatile_set(i, forwarder)
locked_forwarder.unlock_via_hash(moved_locked_hash, MOVED)
true
end
end
# Splits a normal bin with list headed by e into lo and hi parts; installs in given table.
def split_old_bin(table, new_table, i, node, node_hash, forwarder)
table.try_lock_via_hash(i, node, node_hash) do
split_bin(new_table, i, node, node_hash)
table.volatile_set(i, forwarder)
end
end
def split_bin(new_table, i, node, node_hash)
bit = new_table.size >> 1 # bit to split on
run_bit = node_hash & bit
last_run = nil
low = nil
high = nil
current_node = node
# this optimises for the lowest amount of volatile writes and objects created
while current_node = current_node.next
unless (b = current_node.hash & bit) == run_bit
run_bit = b
last_run = current_node
end
end
if run_bit == 0
low = last_run
else
high = last_run
end
current_node = node
until current_node == last_run
pure_hash = current_node.pure_hash
if (pure_hash & bit) == 0
low = Node.new(pure_hash, current_node.key, current_node.value, low)
else
high = Node.new(pure_hash, current_node.key, current_node.value, high)
end
current_node = current_node.next
end
new_table.volatile_set(i, low)
new_table.volatile_set(i + bit, high)
end
def increment_size
@counter.increment
end
def decrement_size(by = 1)
@counter.add(-by)
end
end
end
end
|