File: ruby.rb

package info (click to toggle)
ruby-distribution 0.7.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 572 kB
  • ctags: 370
  • sloc: ruby: 4,270; makefile: 5
file content (111 lines) | stat: -rw-r--r-- 2,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
module Distribution
  module T
  module Ruby_
    class << self
      def pdf(t,v)
        ((Math.gamma((v+1) / 2.0)) / (Math.sqrt(v*Math::PI)*Math.gamma(v/2.0))) * ((1+(t**2 / v.to_f))**(-(v+1) / 2.0))
        
      end
      # Returns the integral of t-distribution with n degrees of freedom over (-Infty, x].
      def cdf(t, n)
        p_t(n, t)
      end
      
      # t-distribution ([1])
      # (-\infty, x]
      def p_t(df, t)
        if df.to_i!=df
          x=(t+Math.sqrt(t**2+df)) / (2*Math.sqrt(t**2+df))
          return Math.regularized_beta(x,df/2.0,df/2.0)
        end
        df=df.to_i
        c2 = df.to_f / (df + t * t);
        s = Math.sqrt(1.0 - c2)
        s = -s if t < 0.0
        p = 0.0;
        i = df % 2 + 2
        while i <= df
          p += s
          s *= (i - 1) * c2 / i
          i += 2
        end
        
        if df.is_a? Float or df & 1 != 0
          0.5+(p*Math.sqrt(c2)+Math.atan(t/Math.sqrt(df))) / Math::PI
        else
          (1.0 + p) / 2.0
        end
      end
      
      
      # inverse of t-distribution ([2])
      # (-\infty, -q/2] + [q/2, \infty)
      def ptsub(q, n)
      q = q.to_f
      if(n == 1 && 0.001 < q && q < 0.01)
      eps = 1.0e-4
      elsif (n == 2 && q < 0.0001)
      eps = 1.0e-4
      elsif (n == 1 && q < 0.001)
      eps = 1.0e-2
      else
      eps = 1.0e-5
      end
      s = 10000.0
      w = 0.0
      loop do
      w += s
      if(s <= eps) then return w end
      if((qe = 2.0 - p_t(n, w)*2.0 - q) == 0.0) then return w end
      if(qe < 0.0)
        w -= s
        s /= 10.0 #/
      end
      end
      end
      
      def pt(q, n)
        q = q.to_f
        if(q < 1.0e-5 || q > 1.0 || n < 1)
        $stderr.printf("Error : Illigal parameter in pt()!\n")
        return 0.0
        end
        
        if(n <= 5) then return ptsub(q, n) end
        if(q <= 5.0e-3 && n <= 13) then return ptsub(q, n) end
        
        f1 = 4.0 * (f = n.to_f)
        f5 = (f4 = (f3 = (f2 = f * f) * f) * f) * f
        f2 *= 96.0
        f3 *= 384.0
        f4 *= 92160.0
        f5 *= 368640.0
        u = Normal.p_value(1.0 - q / 2.0)
        
        w0 = (u2 = u * u) * u
        w1 = w0 * u2
        w2 = w1 * u2
        w3 = w2 * u2
        w4 = w3 * u2
        w = (w0 + u) / f1
        w += (5.0 * w1 + 16.0 * w0 + 3.0 * u) / f2
        w += (3.0 * w2 + 19.0 * w1 + 17.0 * w0 - 15.0 * u) / f3
        w += (79.0 * w3 + 776.0 * w2 + 1482.0 * w1 - 1920.0 * w0 - 9450.0 * u) / f4
        w += (27.0 * w4 + 339.0 * w3 + 930.0 * w2 - 1782.0 * w1 - 765.0 * w0 + 17955.0 * u) / f5
        u + w
      end
      
      # Returns the P-value of tdist().
      def p_value(y,n)
        if y > 0.5
          pt(2.0 - y*2.0, n)
        else
          - pt(y*2.0, n)
        end
      end
      
      
    end
  end
end
end