1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
# Added by John O. Woods, SciRuby project.
# Derived from GSL-1.9 source files in the specfunc/ dir.
# require "statsample"
module Distribution
module MathExtension
module IncompleteGamma
NMAX = 5000
SMALL = Float::EPSILON ** 3
PG21 = -2.404113806319188570799476 # PolyGamma[2,1]
class << self
# Helper function for plot
#def range_to_array r
# r << (r.last - r.first)/100.0 if r.size == 2 # set dr as Dr/100.0
# arr = []
# pos = r[0]
# while pos <= r[1]
# arr << pos
# pos += r[2]
# end
# arr
#end
#
#def plot a, x_range, fun = :p
# x_range = range_to_array(x_range) if x_range.is_a?(Array)
# y_range = x_range.collect { |x| self.send(fun, a, x) }
# graph = Statsample::Graph::Scatterplot.new x_range.to_scale, y_range.to_scale
# f = File.new("test.svg", "w")
# f.puts(graph.to_svg)
# f.close
# `google-chrome test.svg`
#end
# The dominant part, D(a,x) := x^a e^(-x) / Gamma(a+1)
# gamma_inc_D in GSL-1.9.
def d(a, x, with_error = false)
error = nil
if a < 10.0
ln_a = Math.lgamma(a+1.0).first
lnr = a * Math.log(x) - x - ln_a
result = Math.exp(lnr)
error = 2.0 * Float::EPSILON * (lnr.abs + 1.0) + result.abs if with_error
with_error ? [result,error] : result
else
ln_term = ln_term_error = nil
if x < 0.5*a
u = x/a.to_f
ln_u = Math.log(u)
ln_term = ln_u - u + 1.0
ln_term_error = (ln_u.abs + u.abs + 1.0) * Float::EPSILON if with_error
else
mu = (x-a)/a.to_f
ln_term = Log::log_1plusx_minusx(mu, with_error)
ln_term, ln_term_error = ln_term if with_error
end
gstar = Gammastar.evaluate(a, with_error)
gstar,gstar_error = gstar if with_error
term1 = Math.exp(a*ln_term) / Math.sqrt(2.0*Math::PI*a)
result = term1/gstar
error = 2.0*Float::EPSILON*((a*ln_term).abs+1.0) * result.abs + gstar_error/gstar.abs * result.abs if with_error
with_error ? [result,error] : result
end
end
# gamma_inc_P_series
def p_series(a,x,with_error=false)
d = d(a,x,with_error)
d, d_err = d if with_error
sum = 1.0
term = 1.0
n = 1
1.upto(NMAX-1) do |n|
term *= x / (a+n).to_f
sum += term
break if (term/sum).abs < Float::EPSILON
end
result = d * sum
if n == NMAX
STDERR.puts("Error: n reached NMAX in p series")
else
return with_error ? [result,d_err * sum.abs + (1.0+n)*Float::EPSILON * result.abs] : result
end
end
# This function does not exist in GSL, but is nonetheless GSL code. It's for calculating two specific ranges of p.
def q_asymptotic_uniform_complement a,x,with_error=false
q = q_asymptotic_uniform(a, x, with_error)
q,q_err = q if with_error
result = 1.0 - q
return with_error ? [result, q_err + 2.0*Float::EPSILON*result.abs] : result
end
def q_continued_fraction_complement a,x,with_error=false
q = q_continued_fraction(a,x,with_error)
return with_error ? [1.0 - q.first, q.last + 2.0*Float::EPSILON*(1.0-q.first).abs] : 1.0 - q
end
def q_large_x_complement a,x,with_error=false
q = q_large_x(a,x,with_error)
return with_error ? [1.0 - q.first, q.last + 2.0*Float::EPSILON*(1.0-q.first).abs] : 1.0 - q
end
# The incomplete gamma function.
# gsl_sf_gamma_inc_P_e
def p a,x,with_error=false
raise(ArgumentError, "Range Error: a must be positive, x must be non-negative") if a <= 0.0 || x < 0.0
if x == 0.0
return with_error ? [0.0, 0.0] : 0.0
elsif x < 20.0 || x < 0.5*a
return p_series(a, x, with_error)
elsif a > 1e6 && (x-a)*(x-a) < a
return q_asymptotic_uniform_complement a, x, with_error
elsif a <= x
if a > 0.2*x
return q_continued_fraction_complement(a, x, with_error)
else
return q_large_x_complement(a, x, with_error)
end
elsif (x-a)*(x-a) < a
return q_asymptotic_uniform_complement a, x, with_error
else
return p_series(a, x, with_error)
end
end
# gamma_inc_Q_e
def q a,x,with_error=false
raise(ArgumentError, "Range Error: a and x must be non-negative") if (a < 0.0 || x < 0.0)
if x == 0.0
return with_error ? [1.0, 0.0] : 1.0
elsif a == 0.0
return with_error ? [0.0, 0.0] : 0.0
elsif x <= 0.5*a
# If series is quick, do that.
p = p_series(a,x, with_error)
p,p_err = p if with_error
result = 1.0 - p
return with_error ? [result, p_err + 2.0*Float::EPSILON*result.abs] : result
elsif a >= 1.0e+06 && (x-a)*(x-a) < a # difficult asymptotic regime, only way to do this region
return q_asymptotic_uniform(a, x, with_error)
elsif a < 0.2 && x < 5.0
return q_series(a,x, with_error)
elsif a <= x
return x <= 1.0e+06 ? q_continued_fraction(a, x, with_error) : q_large_x(a, x, with_error)
else
if x > a-Math.sqrt(a)
return q_continued_fraction(a, x, with_error)
else
p = p_series(a, x, with_error)
p, p_err = p if with_error
result = 1.0 - p
return with_error ? [result, p_err + 2.0*Float::EPSILON*result.abs] : result
end
end
end
# gamma_inc_Q_CF
def q_continued_fraction a, x, with_error=false
d = d(a, x, with_error)
f = f_continued_fraction(a, x, with_error)
if with_error
[d.first*(a/x).to_f*f.first, d.last * ((a/x).to_f*f.first).abs + (d.first*a/x*f.last).abs]
else
d * (a/x).to_f * f
end
end
# gamma_inc_Q_large_x in GSL-1.9
def q_large_x a,x,with_error=false
d = d(a,x,with_error)
d,d_err = d if with_error
sum = 1.0
term = 1.0
last = 1.0
n = 1
1.upto(NMAX-1).each do |n|
term *= (a-n)/x
break if (term/last).abs > 1.0
break if (term/sum).abs < Float::EPSILON
sum += term
last = term
end
result = d*(a/x)*sum
error = d_err * (a/x).abs * sum if with_error
if n == NMAX
STDERR.puts("Error: n reached NMAX in q_large_x")
else
return with_error ? [result,error] : result
end
end
# Uniform asymptotic for x near a, a and x large
# gamma_inc_Q_asymp_unif
def q_asymptotic_uniform(a, x, with_error = false)
rta = Math.sqrt(a)
eps = (x-a).quo(a)
ln_term = Log::log_1plusx_minusx(eps, with_error)
ln_term, ln_term_err = ln_term if with_error
eta = (eps >= 0 ? 1 : -1) * Math.sqrt(-2*ln_term)
erfc = Math.erfc_e(eta*rta/SQRT2, with_error)
erfc, erfc_err = erfc if with_error
c0 = c1 = nil
if eps.abs < ROOT5_FLOAT_EPSILON
c0 = -1.quo(3) + eps*(1.quo(12) - eps*(23.quo(540) - eps*(353.quo(12960) - eps*589.quo(30240))))
c1 = -1.quo(540) - eps.quo(288)
else
rt_term = Math.sqrt(-2 * ln_term.quo(eps*eps))
lam = x.quo(a)
c0 = (1 - 1/rt_term)/eps
c1 = -(eta**3 * (lam*lam + 10*lam + 1) - 12*eps**3).quo(12 * eta**3 * eps**3)
end
r = Math.exp(-0.5*a*eta*eta) / (SQRT2*SQRTPI*rta) * (c0 + c1.quo(a))
result = 0.5 * erfc + r
with_error ? [result, Float::EPSILON + (r*0.5*a*eta*eta).abs + 0.5*erfc_err + 2.0*Float::EPSILON + result.abs] : result
end
# gamma_inc_F_CF
def f_continued_fraction a, x, with_error = false
hn = 1.0 # convergent
cn = 1.0 / SMALL
dn = 1.0
n = 2
2.upto(NMAX-1).each do |n|
an = n.odd? ? 0.5*(n-1)/x : (0.5*n-a)/x
dn = 1.0 + an * dn
dn = SMALL if dn.abs < SMALL
cn = 1.0 + an / cn
cn = SMALL if cn.abs < SMALL
dn = 1.0 / dn
delta = cn * dn
hn *= delta
break if (delta-1.0).abs < Float::EPSILON
end
if n == NMAX
STDERR.puts("Error: n reached NMAX in f continued fraction")
else
with_error ? [hn,2.0*Float::EPSILON * hn.abs + Float::EPSILON*(2.0+0.5*n) * hn.abs] : hn
end
end
def q_series(a,x,with_error=false)
term1 = nil
sum = nil
term2 = nil
begin
lnx = Math.log(x)
el = EULER + lnx
c1 = -el
c2 = Math::PI * Math::PI / 12.0 - 0.5*el*el
c3 = el*(Math::PI*Math::PI/12.0 - el*el/6.0) + PG21/6.0
c4 = -0.04166666666666666667 *
(-1.758243446661483480 + lnx) *
(-0.764428657272716373 + lnx) *
( 0.723980571623507657 + lnx) *
( 4.107554191916823640 + lnx)
c5 = -0.0083333333333333333 *
(-2.06563396085715900 + lnx) *
(-1.28459889470864700 + lnx) *
(-0.27583535756454143 + lnx) *
( 1.33677371336239618 + lnx) *
( 5.17537282427561550 + lnx)
c6 = -0.0013888888888888889 *
(-2.30814336454783200 + lnx) *
(-1.65846557706987300 + lnx) *
(-0.88768082560020400 + lnx) *
( 0.17043847751371778 + lnx) *
( 1.92135970115863890 + lnx) *
( 6.22578557795474900 + lnx)
c7 = -0.00019841269841269841
(-2.5078657901291800 + lnx) *
(-1.9478900888958200 + lnx) *
(-1.3194837322612730 + lnx) *
(-0.5281322700249279 + lnx) *
( 0.5913834939078759 + lnx) *
( 2.4876819633378140 + lnx) *
( 7.2648160783762400 + lnx)
c8 = -0.00002480158730158730 *
(-2.677341544966400 + lnx) *
(-2.182810448271700 + lnx) *
(-1.649350342277400 + lnx) *
(-1.014099048290790 + lnx) *
(-0.191366955370652 + lnx) *
( 0.995403817918724 + lnx) *
( 3.041323283529310 + lnx) *
( 8.295966556941250 + lnx) *
c9 = -2.75573192239859e-6 *
(-2.8243487670469080 + lnx) *
(-2.3798494322701120 + lnx) *
(-1.9143674728689960 + lnx) *
(-1.3814529102920370 + lnx) *
(-0.7294312810261694 + lnx) *
( 0.1299079285269565 + lnx) *
( 1.3873333251885240 + lnx) *
( 3.5857258865210760 + lnx) *
( 9.3214237073814600 + lnx) *
c10 = -2.75573192239859e-7 *
(-2.9540329644556910 + lnx) *
(-2.5491366926991850 + lnx) *
(-2.1348279229279880 + lnx) *
(-1.6741881076349450 + lnx) *
(-1.1325949616098420 + lnx) *
(-0.4590034650618494 + lnx) *
( 0.4399352987435699 + lnx) *
( 1.7702236517651670 + lnx) *
( 4.1231539047474080 + lnx) *
( 10.342627908148680 + lnx)
term1 = a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*(c8+a*(c9+a*c10)))))))))
end
n = 1
begin
t = 1.0
sum = 1.0
1.upto(NMAX-1).each do |n|
t *= -x/(n+1.0)
sum += (a+1.0) / (a+n+1.0) * t
break if (t/sum).abs < Float::EPSILON
end
end
if n == NMAX
STDERR.puts("Error: n reached NMAX in q_series")
else
term2 = (1.0 - term1) * a/(a+1.0) * x * sum
result = term1+term2
with_error ? [result, Float::EPSILON*term1.abs + 2.0*term2.abs + 2.0*Float::EPSILON*result.abs] : result
end
end
# gamma_inc_series
def series a,x,with_error = false
q = q_series(a,x,with_error)
g = Math.gamma(a)
STDERR.puts("Warning: Don't know error for Math.gamma. Error will be incorrect") if with_error
# When we get the error from Gamma, switch the comment on the next to lines
# with_error ? [q.first*g.first, (q.first*g.last).abs + (q.last*g.first).abs + 2.0*Float::EPSILON*(q.first*g.first).abs] : q*g
with_error ? [q.first*g, (q.first*Float::EPSILON).abs + (q.last*g.first).abs + 2.0*Float::EPSILON(q.first*g).abs] : q*g
end
# gamma_inc_a_gt_0
def a_greater_than_0 a, x, with_error = false
q = q(a,x,with_error)
q,q_err = q if with_error
g = Math.gamma(a)
STDERR.puts("Warning: Don't know error for Math.gamma. Error will be incorrect") if with_error
g_err = Float::EPSILON
result = g*q
error = (g*q_err).abs + (g_err*q).abs if with_error
with_error ? [result,error] : result
end
# gamma_inc_CF
def continued_fraction a,x, with_error=false
f = f_continued_fraction(a,x,with_error)
f,f_error = f if with_error
pre = Math.exp((a-1.0)*Math.log(x) - x)
STDERR.puts("Warning: Don't know error for Math.exp. Error will be incorrect") if with_error
pre_error = Float::EPSILON
result = f*pre
if with_error
error = (f_error*pre).abs + (f*pre_error) + (2.0+a.abs)*Float::EPSILON*result.abs
[result,error]
else
result
end
end
# Unnormalized incomplete gamma function.
# gsl_sf_gamma_inc_e
def unnormalized a,x,with_error = false
raise(ArgumentError, "x cannot be negative") if x < 0.0
if x == 0.0
result = Math.gamma(a.to_f)
STDERR.puts("Warning: Don't know error for Math.gamma. Error will be incorrect") if with_error
return with_error ? [result, Float::EPSILON] : result
elsif a == 0.0
return ExponentialIntegral.first_order(x.to_f, with_error)
elsif a > 0.0
return a_greater_than_0(a.to_f, x.to_f, with_error)
elsif x > 0.25
# continued fraction seems to fail for x too small
return continued_fraction(a.to_f, x.to_f, with_error)
elsif a.abs < 0.5
return series(a.to_f,x.to_f,with_error)
else
fa = a.floor.to_f
da = a - fa
g_da = da > 0.0 ? a_greater_than_0(da, x.to_f, with_error) : ExponentialIntegral.first_order(x.to_f, with_error)
g_da, g_da_err = g_da if with_error
alpha = da
gax = g_da
# Gamma(alpha-1,x) = 1/(alpha-1) (Gamma(a,x) - x^(alpha-1) e^-x)
begin
shift = Math.exp(-x + (alpha-1.0)*Math.log(x))
gax = (gax-shift) / (alpha-1.0)
alpha -= 1.0
end while alpha > a
result = gax
return with_error ? [result, 2.0*(1.0 + a.abs) * Float::EPSILON*gax.abs] : result
end
end
end
end
end
end
|