1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
module Distribution
#
# Ruby version implements three methods on this module:
# * Genz:: Used by default, with improvement to calculate p on rho > 0.95
# * Hull:: Port from a C++ code
# * Jantaravareerat:: Iterative (slow and buggy)
#
module BivariateNormal
module Ruby_
class << self
SIDE=0.1 # :nodoc:
LIMIT=5 # :nodoc:
# Return the partial derivative of cdf over x, with y and rho constant
# Reference:
# * Tallis, 1962, p.346, cited by Olsson, 1979
def partial_derivative_cdf_x(x,y,rho)
Distribution::Normal.pdf(x) * Distribution::Normal.cdf((y-rho*x).quo( Math::sqrt( 1 - rho**2 )))
end
alias :pd_cdf_x :partial_derivative_cdf_x
# Probability density function for a given x, y and rho value.
#
# Source: http://en.wikipedia.org/wiki/Multivariate_normal_distribution
def pdf(x,y, rho, s1=1.0, s2=1.0)
1.quo(2 * Math::PI * s1 * s2 * Math::sqrt( 1 - rho**2 )) * (Math::exp(-(1.quo(2*(1-rho**2))) *
((x**2.quo(s1)) + (y**2.quo(s2)) - (2*rho*x*y).quo(s1*s2))))
end
def f(x,y,aprime,bprime,rho)
r=aprime*(2*x-aprime)+bprime*(2*y-bprime)+2*rho*(x-aprime)*(y-bprime)
Math::exp(r)
end
# CDF for a given x, y and rho value.
# Uses Genz algorithm (cdf_genz method).
#
def cdf(a,b,rho)
cdf_genz(a,b,rho)
end
def sgn(x)
if(x>=0)
1
else
-1
end
end
# Normal cumulative distribution function (cdf) for a given x, y and rho.
# Based on Hull (1993, cited by Arne, 2003)
#
# References:
# * Arne, B.(2003). Financial Numerical Recipes in C ++. Available on http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/node23.html
def cdf_hull(a,b,rho)
#puts "a:#{a} - b:#{b} - rho:#{rho}"
if (a<=0 and b<=0 and rho<=0)
# puts "ruta 1"
aprime=a.quo(Math::sqrt(2.0*(1.0-rho**2)))
bprime=b.quo(Math::sqrt(2.0*(1.0-rho**2)))
aa=[0.3253030, 0.4211071, 0.1334425, 0.006374323]
bb=[0.1337764, 0.6243247, 1.3425378, 2.2626645]
sum=0
4.times do |i|
4.times do |j|
sum+=aa[i]*aa[j] * f(bb[i], bb[j], aprime, bprime,rho)
end
end
sum=sum*(Math::sqrt(1.0-rho**2).quo(Math::PI))
return sum
elsif(a*b*rho<=0.0)
#puts "ruta 2"
if(a<=0 and b>=0 and rho>=0)
return Distribution::Normal.cdf(a) - cdf(a,-b,-rho)
elsif (a>=0.0 and b<=0.0 and rho>=0)
return Distribution::Normal.cdf(b) - cdf(-a,b,-rho)
elsif (a>=0.0 and b>=0.0 and rho<=0)
return Distribution::Normal.cdf(a) + Distribution::Normal.cdf(b) - 1.0 + cdf(-a,-b,rho)
end
elsif (a*b*rho>=0.0)
#puts "ruta 3"
denum=Math::sqrt(a**2 - 2*rho*a*b + b**2)
rho1=((rho*a-b)*sgn(a)).quo(denum)
rho2=((rho*b-a)*sgn(b)).quo(denum)
delta=(1.0-sgn(a)*sgn(b)).quo(4)
#puts "#{rho1} - #{rho2}"
return cdf(a, 0.0, rho1) + cdf(b, 0.0, rho2) - delta
end
raise "Should'nt be here! #{a} - #{b} #{rho}"
end
# CDF. Iterative method by Jantaravareerat (n/d)
#
# Reference:
# * Jantaravareerat, M. & Thomopoulos, N. (n/d). Tables for standard bivariate normal distribution
def cdf_jantaravareerat(x,y,rho,s1=1,s2=1)
# Special cases
return 1 if x>LIMIT and y>LIMIT
return 0 if x<-LIMIT or y<-LIMIT
return Distribution::Normal.cdf(y) if x>LIMIT
return Distribution::Normal.cdf(x) if y>LIMIT
#puts "x:#{x} - y:#{y}"
x=-LIMIT if x<-LIMIT
x=LIMIT if x>LIMIT
y=-LIMIT if y<-LIMIT
y=LIMIT if y>LIMIT
x_squares=((LIMIT+x) / SIDE).to_i
y_squares=((LIMIT+y) / SIDE).to_i
sum=0
x_squares.times do |i|
y_squares.times do |j|
z1=-LIMIT+(i+1)*SIDE
z2=-LIMIT+(j+1)*SIDE
#puts " #{z1}-#{z2}"
h=(pdf(z1,z2,rho,s1,s2)+pdf(z1-SIDE,z2,rho,s1,s2)+pdf(z1,z2-SIDE,rho,s1,s2) + pdf(z1-SIDE,z2-SIDE,rho,s1,s2)).quo(4)
sum+= (SIDE**2)*h # area
end
end
sum
end
# Normal cumulative distribution function (cdf) for a given x, y and rho.
# Ported from Fortran code by Alan Genz
#
# Original documentation
# DOUBLE PRECISION FUNCTION BVND( DH, DK, R )
# A function for computing bivariate normal probabilities.
#
# Alan Genz
# Department of Mathematics
# Washington State University
# Pullman, WA 99164-3113
# Email : alangenz_AT_wsu.edu
#
# This function is based on the method described by
# Drezner, Z and G.O. Wesolowsky, (1989),
# On the computation of the bivariate normal integral,
# Journal of Statist. Comput. Simul. 35, pp. 101-107,
# with major modifications for double precision, and for |R| close to 1.
#
# Original location:
# * http://www.math.wsu.edu/faculty/genz/software/fort77/tvpack.f
def cdf_genz(x,y,rho)
dh=-x
dk=-y
r=rho
twopi = 6.283185307179586
w=11.times.collect {[nil]*4};
x=11.times.collect {[nil]*4}
data=[
0.1713244923791705E+00, -0.9324695142031522E+00,
0.3607615730481384E+00, -0.6612093864662647E+00,
0.4679139345726904E+00, -0.2386191860831970E+00]
(1..3).each {|i|
w[i][1]=data[(i-1)*2]
x[i][1]=data[(i-1)*2+1]
}
data=[
0.4717533638651177E-01,-0.9815606342467191E+00,
0.1069393259953183E+00,-0.9041172563704750E+00,
0.1600783285433464E+00,-0.7699026741943050E+00,
0.2031674267230659E+00,-0.5873179542866171E+00,
0.2334925365383547E+00,-0.3678314989981802E+00,
0.2491470458134029E+00,-0.1252334085114692E+00]
(1..6).each {|i|
w[i][2]=data[(i-1)*2]
x[i][2]=data[(i-1)*2+1]
}
data=[
0.1761400713915212E-01,-0.9931285991850949E+00,
0.4060142980038694E-01,-0.9639719272779138E+00,
0.6267204833410906E-01,-0.9122344282513259E+00,
0.8327674157670475E-01,-0.8391169718222188E+00,
0.1019301198172404E+00,-0.7463319064601508E+00,
0.1181945319615184E+00,-0.6360536807265150E+00,
0.1316886384491766E+00,-0.5108670019508271E+00,
0.1420961093183821E+00,-0.3737060887154196E+00,
0.1491729864726037E+00,-0.2277858511416451E+00,
0.1527533871307259E+00,-0.7652652113349733E-01]
(1..10).each {|i|
w[i][3]=data[(i-1)*2]
x[i][3]=data[(i-1)*2+1]
}
if ( r.abs < 0.3 )
ng = 1
lg = 3
elsif ( r.abs < 0.75 )
ng = 2
lg = 6
else
ng = 3
lg = 10
end
h = dh
k = dk
hk = h*k
bvn = 0
if ( r.abs < 0.925 )
if ( r.abs > 0 )
hs = ( h*h + k*k ).quo(2)
asr = Math::asin(r)
(1..lg).each do |i|
[-1,1].each do |is|
sn = Math::sin(asr*(is* x[i][ng]+1).quo(2) )
bvn = bvn + w[i][ng] * Math::exp( ( sn*hk-hs ).quo( 1-sn*sn ) )
end # do
end # do
bvn = bvn*asr.quo( 2*twopi )
end # if
bvn = bvn + Distribution::Normal.cdf(-h) * Distribution::Normal.cdf(-k)
else # r.abs
if ( r < 0 )
k = -k
hk = -hk
end
if ( r.abs < 1 )
as = ( 1 - r )*( 1 + r )
a = Math::sqrt(as)
bs = ( h - k )**2
c = ( 4 - hk ).quo(8)
d = ( 12 - hk ).quo(16)
asr = -( bs.quo(as) + hk ).quo(2)
if ( asr > -100 )
bvn = a*Math::exp(asr) * ( 1 - c*( bs - as )*( 1 - d*bs.quo(5) ).quo(3) + c*d*as*as.quo(5) )
end
if ( -hk < 100 )
b = Math::sqrt(bs)
bvn = bvn - Math::exp( -hk.quo(2) ) * Math::sqrt(twopi)*Distribution::Normal.cdf(-b.quo(a))*b *
( 1 - c*bs*( 1 - d*bs.quo(5) ).quo(3) )
end
a = a.quo(2)
(1..lg).each do |i|
[-1,1].each do |is|
xs = (a*( is*x[i][ng] + 1 ) )**2
rs = Math::sqrt( 1 - xs )
asr = -( bs/xs + hk ).quo(2)
if ( asr > -100 )
bvn = bvn + a*w[i][ng] * Math::exp( asr ) *
( Math::exp( -hk*( 1 - rs ).quo(2*( 1 + rs ) ) ) .quo(rs) - ( 1 + c*xs*( 1 + d*xs ) ) )
end
end
end
bvn = -bvn/twopi
end
if ( r > 0 )
bvn = bvn + Distribution::Normal.cdf(-[h,k].max)
else
bvn = -bvn
if ( k > h )
bvn = bvn + Distribution::Normal.cdf(k) - Distribution::Normal.cdf(h)
end
end
end
bvn
end
private :f, :sgn
end
end
end
end
|