File: ruby.rb

package info (click to toggle)
ruby-distribution 0.8.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 624 kB
  • sloc: ruby: 4,535; makefile: 10
file content (272 lines) | stat: -rw-r--r-- 10,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
module Distribution
  #
  # Ruby version implements three methods on this module:
  # * Genz:: Used by default, with improvement to calculate p on rho > 0.95
  # * Hull:: Port from a C++ code
  # * Jantaravareerat:: Iterative (slow and buggy)
  #

  module BivariateNormal
    module Ruby_
      class << self
        SIDE = 0.1 # :nodoc:
        LIMIT = 5 # :nodoc:
        # Return the partial derivative of cdf over x, with y and rho constant
        # Reference:
        # * Tallis, 1962, p.346, cited by Olsson, 1979
        def partial_derivative_cdf_x(x, y, rho)
          Distribution::Normal.pdf(x) * Distribution::Normal.cdf((y - rho * x).quo(Math.sqrt(1 - rho**2)))
        end
        alias_method :pd_cdf_x,  :partial_derivative_cdf_x
        # Probability density function for a given x, y and rho value.
        #
        # Source: http://en.wikipedia.org/wiki/Multivariate_normal_distribution
        def pdf(x, y, rho, s1 = 1.0, s2 = 1.0)
          1.quo(2 * Math::PI * s1 * s2 * Math.sqrt(1 - rho**2)) * (Math.exp(-(1.quo(2 * (1 - rho**2))) *
            ((x**2.quo(s1)) + (y**2.quo(s2)) - (2 * rho * x * y).quo(s1 * s2))))
        end

        def f(x, y, aprime, bprime, rho)
          r = aprime * (2 * x - aprime) + bprime * (2 * y - bprime) + 2 * rho * (x - aprime) * (y - bprime)
          Math.exp(r)
        end

        # CDF for a given x, y and rho value.
        # Uses Genz algorithm (cdf_genz method).
        #
        def cdf(a, b, rho)
          cdf_genz(a, b, rho)
        end

        def sgn(x)
          if (x >= 0)
            1
          else
            -1
          end
        end

        # Normal cumulative distribution function (cdf) for a given x, y and rho.
        # Based on Hull (1993, cited by Arne, 2003)
        #
        # References:
        # * Arne, B.(2003). Financial Numerical Recipes in C ++. Available on  http://finance.bi.no/~bernt/gcc_prog/recipes/recipes/node23.html
        def cdf_hull(a, b, rho)
          # puts "a:#{a} - b:#{b} - rho:#{rho}"
          if a <= 0 && b <= 0 && rho <= 0
            # puts "ruta 1"
            aprime = a.quo(Math.sqrt(2.0 * (1.0 - rho**2)))
            bprime = b.quo(Math.sqrt(2.0 * (1.0 - rho**2)))
            aa = [0.3253030, 0.4211071, 0.1334425, 0.006374323]
            bb = [0.1337764, 0.6243247, 1.3425378, 2.2626645]
            sum = 0
            4.times do |i|
              4.times do |j|
                sum += aa[i] * aa[j] * f(bb[i], bb[j], aprime, bprime, rho)
              end
            end
            sum *= (Math.sqrt(1.0 - rho**2).quo(Math::PI))
            return sum
          elsif (a * b * rho <= 0.0)

            # puts "ruta 2"
            if a <= 0 && b >= 0 && rho >= 0
              return Distribution::Normal.cdf(a) - cdf(a, -b, -rho)
            elsif a >= 0.0 && b <= 0.0 && rho >= 0
              return Distribution::Normal.cdf(b) - cdf(-a, b, -rho)
            elsif a >= 0.0 && b >= 0.0 && rho <= 0
              return Distribution::Normal.cdf(a) + Distribution::Normal.cdf(b) - 1.0 + cdf(-a, -b, rho)
            end
          elsif (a * b * rho >= 0.0)
            # puts "ruta 3"
            denum = Math.sqrt(a**2 - 2 * rho * a * b + b**2)
            rho1 = ((rho * a - b) * sgn(a)).quo(denum)
            rho2 = ((rho * b - a) * sgn(b)).quo(denum)
            delta = (1.0 - sgn(a) * sgn(b)).quo(4)
            # puts "#{rho1} - #{rho2}"
            return cdf(a, 0.0, rho1) + cdf(b, 0.0, rho2) - delta
          end
          fail "Should'nt be here! #{a} - #{b} #{rho}"
        end

        # CDF. Iterative method by Jantaravareerat (n/d)
        #
        # Reference:
        # * Jantaravareerat, M. & Thomopoulos, N. (n/d). Tables for standard bivariate normal distribution

        def cdf_jantaravareerat(x, y, rho, s1 = 1, s2 = 1)
          # Special cases
          return 1 if x > LIMIT && y > LIMIT
          return 0 if x < -LIMIT || y < -LIMIT
          return Distribution::Normal.cdf(y) if  x > LIMIT
          return Distribution::Normal.cdf(x) if  y > LIMIT

          # puts "x:#{x} - y:#{y}"
          x = -LIMIT if x < -LIMIT
          x = LIMIT if x > LIMIT
          y = -LIMIT if y < -LIMIT
          y = LIMIT if y > LIMIT

          x_squares = ((LIMIT + x) / SIDE).to_i
          y_squares = ((LIMIT + y) / SIDE).to_i
          sum = 0
          x_squares.times do |i|
            y_squares.times do |j|
              z1 = -LIMIT + (i + 1) * SIDE
              z2 = -LIMIT + (j + 1) * SIDE
              # puts " #{z1}-#{z2}"
              h = (pdf(z1, z2, rho, s1, s2) + pdf(z1 - SIDE, z2, rho, s1, s2) + pdf(z1, z2 - SIDE, rho, s1, s2) + pdf(z1 - SIDE, z2 - SIDE, rho, s1, s2)).quo(4)
              sum += (SIDE**2) * h # area
            end
          end
          sum
        end
        # Normal cumulative distribution function (cdf) for a given x, y and rho.
        # Ported from Fortran code by Alan Genz
        #
        # Original documentation
        #    DOUBLE PRECISION FUNCTION BVND( DH, DK, R )
        #    A function for computing bivariate normal probabilities.
        #
        #       Alan Genz
        #       Department of Mathematics
        #       Washington State University
        #       Pullman, WA 99164-3113
        #       Email : alangenz_AT_wsu.edu
        #
        #    This function is based on the method described by
        #        Drezner, Z and G.O. Wesolowsky, (1989),
        #        On the computation of the bivariate normal integral,
        #        Journal of Statist. Comput. Simul. 35, pp. 101-107,
        #    with major modifications for double precision, and for |R| close to 1.
        #
        # Original location:
        # * http://www.math.wsu.edu/faculty/genz/software/fort77/tvpack.f
        def cdf_genz(x, y, rho)
          dh = -x
          dk = -y
          r = rho
          twopi = 6.283185307179586

          w = 11.times.collect { [nil] * 4 }
          x = 11.times.collect { [nil] * 4 }

          data = [
            0.1713244923791705E+00, -0.9324695142031522E+00,
            0.3607615730481384E+00, -0.6612093864662647E+00,
            0.4679139345726904E+00, -0.2386191860831970E+00]

          (1..3).each do|i|
            w[i][1] = data[(i - 1) * 2]
            x[i][1] = data[(i - 1) * 2 + 1]
          end
          data = [
            0.4717533638651177E-01, -0.9815606342467191E+00,
            0.1069393259953183E+00, -0.9041172563704750E+00,
            0.1600783285433464E+00, -0.7699026741943050E+00,
            0.2031674267230659E+00, -0.5873179542866171E+00,
            0.2334925365383547E+00, -0.3678314989981802E+00,
            0.2491470458134029E+00, -0.1252334085114692E+00]
          (1..6).each do|i|
            w[i][2] = data[(i - 1) * 2]
            x[i][2] = data[(i - 1) * 2 + 1]
          end
          data = [
            0.1761400713915212E-01, -0.9931285991850949E+00,
            0.4060142980038694E-01, -0.9639719272779138E+00,
            0.6267204833410906E-01, -0.9122344282513259E+00,
            0.8327674157670475E-01, -0.8391169718222188E+00,
            0.1019301198172404E+00, -0.7463319064601508E+00,
            0.1181945319615184E+00, -0.6360536807265150E+00,
            0.1316886384491766E+00, -0.5108670019508271E+00,
            0.1420961093183821E+00, -0.3737060887154196E+00,
            0.1491729864726037E+00, -0.2277858511416451E+00,
            0.1527533871307259E+00, -0.7652652113349733E-01]

          (1..10).each do|i|
            w[i][3] = data[(i - 1) * 2]
            x[i][3] = data[(i - 1) * 2 + 1]
          end

          if  r.abs < 0.3
            ng = 1
            lg = 3
          elsif  r.abs < 0.75
            ng = 2
            lg = 6
          else
            ng = 3
            lg = 10
          end

          h = dh
          k = dk
          hk = h * k
          bvn = 0
          if  r.abs < 0.925
            if  r.abs > 0
              hs = (h * h + k * k).quo(2)
              asr = Math.asin(r)
              (1..lg).each do |i|
                [-1, 1].each do |is|
                  sn = Math.sin(asr * (is * x[i][ng] + 1).quo(2))
                  bvn += w[i][ng] * Math.exp((sn * hk - hs).quo(1 - sn * sn))
                end # do
              end # do
              bvn *= asr.quo(2 * twopi)
            end # if
            bvn += Distribution::Normal.cdf(-h) * Distribution::Normal.cdf(-k)

          else # r.abs
            if  r < 0
              k = -k
              hk = -hk
            end

            if  r.abs < 1
              as = (1 - r) * (1 + r)
              a = Math.sqrt(as)
              bs = (h - k)**2
              c = (4 - hk).quo(8)
              d = (12 - hk).quo(16)
              asr = -(bs.quo(as) + hk).quo(2)
              if  asr > -100
                bvn = a * Math.exp(asr) * (1 - c * (bs - as) * (1 - d * bs.quo(5)).quo(3) + c * d * as * as.quo(5))
              end
              if  -hk < 100
                b = Math.sqrt(bs)
                bvn -= Math.exp(-hk.quo(2)) * Math.sqrt(twopi) * Distribution::Normal.cdf(-b.quo(a)) * b *
                       (1 - c * bs * (1 - d * bs.quo(5)).quo(3))
              end

              a = a.quo(2)
              (1..lg).each do |i|
                [-1, 1].each do |is|
                  xs = (a * (is * x[i][ng] + 1))**2
                  rs = Math.sqrt(1 - xs)
                  asr = -(bs / xs + hk).quo(2)
                  if  asr > -100
                    bvn += a * w[i][ng] * Math.exp(asr) *
                           (Math.exp(-hk * (1 - rs).quo(2 * (1 + rs))) .quo(rs) - (1 + c * xs * (1 + d * xs)))
                  end
                end
              end
              bvn = -bvn / twopi
            end

            if  r > 0
              bvn += Distribution::Normal.cdf(-[h, k].max)
            else
              bvn = -bvn
              if  k > h
                bvn = bvn + Distribution::Normal.cdf(k) - Distribution::Normal.cdf(h)
              end
            end
          end
          bvn
        end
        private :f, :sgn
      end
    end
  end
end