File: ruby.rb

package info (click to toggle)
ruby-distribution 0.7.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 624 kB
  • ctags: 379
  • sloc: ruby: 4,283; makefile: 7
file content (281 lines) | stat: -rw-r--r-- 9,469 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
module Distribution
  # 
  # Ruby version implements three methods on this module:
  # * Genz:: Used by default, with improvement to calculate p on rho > 0.95
  # * Hull:: Port from a C++ code
  # * Jantaravareerat:: Iterative (slow and buggy)
  # 
  
  module BivariateNormal
    module Ruby_
    class << self
      SIDE=0.1 # :nodoc:
      LIMIT=5 # :nodoc:
      # Return the partial derivative of cdf over x, with y and rho constant
      # Reference:
      # * Tallis, 1962, p.346, cited by Olsson, 1979
      def partial_derivative_cdf_x(x,y,rho)
        Distribution::Normal.pdf(x) * Distribution::Normal.cdf((y-rho*x).quo( Math::sqrt( 1 - rho**2 )))
      end
      alias  :pd_cdf_x  :partial_derivative_cdf_x 
      # Probability density function for a given x, y and rho value.
      # 
      # Source: http://en.wikipedia.org/wiki/Multivariate_normal_distribution
      def pdf(x,y, rho, s1=1.0, s2=1.0)
        1.quo(2 * Math::PI * s1 * s2 * Math::sqrt( 1 - rho**2 )) * (Math::exp(-(1.quo(2*(1-rho**2))) *
          ((x**2.quo(s1)) + (y**2.quo(s2)) - (2*rho*x*y).quo(s1*s2))))
      end
      
      def f(x,y,aprime,bprime,rho) 
        r=aprime*(2*x-aprime)+bprime*(2*y-bprime)+2*rho*(x-aprime)*(y-bprime)
        Math::exp(r)
      end
      
      # CDF for a given x, y and rho value.
      # Uses Genz algorithm (cdf_genz method).
      #
      def cdf(a,b,rho)
        cdf_genz(a,b,rho)
      end
      
      def sgn(x)
        if(x>=0)
        1
        else
        -1
        end     
      end
      
      # Normal cumulative distribution function (cdf) for a given x, y and rho.
      # Based on Hull (1993, cited by Arne, 2003)
      #
      # References:
      # * Arne, B.(2003). Financial Numerical Recipes in C ++. Available on  http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/node23.html
      def cdf_hull(a,b,rho)
        #puts "a:#{a} - b:#{b} - rho:#{rho}"
        if (a<=0 and b<=0 and rho<=0)
         # puts "ruta 1"
          aprime=a.quo(Math::sqrt(2.0*(1.0-rho**2)))
          bprime=b.quo(Math::sqrt(2.0*(1.0-rho**2)))
          aa=[0.3253030, 0.4211071, 0.1334425, 0.006374323]
          bb=[0.1337764, 0.6243247, 1.3425378, 2.2626645]
          sum=0
          4.times do |i|
            4.times do |j|
              sum+=aa[i]*aa[j] * f(bb[i], bb[j], aprime, bprime,rho)
            end
          end
          sum=sum*(Math::sqrt(1.0-rho**2).quo(Math::PI))
          return sum
        elsif(a*b*rho<=0.0)
          
          #puts "ruta 2"
          if(a<=0 and b>=0 and rho>=0)
            return Distribution::Normal.cdf(a) - cdf(a,-b,-rho)
          elsif (a>=0.0 and b<=0.0 and rho>=0)
            return Distribution::Normal.cdf(b) - cdf(-a,b,-rho)
          elsif (a>=0.0 and b>=0.0 and rho<=0)
            return Distribution::Normal.cdf(a) + Distribution::Normal.cdf(b) - 1.0 + cdf(-a,-b,rho)
          end
        elsif (a*b*rho>=0.0)
          #puts "ruta 3"
          denum=Math::sqrt(a**2 - 2*rho*a*b + b**2)
          rho1=((rho*a-b)*sgn(a)).quo(denum)
          rho2=((rho*b-a)*sgn(b)).quo(denum)
          delta=(1.0-sgn(a)*sgn(b)).quo(4)
          #puts "#{rho1} - #{rho2}"
          return cdf(a, 0.0, rho1) + cdf(b, 0.0, rho2) - delta
        end
        raise "Should'nt be here! #{a} - #{b} #{rho}"
      end
      
      # CDF. Iterative method by Jantaravareerat (n/d)
      # 
      # Reference:
      # * Jantaravareerat, M. & Thomopoulos, N. (n/d). Tables for standard bivariate normal distribution
     
      def cdf_jantaravareerat(x,y,rho,s1=1,s2=1)
        # Special cases
        return 1 if x>LIMIT and y>LIMIT
        return 0 if x<-LIMIT or y<-LIMIT
        return Distribution::Normal.cdf(y) if  x>LIMIT
        return Distribution::Normal.cdf(x) if  y>LIMIT
        
        #puts "x:#{x} - y:#{y}"
        x=-LIMIT if x<-LIMIT
        x=LIMIT if x>LIMIT
        y=-LIMIT if y<-LIMIT
        y=LIMIT if y>LIMIT

        x_squares=((LIMIT+x) / SIDE).to_i
        y_squares=((LIMIT+y) / SIDE).to_i
        sum=0
        x_squares.times do |i|
          y_squares.times do |j|
            z1=-LIMIT+(i+1)*SIDE
            z2=-LIMIT+(j+1)*SIDE
            #puts " #{z1}-#{z2}"
            h=(pdf(z1,z2,rho,s1,s2)+pdf(z1-SIDE,z2,rho,s1,s2)+pdf(z1,z2-SIDE,rho,s1,s2) + pdf(z1-SIDE,z2-SIDE,rho,s1,s2)).quo(4)
            sum+= (SIDE**2)*h # area
          end
        end
        sum
      end
      # Normal cumulative distribution function (cdf) for a given x, y and rho.
      # Ported from Fortran code by Alan Genz
      #
      # Original documentation
      #    DOUBLE PRECISION FUNCTION BVND( DH, DK, R )
      #    A function for computing bivariate normal probabilities.
      #
      #       Alan Genz
      #       Department of Mathematics
      #       Washington State University
      #       Pullman, WA 99164-3113
      #       Email : alangenz_AT_wsu.edu
      #
      #    This function is based on the method described by 
      #        Drezner, Z and G.O. Wesolowsky, (1989),
      #        On the computation of the bivariate normal integral,
      #        Journal of Statist. Comput. Simul. 35, pp. 101-107,
      #    with major modifications for double precision, and for |R| close to 1.
      #   
      # Original location:
      # * http://www.math.wsu.edu/faculty/genz/software/fort77/tvpack.f
      def cdf_genz(x,y,rho)
        dh=-x
        dk=-y
        r=rho
        twopi = 6.283185307179586
        
        w=11.times.collect {[nil]*4};
        x=11.times.collect {[nil]*4}
        
        data=[
        0.1713244923791705E+00, -0.9324695142031522E+00,
        0.3607615730481384E+00, -0.6612093864662647E+00,
        0.4679139345726904E+00, -0.2386191860831970E+00]
        
        (1..3).each {|i|
          w[i][1]=data[(i-1)*2]
          x[i][1]=data[(i-1)*2+1]
          
        }
        data=[
        0.4717533638651177E-01,-0.9815606342467191E+00,
        0.1069393259953183E+00,-0.9041172563704750E+00,
        0.1600783285433464E+00,-0.7699026741943050E+00,
        0.2031674267230659E+00,-0.5873179542866171E+00,
        0.2334925365383547E+00,-0.3678314989981802E+00,
        0.2491470458134029E+00,-0.1252334085114692E+00]
        (1..6).each {|i|
          w[i][2]=data[(i-1)*2]
          x[i][2]=data[(i-1)*2+1]

          
        }
        data=[
        0.1761400713915212E-01,-0.9931285991850949E+00,
        0.4060142980038694E-01,-0.9639719272779138E+00,
        0.6267204833410906E-01,-0.9122344282513259E+00,
        0.8327674157670475E-01,-0.8391169718222188E+00,
        0.1019301198172404E+00,-0.7463319064601508E+00,
        0.1181945319615184E+00,-0.6360536807265150E+00,
        0.1316886384491766E+00,-0.5108670019508271E+00,
        0.1420961093183821E+00,-0.3737060887154196E+00,
        0.1491729864726037E+00,-0.2277858511416451E+00,
        0.1527533871307259E+00,-0.7652652113349733E-01]
        
        (1..10).each {|i|
          w[i][3]=data[(i-1)*2]
          x[i][3]=data[(i-1)*2+1]

          
        }
        
        
        if ( r.abs < 0.3 )
          ng = 1
          lg = 3
        elsif ( r.abs < 0.75 )
          ng = 2
          lg = 6
        else 
          ng = 3
          lg = 10
        end
        
       
        h = dh
        k = dk 
        hk = h*k
        bvn = 0
        if ( r.abs < 0.925 )
          if ( r.abs > 0 )
            hs = ( h*h + k*k ).quo(2)
            asr = Math::asin(r)
            (1..lg).each do |i|
              [-1,1].each do |is|
                sn = Math::sin(asr*(is* x[i][ng]+1).quo(2) )
                bvn = bvn + w[i][ng] * Math::exp( ( sn*hk-hs ).quo( 1-sn*sn ) )
              end # do
            end # do
            bvn = bvn*asr.quo( 2*twopi )
          end # if
          bvn = bvn + Distribution::Normal.cdf(-h) * Distribution::Normal.cdf(-k)
          
          
        else # r.abs
          if ( r < 0 ) 
            k = -k
            hk = -hk
          end
          
          if ( r.abs < 1 ) 
            as = ( 1 - r )*( 1 + r )
            a = Math::sqrt(as)
            bs = ( h - k )**2
            c = ( 4 - hk ).quo(8) 
            d = ( 12 - hk ).quo(16)
            asr = -( bs.quo(as) + hk ).quo(2)
            if ( asr > -100 ) 
              bvn = a*Math::exp(asr) * ( 1 - c*( bs - as )*( 1 - d*bs.quo(5) ).quo(3) + c*d*as*as.quo(5) )
            end
            if ( -hk < 100 )
              b = Math::sqrt(bs)
              bvn = bvn - Math::exp( -hk.quo(2) ) * Math::sqrt(twopi)*Distribution::Normal.cdf(-b.quo(a))*b *
              ( 1 - c*bs*( 1 - d*bs.quo(5) ).quo(3) ) 
            end
            
            
            a = a.quo(2)
            (1..lg).each do |i|
              [-1,1].each do |is|
                xs = (a*(  is*x[i][ng] + 1 ) )**2
                rs = Math::sqrt( 1 - xs )
                asr = -( bs/xs + hk ).quo(2)
                if ( asr > -100 )
                  bvn = bvn + a*w[i][ng] * Math::exp( asr ) *
                    ( Math::exp( -hk*( 1 - rs ).quo(2*( 1 + rs ) ) ) .quo(rs) - ( 1 + c*xs*( 1 + d*xs ) ) )
                end
              end
            end
            bvn = -bvn/twopi
          end
          
          if ( r > 0 )
            bvn =  bvn + Distribution::Normal.cdf(-[h,k].max)
          else
            bvn = -bvn 
            if ( k > h ) 
              bvn = bvn + Distribution::Normal.cdf(k) - Distribution::Normal.cdf(h) 
            end
          end
        end
        bvn
      end
      private :f, :sgn 
    end
    end
  end
end