File: exponential_integral.rb

package info (click to toggle)
ruby-distribution 0.7.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 572 kB
  • ctags: 370
  • sloc: ruby: 4,270; makefile: 5
file content (63 lines) | stat: -rw-r--r-- 2,938 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
module Distribution
  module MathExtension
    # From GSL-1.9.
    module ExponentialIntegral
      class << self
        def first_order x, scale = 0, with_error = false
          xmaxt = -Math::LOG_FLOAT_MIN
          xmax  = xmaxt - Math.log(xmaxt)
          result = nil
          error  = with_error ? nil : 0.0

          if x < -xmax && !scale
            raise("Overflow Error")
          elsif x <= -10.0
            s = 1.0 / x * ( scale ? 1.0 : Math.exp(-x))
            result_c = ChebyshevSeries.eval(20.0/x+1.0, :ae11, with_error)
            result_c, result_c_err = result_c if with_error
            result   = s * (1.0 + result_c)
            error  ||= (s * result_c_err) + 2.0*Float::EPSILON * (x.abs + 1.0) * result.abs
          elsif x <= -4.0
            s = 1.0 / x * (scale ? 1.0 : Math.exp(-x))
            result_c = ChebyshevSeries.eval((40.0/x+7.0)/3.0, :ae12, with_error)
            result_c, result_c_err = result_c if with_error
            result   = s * (1.0 + result_c)
            error  ||= (s * result_c_err) + 2.0*Float::EPSILON * result.abs
          elsif x <= -1.0
            ln_term = - Math.log(x.abs)
            scale_factor = scale ? Math.exp(x) : 1.0
            result_c = ChebyshevSeries.eval((2.0*x+5.0)/3.0, :e11, with_error)
            result_c, result_c_err = result_c if with_error
            result   = scale_factor * (ln_term + result_c)
            error  ||= scale_factor * (result_c_err + Float::EPSILON * ln_term.abs) + 2.0*Float::EPSILON*result.abs
          elsif x == 0.0
            raise(ArgumentError, "Domain Error")
          elsif x <= 1.0
            ln_term = - Math.log(x.abs)
            scale_factor = scale ? Math.exp(x) : 1.0
            result_c = ChebyshevSeries.eval(x, :e12, with_error)
            result_c, result_c_err = result_c if with_error
            result   = scale_factor * (ln_term - 0.6875 + x + result_c)
            error  ||= scale_factor * (result_c_err + Float::EPSILON * ln_term.abs) + 2.0*Float::EPSILON*result.abs
          elsif x <= 4.0
            s = 1.0 / x * (scale ? 1.0 : Math.exp(-x))
            result_c = ChebyshevSeries.eval((8.0/x-5.0)/3.0, :ae13, with_error)
            result_c, result_c_err = result_c if with_error
            result   = s * (1.0 + result_c)
            error  ||= (s * result_c_err) + 2.0*Float::EPSILON * result.abs
          elsif x <= xmax || scale
            s = 1.0 / x * (scale ? 1.0 : Math.exp(-x))
            result_c = ChebyshevSeries.eval(8.0/x-1.0, :ae14, with_error)
            result_c, result_c_err = result_c if with_error
            result   = s * (1.0 + result_c)
            error  ||= s * (Float::EPSILON + result_c_err) + 2.0*(x+1.0)*Float::EPSILON * result.abs
            raise("Underflow Error") if result == 0.0
          else
            raise("Underflow Error")
          end
          with_error ? [result, error] : result
        end
      end
    end
  end
end