1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
require File.expand_path(File.dirname(__FILE__) + '/spec_helper.rb')
include ExampleWithGSL
describe Distribution::MathExtension do
it 'binomial coefficient should be correctly calculated' do
n = 50
n.times do |k|
expect(Math.binomial_coefficient(n, k)).to eq(Math.factorial(n).quo(Math.factorial(k) * Math.factorial(n - k))), "not correct for k=#{k}"
end
end
it 'ChebyshevSeries for :sin should return correct values' do
# Math::SIN_CS.evaluate()
end
it 'log_1plusx_minusx should return correct values' do
# Tests from GSL-1.9
expect(Math::Log.log_1plusx_minusx(1.0e-10)).to be_within(1e-10).of(-4.999999999666666667e-21)
expect(Math::Log.log_1plusx_minusx(1.0e-8)).to be_within(1e-10).of(-4.999999966666666917e-17)
expect(Math::Log.log_1plusx_minusx(1.0e-4)).to be_within(1e-10).of(-4.999666691664666833e-09)
expect(Math::Log.log_1plusx_minusx(0.1)).to be_within(1e-10).of(-0.004689820195675139956)
expect(Math::Log.log_1plusx_minusx(0.49)).to be_within(1e-10).of(-0.09122388004263222704)
expect(Math::Log.log_1plusx_minusx(-0.49)).to be_within(1e-10).of(-0.18334455326376559639)
expect(Math::Log.log_1plusx_minusx(1.0)).to be_within(1e-10).of(Math::LN2 - 1.0)
expect(Math::Log.log_1plusx_minusx(-0.99)).to be_within(1e-10).of(-3.615170185988091368)
end
it 'log_1plusx should return correct values' do
# Tests from GSL-1.9
expect(Math::Log.log_1plusx(1.0e-10)).to be_within(1e-10).of(9.999999999500000000e-11)
expect(Math::Log.log_1plusx(1.0e-8)).to be_within(1e-10).of(9.999999950000000333e-09)
expect(Math::Log.log_1plusx(1.0e-4)).to be_within(1e-10).of(0.00009999500033330833533)
expect(Math::Log.log_1plusx(0.1)).to be_within(1e-10).of(0.09531017980432486004)
expect(Math::Log.log_1plusx(0.49)).to be_within(1e-10).of(0.3987761199573677730)
expect(Math::Log.log_1plusx(-0.49)).to be_within(1e-10).of(-0.6733445532637655964)
expect(Math::Log.log_1plusx(1.0)).to be_within(1e-10).of(Math::LN2)
expect(Math::Log.log_1plusx(-0.99)).to be_within(1e-10).of(-4.605170185988091368)
end
it 'log_beta should return correct values' do
expect(Math::Beta.log_beta(1.0e-8, 1.0e-8).first).to be_within(1e-10).of(19.113827924512310617)
expect(Math::Beta.log_beta(1.0e-8, 0.01).first).to be_within(1e-10).of(18.420681743788563403)
expect(Math::Beta.log_beta(1.0e-8, 1.0).first).to be_within(1e-10).of(18.420680743952365472)
expect(Math::Beta.log_beta(1.0e-8, 10.0).first).to be_within(1e-10).of(18.420680715662683009)
expect(Math::Beta.log_beta(1.0e-8, 1000.0).first).to be_within(1e-10).of(18.420680669107656949)
expect(Math::Beta.log_beta(0.1, 0.1).first).to be_within(1e-10).of(2.9813614810376273949)
expect(Math::Beta.log_beta(0.1, 1.0).first).to be_within(1e-10).of(2.3025850929940456840)
expect(Math::Beta.log_beta(0.1, 100.0).first).to be_within(1e-10).of(1.7926462324527931217)
expect(Math::Beta.log_beta(0.1, 1000).first).to be_within(1e-10).of(1.5619821298353164928)
expect(Math::Beta.log_beta(1.0, 1.00025).first).to be_within(1e-10).of(-0.0002499687552073570)
expect(Math::Beta.log_beta(1.0, 1.01).first).to be_within(1e-10).of(-0.009950330853168082848)
expect(Math::Beta.log_beta(1.0, 1000.0).first).to be_within(1e-10).of(-6.907755278982137052)
expect(Math::Beta.log_beta(100.0, 100.0).first).to be_within(1e-10).of(-139.66525908670663927)
expect(Math::Beta.log_beta(100.0, 1000.0).first).to be_within(1e-10).of(-336.4348576477366051)
expect(Math::Beta.log_beta(100.0, 1.0e+8).first).to be_within(1e-10).of(-1482.9339185256447309)
end
it 'regularized_beta should return correct values' do
expect(Math.regularized_beta(0.0, 1.0, 1.0)).to be_within(1e-10).of(0.0)
expect(Math.regularized_beta(1.0, 1.0, 1.0)).to be_within(1e-10).of(1.0)
expect(Math.regularized_beta(1.0, 0.1, 0.1)).to be_within(1e-10).of(1.0)
expect(Math.regularized_beta(0.5, 1.0, 1.0)).to be_within(1e-10).of(0.5)
expect(Math.regularized_beta(0.5, 0.1, 1.0)).to be_within(1e-10).of(0.9330329915368074160)
expect(Math.regularized_beta(0.5, 10.0, 1.0)).to be_within(1e-10).of(0.0009765625000000000000)
expect(Math.regularized_beta(0.5, 50.0, 1.0)).to be_within(1e-10).of(8.881784197001252323e-16)
expect(Math.regularized_beta(0.5, 1.0, 0.1)).to be_within(1e-10).of(0.06696700846319258402)
expect(Math.regularized_beta(0.5, 1.0, 10.0)).to be_within(1e-10).of(0.99902343750000000000)
expect(Math.regularized_beta(0.5, 1.0, 50.0)).to be_within(1e-10).of(0.99999999999999911180)
expect(Math.regularized_beta(0.1, 1.0, 1.0)).to be_within(1e-10).of(0.10)
expect(Math.regularized_beta(0.1, 1.0, 2.0)).to be_within(1e-10).of(0.19)
expect(Math.regularized_beta(0.9, 1.0, 2.0)).to be_within(1e-10).of(0.99)
expect(Math.regularized_beta(0.5, 50.0, 60.0)).to be_within(1e-10).of(0.8309072939016694143)
expect(Math.regularized_beta(0.5, 90.0, 90.0)).to be_within(1e-10).of(0.5)
expect(Math.regularized_beta(0.5, 500.0, 500.0)).to be_within(1e-10).of(0.5)
expect(Math.regularized_beta(0.4, 5000.0, 5000.0)).to be_within(1e-10).of(4.518543727260666383e-91)
expect(Math.regularized_beta(0.6, 5000.0, 5000.0)).to be_within(1e-10).of(1.0)
expect(Math.regularized_beta(0.6, 5000.0, 2000.0)).to be_within(1e-10).of(8.445388773903332659e-89)
end
it_only_with_gsl 'incomplete_beta should return correct values' do
a = rand * 10 + 1
b = rand * 10 + 1
ib = GSL::Function.alloc { |t| t**(a - 1) * (1 - t)**(b - 1) }
w = GSL::Integration::Workspace.alloc(1000)
1.upto(10) {|x|
inte = ib.qag([0, x / 10.0], w)
expect(Math.incomplete_beta(x / 10.0, a, b)).to be_within(1e-10).of(inte[0])
}
end
it 'gammastar should return correct values' do
# Tests from GSL-1.9
expect(Math::Gammastar.evaluate(1.0e-08)).to be_within(1e-10).of(3989.423555759890865)
expect(Math::Gammastar.evaluate(1.0e-05)).to be_within(1e-10).of(126.17168469882690233)
expect(Math::Gammastar.evaluate(0.001)).to be_within(1e-10).of(12.708492464364073506)
expect(Math::Gammastar.evaluate(1.5)).to be_within(1e-10).of(1.0563442442685598666)
expect(Math::Gammastar.evaluate(3.0)).to be_within(1e-10).of(1.0280645179187893045)
expect(Math::Gammastar.evaluate(9.0)).to be_within(1e-10).of(1.0092984264218189715)
expect(Math::Gammastar.evaluate(11.0)).to be_within(1e-10).of(1.0076024283104962850)
expect(Math::Gammastar.evaluate(100.0)).to be_within(1e-10).of(1.0008336778720121418)
expect(Math::Gammastar.evaluate(1.0e+05)).to be_within(1e-10).of(1.0000008333336805529)
expect(Math::Gammastar.evaluate(1.0e+20)).to be_within(1e-10).of(1.0)
end
it 'erfc_e should return correct values' do
# From GSL-1.9. For troubleshooting gammq.
expect(Math.erfc_e(-10.0)).to be_within(1e-10).of(2.0)
expect(Math.erfc_e(-5.0000002)).to be_within(1e-10).of(1.9999999999984625433)
expect(Math.erfc_e(-5.0)).to be_within(1e-10).of(1.9999999999984625402)
expect(Math.erfc_e(-1.0)).to be_within(1e-10).of(1.8427007929497148693)
expect(Math.erfc_e(-0.5)).to be_within(1e-10).of(1.5204998778130465377)
expect(Math.erfc_e(1.0)).to be_within(1e-10).of(0.15729920705028513066)
expect(Math.erfc_e(3.0)).to be_within(1e-10).of(0.000022090496998585441373)
expect(Math.erfc_e(7.0)).to be_within(1e-10).of(4.183825607779414399e-23)
expect(Math.erfc_e(10.0)).to be_within(1e-10).of(2.0884875837625447570e-45)
end
it 'unnormalized_incomplete_gamma with x=0 should return correct values' do
expect(Math.unnormalized_incomplete_gamma(-1.5, 0)).to be_within(1e-10).of(4.0 * Math.sqrt(Math::PI) / 3.0)
expect(Math.unnormalized_incomplete_gamma(-0.5, 0)).to be_within(1e-10).of(-2 * Math.sqrt(Math::PI))
expect(Math.unnormalized_incomplete_gamma(0.5, 0)).to be_within(1e-10).of(Math.sqrt(Math::PI))
expect(Math.unnormalized_incomplete_gamma(1.0, 0)).to eq 1.0
expect(Math.unnormalized_incomplete_gamma(1.5, 0)).to be_within(1e-10).of(Math.sqrt(Math::PI) / 2.0)
expect(Math.unnormalized_incomplete_gamma(2.0, 0)).to eq 1.0
expect(Math.unnormalized_incomplete_gamma(2.5, 0)).to be_within(1e-10).of(0.75 * Math.sqrt(Math::PI))
expect(Math.unnormalized_incomplete_gamma(3.0, 0)).to be_within(1e-12).of(2.0)
expect(Math.unnormalized_incomplete_gamma(3.5, 0)).to be_within(1e-10).of(15.0 * Math.sqrt(Math::PI) / 8.0)
expect(Math.unnormalized_incomplete_gamma(4.0, 0)).to be_within(1e-12).of(6.0)
end
it 'incomplete_gamma should return correct values' do
# Tests from GSL-1.9
expect(Math.incomplete_gamma(1e-100, 0.001)).to be_within(1e-10).of(1.0)
expect(Math.incomplete_gamma(0.001, 0.001)).to be_within(1e-10).of(0.9936876467088602902)
expect(Math.incomplete_gamma(0.001, 1.0)).to be_within(1e-10).of(0.9997803916424144436)
expect(Math.incomplete_gamma(0.001, 10.0)).to be_within(1e-10).of(0.9999999958306921828)
expect(Math.incomplete_gamma(1.0, 0.001)).to be_within(1e-10).of(0.0009995001666250083319)
expect(Math.incomplete_gamma(1.0, 1.01)).to be_within(1e-10).of(0.6357810204284766802)
expect(Math.incomplete_gamma(1.0, 10.0)).to be_within(1e-10).of(0.9999546000702375151)
expect(Math.incomplete_gamma(10.0, 10.01)).to be_within(1e-10).of(0.5433207586693410570)
expect(Math.incomplete_gamma(10.0, 20.0)).to be_within(1e-10).of(0.9950045876916924128)
expect(Math.incomplete_gamma(1000.0, 1000.1)).to be_within(1e-10).of(0.5054666401440661753)
expect(Math.incomplete_gamma(1000.0, 2000.0)).to be_within(1e-10).of(1.0)
# designed to trap the a-x=1 problem
# These next two are 1e-7 because they give the same output as GSL, but GSL is apparently not totally accurate here.
# It's a problem with log_1plusx_mx (log_1plusx_minusx in my code)
expect(Math.incomplete_gamma(100, 99.0)).to be_within(1e-7).of(0.4733043303994607)
expect(Math.incomplete_gamma(200, 199.0)).to be_within(1e-7).of(0.4811585880878718)
# Test for x86 cancellation problems
expect(Math.incomplete_gamma(5670, 4574)).to be_within(1e-10).of(3.063972328743934e-55)
end
it 'gammq should return correct values' do
# Tests from GSL-1.9
expect(Math.gammq(0.0, 0.001)).to be_within(1e-10).of(0.0)
expect(Math.gammq(0.001, 0.001)).to be_within(1e-10).of(0.006312353291139709793)
expect(Math.gammq(0.001, 1.0)).to be_within(1e-10).of(0.00021960835758555639171)
expect(Math.gammq(0.001, 2.0)).to be_within(1e-10).of(0.00004897691783098147880)
expect(Math.gammq(0.001, 5.0)).to be_within(1e-10).of(1.1509813397308608541e-06)
expect(Math.gammq(1.0, 0.001)).to be_within(1e-10).of(0.9990004998333749917)
expect(Math.gammq(1.0, 1.01)).to be_within(1e-10).of(0.3642189795715233198)
expect(Math.gammq(1.0, 10.0)).to be_within(1e-10).of(0.00004539992976248485154)
expect(Math.gammq(10.0, 10.01)).to be_within(1e-10).of(0.4566792413306589430)
expect(Math.gammq(10.0, 100.0)).to be_within(1e-10).of(1.1253473960842733885e-31)
expect(Math.gammq(1000.0, 1000.1)).to be_within(1e-10).of(0.4945333598559338247)
expect(Math.gammq(1000.0, 2000.0)).to be_within(1e-10).of(6.847349459614753180e-136)
# designed to trap the a-x=1 problem
expect(Math.gammq(100, 99.0)).to be_within(1e-10).of(0.5266956696005394)
expect(Math.gammq(200, 199.0)).to be_within(1e-10).of(0.5188414119121281)
# Test for x86 cancellation problems
expect(Math.gammq(5670, 4574)).to be_within(1e-10).of(1.0000000000000000)
# test suggested by Michel Lespinasse [gsl-discuss Sat, 13 Nov 2004]
expect(Math.gammq(1.0e+06 - 1.0, 1.0e+06 - 2.0)).to be_within(1e-10).of(0.50026596175224547004)
# tests in asymptotic regime related to Lespinasse test
expect(Math.gammq(1.0e+06 + 2.0, 1.0e+06 + 1.0)).to be_within(1e-10).of(0.50026596135330304336)
expect(Math.gammq(1.0e+06, 1.0e+06 - 2.0)).to be_within(1e-10).of(0.50066490399940144811)
expect(Math.gammq(1.0e+07, 1.0e+07 - 2.0)).to be_within(1e-10).of(0.50021026104978614908)
end
it 'rising_factorial should return correct values' do
x = rand(10) + 1
expect(Math.rising_factorial(x, 0)).to eq 1
expect(Math.rising_factorial(x, 1)).to eq x
expect(Math.rising_factorial(x, 2)).to eq x**2 + x
expect(Math.rising_factorial(x, 3)).to eq x**3 + 3 * x**2 + 2 * x
expect(Math.rising_factorial(x, 4)).to eq x**4 + 6 * x**3 + 11 * x**2 + 6 * x
end
it 'permutations should return correct values' do
n = rand(50) + 50
10.times { |k|
expect(Math.permutations(n, k)).to eq(Math.factorial(n) / Math.factorial(n - k))
}
expect(Math.permutations(n, n)).to eq(Math.factorial(n) / Math.factorial(n - n))
end
it 'exact regularized incomplete beta should behave properly' do
expect(Math.exact_regularized_beta(0.5, 5, 5)).to be_within(1e-6).of(0.5)
expect(Math.exact_regularized_beta(0.5, 5, 6)).to be_within(1e-6).of(0.6230469)
expect(Math.exact_regularized_beta(0.5, 5, 7)).to be_within(1e-6).of(0.725586)
a = 5
b = 5
expect(Math.exact_regularized_beta(0, a, b)).to eq 0
expect(Math.exact_regularized_beta(1, a, b)).to eq 1
x = rand
expect(Math.exact_regularized_beta(x, a, b)).to be_within(1e-6). of(1 - Math.regularized_beta(1 - x, b, a))
end
it 'binomial coefficient(gamma) with n<=48 should be correct ' do
[1, 5, 10, 25, 48].each {|n|
k = (n / 2).to_i
expect(Math.binomial_coefficient_gamma(n, k).round).to eq(Math.binomial_coefficient(n, k))
}
end
it 'binomial coefficient(gamma) with 48<n<1000 should have 11 correct digits' do
[50, 100, 200, 1000].each {|n|
k = (n / 2).to_i
obs = Math.binomial_coefficient_gamma(n, k).to_i.to_s[0, 11]
exp = Math.binomial_coefficient(n, k).to_i.to_s[0, 11]
expect(obs).to eq(exp)
}
end
describe Distribution::MathExtension::SwingFactorial do
it 'Math.factorial should return correct values x<20' do
ac = 3_628_800 # 10!
11.upto(19).each do |i|
ac *= i
expect(Math.factorial(i)).to eq(ac)
end
end
it 'Math.factorial should return correct values for values 21<x<33' do
ac = 2_432_902_008_176_640_000 # 20!
21.upto(33).each do |i|
ac *= i
expect(Math.factorial(i)).to eq(ac)
end
end
it 'Math.factorial should return correct values for values x>33' do
ac = 8_683_317_618_811_886_495_518_194_401_280_000_000 # 33!
expect(Math.factorial(33)).to eq ac
34.upto(40).each do |i|
ac *= i
expect(Math.factorial(i)).to eq(ac)
end
end
end
end
|