File: incomplete_gamma.rb

package info (click to toggle)
ruby-distribution 0.7.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 572 kB
  • ctags: 370
  • sloc: ruby: 4,270; makefile: 5
file content (424 lines) | stat: -rw-r--r-- 16,455 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# Added by John O. Woods, SciRuby project.
# Derived from GSL-1.9 source files in the specfunc/ dir.

# require "statsample"

module Distribution
  module MathExtension
    module IncompleteGamma
      NMAX  = 5000
      SMALL = Float::EPSILON ** 3
      PG21  = -2.404113806319188570799476 # PolyGamma[2,1]

      class << self

        # Helper function for plot
        #def range_to_array r
        #  r << (r.last - r.first)/100.0 if r.size == 2 # set dr as Dr/100.0
        #  arr = []
        #  pos = r[0]
        #  while pos <= r[1]
        #    arr << pos
        #    pos += r[2]
        #  end
        #  arr
        #end
        #
        #def plot a, x_range, fun = :p
        #  x_range = range_to_array(x_range) if x_range.is_a?(Array)
        #  y_range = x_range.collect { |x| self.send(fun, a, x) }
        #  graph = Statsample::Graph::Scatterplot.new x_range.to_scale, y_range.to_scale
        #  f = File.new("test.svg", "w")
        #  f.puts(graph.to_svg)
        #  f.close
        #  `google-chrome test.svg`
        #end

        # The dominant part, D(a,x) := x^a e^(-x) / Gamma(a+1)
        # gamma_inc_D in GSL-1.9.
        def d(a, x, with_error = false)
          error = nil
          if a < 10.0
            ln_a = Math.lgamma(a+1.0).first
            lnr  = a * Math.log(x) - x - ln_a
            result = Math.exp(lnr)
            error = 2.0 * Float::EPSILON * (lnr.abs + 1.0) + result.abs if with_error
            with_error ? [result,error] : result
          else
            ln_term = ln_term_error = nil
            if x < 0.5*a
              u       = x/a.to_f
              ln_u    = Math.log(u)
              ln_term = ln_u - u + 1.0
              ln_term_error = (ln_u.abs + u.abs + 1.0) * Float::EPSILON if with_error
            else
              mu      = (x-a)/a.to_f
              ln_term = Log::log_1plusx_minusx(mu, with_error)
              ln_term, ln_term_error = ln_term if with_error
            end
            gstar = Gammastar.evaluate(a, with_error)
            gstar,gstar_error = gstar if with_error
            term1 = Math.exp(a*ln_term) / Math.sqrt(2.0*Math::PI*a)
            result = term1/gstar
            error  = 2.0*Float::EPSILON*((a*ln_term).abs+1.0) * result.abs + gstar_error/gstar.abs * result.abs if with_error
            with_error ? [result,error] : result
          end
        end

        # gamma_inc_P_series
        def p_series(a,x,with_error=false)
          d = d(a,x,with_error)
          d, d_err = d if with_error
          sum      = 1.0
          term     = 1.0
          n        = 1
          1.upto(NMAX-1) do |n|
            term *= x / (a+n).to_f
            sum  += term
            break if (term/sum).abs < Float::EPSILON
          end

          result   = d * sum

          if n == NMAX
            STDERR.puts("Error: n reached NMAX in p series")
          else
            return with_error ? [result,d_err * sum.abs + (1.0+n)*Float::EPSILON * result.abs] : result
          end
        end

        # This function does not exist in GSL, but is nonetheless GSL code. It's for calculating two specific ranges of p.
        def q_asymptotic_uniform_complement a,x,with_error=false
          q = q_asymptotic_uniform(a, x, with_error)
          q,q_err = q if with_error
          result = 1.0 - q
          return with_error ? [result, q_err + 2.0*Float::EPSILON*result.abs] : result
        end

        def q_continued_fraction_complement a,x,with_error=false
          q = q_continued_fraction(a,x,with_error)
          return with_error ? [1.0 - q.first, q.last + 2.0*Float::EPSILON*(1.0-q.first).abs] : 1.0 - q
        end

        def q_large_x_complement a,x,with_error=false
          q = q_large_x(a,x,with_error)
          return with_error ? [1.0 - q.first, q.last + 2.0*Float::EPSILON*(1.0-q.first).abs] : 1.0 - q
        end

        # The incomplete gamma function.
        # gsl_sf_gamma_inc_P_e
        def p a,x,with_error=false
          raise(ArgumentError, "Range Error: a must be positive, x must be non-negative") if a <= 0.0 || x < 0.0
          if x == 0.0
            return with_error ? [0.0, 0.0] : 0.0
          elsif x < 20.0 || x < 0.5*a
            return p_series(a, x, with_error)
          elsif a > 1e6 && (x-a)*(x-a) < a
            return q_asymptotic_uniform_complement a, x, with_error
          elsif a <= x
            if a > 0.2*x
              return q_continued_fraction_complement(a, x, with_error)
            else
              return q_large_x_complement(a, x, with_error)
            end
          elsif (x-a)*(x-a) < a
            return q_asymptotic_uniform_complement a, x, with_error
          else
            return p_series(a, x, with_error)
          end
        end

        # gamma_inc_Q_e
        def q a,x,with_error=false
          raise(ArgumentError, "Range Error: a and x must be non-negative") if (a < 0.0 || x < 0.0)
          if x == 0.0
            return with_error ? [1.0, 0.0] : 1.0
          elsif a == 0.0
            return with_error ? [0.0, 0.0] : 0.0
          elsif x <= 0.5*a
            # If series is quick, do that.
            p = p_series(a,x, with_error)
            p,p_err = p if with_error
            result  = 1.0 - p
            return with_error ? [result, p_err + 2.0*Float::EPSILON*result.abs] : result
          elsif a >= 1.0e+06 && (x-a)*(x-a) < a # difficult asymptotic regime, only way to do this region
            return q_asymptotic_uniform(a, x, with_error)
          elsif a < 0.2 && x < 5.0
            return q_series(a,x, with_error)
          elsif a <= x
            return x <= 1.0e+06 ? q_continued_fraction(a, x, with_error) : q_large_x(a, x, with_error)
          else
            if x > a-Math.sqrt(a)
              return q_continued_fraction(a, x, with_error)
            else
              p = p_series(a, x, with_error)
              p, p_err = p if with_error
              result = 1.0 - p
              return with_error ? [result, p_err + 2.0*Float::EPSILON*result.abs] : result
            end
          end
        end

        # gamma_inc_Q_CF
        def q_continued_fraction a, x, with_error=false
          d = d(a, x, with_error)
          f = f_continued_fraction(a, x, with_error)

          if with_error
            [d.first*(a/x).to_f*f.first, d.last * ((a/x).to_f*f.first).abs + (d.first*a/x*f.last).abs]
          else
            d * (a/x).to_f * f
          end
        end

        # gamma_inc_Q_large_x in GSL-1.9
        def q_large_x a,x,with_error=false
          d = d(a,x,with_error)
          d,d_err = d if with_error
          sum  = 1.0
          term = 1.0
          last = 1.0
          n    = 1
          1.upto(NMAX-1).each do |n|
            term *= (a-n)/x
            break if (term/last).abs > 1.0
            break if (term/sum).abs < Float::EPSILON
            sum  += term
            last  = term
          end

          result = d*(a/x)*sum
          error  = d_err * (a/x).abs * sum if with_error

          if n == NMAX
            STDERR.puts("Error: n reached NMAX in q_large_x")
          else
            return with_error ? [result,error] : result
          end
        end

        # Uniform asymptotic for x near a, a and x large
        # gamma_inc_Q_asymp_unif
        def q_asymptotic_uniform(a, x, with_error = false)
          rta = Math.sqrt(a)
          eps = (x-a).quo(a)

          ln_term = Log::log_1plusx_minusx(eps, with_error)
          ln_term, ln_term_err = ln_term if with_error

          eta     = (eps >= 0 ? 1 : -1) * Math.sqrt(-2*ln_term)

          erfc    = Math.erfc_e(eta*rta/SQRT2, with_error)
          erfc, erfc_err = erfc if with_error

          c0 = c1 = nil
          if eps.abs < ROOT5_FLOAT_EPSILON
            c0 = -1.quo(3) + eps*(1.quo(12) - eps*(23.quo(540) - eps*(353.quo(12960) - eps*589.quo(30240))))
            c1 = -1.quo(540) - eps.quo(288)
          else
            rt_term = Math.sqrt(-2 * ln_term.quo(eps*eps))
            lam     = x.quo(a)
            c0      = (1 - 1/rt_term)/eps
            c1      = -(eta**3 * (lam*lam + 10*lam + 1) - 12*eps**3).quo(12 * eta**3 * eps**3)
          end

          r = Math.exp(-0.5*a*eta*eta) / (SQRT2*SQRTPI*rta) * (c0 + c1.quo(a))

          result = 0.5 * erfc + r
          with_error ? [result, Float::EPSILON + (r*0.5*a*eta*eta).abs + 0.5*erfc_err + 2.0*Float::EPSILON + result.abs] : result
        end

        # gamma_inc_F_CF
        def f_continued_fraction a, x, with_error = false
          hn = 1.0 # convergent
          cn = 1.0 / SMALL
          dn = 1.0
          n  = 2
          2.upto(NMAX-1).each do |n|
            an = n.odd? ? 0.5*(n-1)/x : (0.5*n-a)/x
            dn = 1.0 + an * dn
            dn = SMALL if dn.abs < SMALL
            cn = 1.0 + an / cn
            cn = SMALL if cn.abs < SMALL
            dn = 1.0 / dn
            delta = cn * dn
            hn *= delta
            break if (delta-1.0).abs < Float::EPSILON
          end

          if n == NMAX
            STDERR.puts("Error: n reached NMAX in f continued fraction")
          else
            with_error ? [hn,2.0*Float::EPSILON * hn.abs + Float::EPSILON*(2.0+0.5*n) * hn.abs] : hn
          end
        end

        def q_series(a,x,with_error=false)
          term1 = nil
          sum   = nil
          term2 = nil
          begin
            lnx  = Math.log(x)
            el   = EULER + lnx
            c1   = -el
            c2   = Math::PI * Math::PI / 12.0 - 0.5*el*el
            c3   = el*(Math::PI*Math::PI/12.0 - el*el/6.0) + PG21/6.0
            c4   = -0.04166666666666666667 *
                      (-1.758243446661483480 + lnx) *
                      (-0.764428657272716373 + lnx) *
                      ( 0.723980571623507657 + lnx) *
                      ( 4.107554191916823640 + lnx)
            c5 = -0.0083333333333333333 *
                       (-2.06563396085715900 + lnx) *
                       (-1.28459889470864700 + lnx) *
                       (-0.27583535756454143 + lnx) *
                       ( 1.33677371336239618 + lnx) *
                       ( 5.17537282427561550 + lnx)
            c6 = -0.0013888888888888889 *
                         (-2.30814336454783200 + lnx) *
                         (-1.65846557706987300 + lnx) *
                         (-0.88768082560020400 + lnx) *
                         ( 0.17043847751371778 + lnx) *
                         ( 1.92135970115863890 + lnx) *
                         ( 6.22578557795474900 + lnx)
            c7 = -0.00019841269841269841
                         (-2.5078657901291800 + lnx) *
                         (-1.9478900888958200 + lnx) *
                         (-1.3194837322612730 + lnx) *
                         (-0.5281322700249279 + lnx) *
                         ( 0.5913834939078759 + lnx) *
                         ( 2.4876819633378140 + lnx) *
                         ( 7.2648160783762400 + lnx)
            c8 = -0.00002480158730158730 *
                         (-2.677341544966400 + lnx) *
                         (-2.182810448271700 + lnx) *
                         (-1.649350342277400 + lnx) *
                         (-1.014099048290790 + lnx) *
                         (-0.191366955370652 + lnx) *
                         ( 0.995403817918724 + lnx) *
                         ( 3.041323283529310 + lnx) *
                         ( 8.295966556941250 + lnx) *
            c9 = -2.75573192239859e-6 *
                         (-2.8243487670469080 + lnx) *
                         (-2.3798494322701120 + lnx) *
                         (-1.9143674728689960 + lnx) *
                         (-1.3814529102920370 + lnx) *
                         (-0.7294312810261694 + lnx) *
                         ( 0.1299079285269565 + lnx) *
                         ( 1.3873333251885240 + lnx) *
                         ( 3.5857258865210760 + lnx) *
                         ( 9.3214237073814600 + lnx) *
            c10 = -2.75573192239859e-7 *
                         (-2.9540329644556910 + lnx) *
                         (-2.5491366926991850 + lnx) *
                         (-2.1348279229279880 + lnx) *
                         (-1.6741881076349450 + lnx) *
                         (-1.1325949616098420 + lnx) *
                         (-0.4590034650618494 + lnx) *
                         ( 0.4399352987435699 + lnx) *
                         ( 1.7702236517651670 + lnx) *
                         ( 4.1231539047474080 + lnx) *
                         ( 10.342627908148680 + lnx)
            term1 = a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*(c8+a*(c9+a*c10)))))))))
          end

          n   = 1
          begin
            t   = 1.0
            sum = 1.0
            1.upto(NMAX-1).each do |n|
              t   *= -x/(n+1.0)
              sum += (a+1.0) / (a+n+1.0) * t
              break if (t/sum).abs < Float::EPSILON
            end
          end

          if n == NMAX
            STDERR.puts("Error: n reached NMAX in q_series")
          else
            term2 = (1.0 - term1) * a/(a+1.0) * x * sum
            result = term1+term2
            with_error ? [result, Float::EPSILON*term1.abs + 2.0*term2.abs + 2.0*Float::EPSILON*result.abs] : result
          end
        end

        # gamma_inc_series
        def series a,x,with_error = false
          q = q_series(a,x,with_error)
          g = Math.gamma(a)
          STDERR.puts("Warning: Don't know error for Math.gamma. Error will be incorrect") if with_error
          # When we get the error from Gamma, switch the comment on the next to lines
          # with_error ? [q.first*g.first, (q.first*g.last).abs + (q.last*g.first).abs + 2.0*Float::EPSILON*(q.first*g.first).abs] : q*g
          with_error ? [q.first*g, (q.first*Float::EPSILON).abs + (q.last*g.first).abs + 2.0*Float::EPSILON(q.first*g).abs] : q*g
        end

        # gamma_inc_a_gt_0
        def a_greater_than_0 a, x, with_error = false
          q       = q(a,x,with_error)
          q,q_err = q if with_error
          g       = Math.gamma(a)
          STDERR.puts("Warning: Don't know error for Math.gamma. Error will be incorrect") if with_error
          g_err   = Float::EPSILON
          result  = g*q
          error   = (g*q_err).abs + (g_err*q).abs if with_error
          with_error ? [result,error] : result
        end

        # gamma_inc_CF
        def continued_fraction a,x, with_error=false
          f = f_continued_fraction(a,x,with_error)
          f,f_error = f if with_error
          pre = Math.exp((a-1.0)*Math.log(x) - x)
          STDERR.puts("Warning: Don't know error for Math.exp. Error will be incorrect") if with_error
          pre_error = Float::EPSILON
          result    = f*pre
          if with_error
            error     = (f_error*pre).abs + (f*pre_error) + (2.0+a.abs)*Float::EPSILON*result.abs
            [result,error]
          else
            result
          end
        end

        # Unnormalized incomplete gamma function.
        # gsl_sf_gamma_inc_e
        def unnormalized a,x,with_error = false
          raise(ArgumentError, "x cannot be negative") if x < 0.0

          if x == 0.0
            result  = Math.gamma(a.to_f)
            STDERR.puts("Warning: Don't know error for Math.gamma. Error will be incorrect") if with_error
            return with_error ? [result, Float::EPSILON] : result
          elsif a == 0.0
            return ExponentialIntegral.first_order(x.to_f, with_error)
          elsif a > 0.0
            return a_greater_than_0(a.to_f, x.to_f, with_error)
          elsif x > 0.25
            # continued fraction seems to fail for x too small
            return continued_fraction(a.to_f, x.to_f, with_error)
          elsif a.abs < 0.5
            return series(a.to_f,x.to_f,with_error)
          else
            fa = a.floor.to_f
            da = a - fa
            g_da = da > 0.0 ? a_greater_than_0(da, x.to_f, with_error) : ExponentialIntegral.first_order(x.to_f, with_error)
            g_da, g_da_err = g_da if with_error
            alpha = da
            gax = g_da

            # Gamma(alpha-1,x) = 1/(alpha-1) (Gamma(a,x) - x^(alpha-1) e^-x)
            begin
              shift  = Math.exp(-x + (alpha-1.0)*Math.log(x))
              gax    = (gax-shift) / (alpha-1.0)
              alpha -= 1.0
            end while alpha > a

            result = gax
            return with_error ? [result, 2.0*(1.0 + a.abs) * Float::EPSILON*gax.abs] : result
          end
        end

      end
    end
  end
end