File: Ed25519FieldElement.java

package info (click to toggle)
ruby-ed25519 1.3.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 668 kB
  • sloc: ansic: 3,789; java: 3,112; ruby: 103; makefile: 6
file content (988 lines) | stat: -rw-r--r-- 33,333 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/**
 * EdDSA-Java by str4d
 *
 * To the extent possible under law, the person who associated CC0 with
 * EdDSA-Java has waived all copyright and related or neighboring rights
 * to EdDSA-Java.
 *
 * You should have received a copy of the CC0 legalcode along with this
 * work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
 *
 */
package net.i2p.crypto.eddsa.math.ed25519;

import net.i2p.crypto.eddsa.Utils;
import net.i2p.crypto.eddsa.math.*;

import java.util.Arrays;

/**
 * Class to represent a field element of the finite field $p = 2^{255} - 19$ elements.
 * <p>
 * An element $t$, entries $t[0] \dots t[9]$, represents the integer
 * $t[0]+2^{26} t[1]+2^{51} t[2]+2^{77} t[3]+2^{102} t[4]+\dots+2^{230} t[9]$.
 * Bounds on each $t[i]$ vary depending on context.
 * <p>
 * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
 */
public class Ed25519FieldElement extends FieldElement {
    /**
     * Variable is package private for encoding.
     */
    final int[] t;

    /**
     * Creates a field element.
     *
     * @param f The underlying field, must be the finite field with $p = 2^{255} - 19$ elements
     * @param t The $2^{25.5}$ bit representation of the field element.
     */
    public Ed25519FieldElement(Field f, int[] t) {
        super(f);
        if (t.length != 10)
            throw new IllegalArgumentException("Invalid radix-2^51 representation");
        this.t = t;
    }

    private static final byte[] ZERO = new byte[32];

    /**
     * Gets a value indicating whether or not the field element is non-zero.
     *
     * @return 1 if it is non-zero, 0 otherwise.
     */
    public boolean isNonZero() {
        final byte[] s = toByteArray();
        return Utils.equal(s, ZERO) == 0;
    }

    /**
     * $h = f + g$
     * <p>
     * TODO-CR BR: $h$ is allocated via new, probably not a good idea. Do we need the copying into temp variables if we do that?
     * <p>
     * Preconditions:
     * </p><ul>
     * <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
     * <li>$|g|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
     * </ul><p>
     * Postconditions:
     * </p><ul>
     * <li>$|h|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25},$ etc.
     * </ul>
     *
     * @param val The field element to add.
     * @return The field element this + val.
     */
    public FieldElement add(FieldElement val) {
        int[] g = ((Ed25519FieldElement)val).t;
        int[] h = new int[10];
        for (int i = 0; i < 10; i++) {
            h[i] = t[i] + g[i];
        }
        return new Ed25519FieldElement(f, h);
    }

    /**
     * $h = f - g$
     * <p>
     * Can overlap $h$ with $f$ or $g$.
     * <p>
     * TODO-CR BR: See above.
     * <p>
     * Preconditions:
     * </p><ul>
     * <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
     * <li>$|g|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
     * </ul><p>
     * Postconditions:
     * </p><ul>
     * <li>$|h|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25},$ etc.
     * </ul>
     *
     * @param val The field element to subtract.
     * @return The field element this - val.
     **/
    public FieldElement subtract(FieldElement val) {
        int[] g = ((Ed25519FieldElement)val).t;
        int[] h = new int[10];
        for (int i = 0; i < 10; i++) {
            h[i] = t[i] - g[i];
        }
        return new Ed25519FieldElement(f, h);
    }

    /**
     * $h = -f$
     * <p>
     * TODO-CR BR: see above.
     * <p>
     * Preconditions:
     * </p><ul>
     * <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
     * </ul><p>
     * Postconditions:
     * </p><ul>
     * <li>$|h|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
     * </ul>
     *
     * @return The field element (-1) * this.
     */
    public FieldElement negate() {
        int[] h = new int[10];
        for (int i = 0; i < 10; i++) {
            h[i] = - t[i];
        }
        return new Ed25519FieldElement(f, h);
    }

    /**
     * $h = f * g$
     * <p>
     * Can overlap $h$ with $f$ or $g$.
     * <p>
     * Preconditions:
     * </p><ul>
     * <li>$|f|$ bounded by
     * $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
     * <li>$|g|$ bounded by
     * $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
     * </ul><p>
     * Postconditions:
     * </p><ul>
     * <li>$|h|$ bounded by
     * $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
     * </ul><p>
     * Notes on implementation strategy:
     * <p>
     * Using schoolbook multiplication. Karatsuba would save a little in some
     * cost models.
     * <p>
     * Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than
     * 64-bit postcomputations.
     * <p>
     * There is one remaining multiplication by 19 in the carry chain; one *19
     * precomputation can be merged into this, but the resulting data flow is
     * considerably less clean.
     * <p>
     * There are 12 carries below. 10 of them are 2-way parallelizable and
     * vectorizable. Can get away with 11 carries, but then data flow is much
     * deeper.
     * <p>
     * With tighter constraints on inputs can squeeze carries into int32.
     *
     * @param val The field element to multiply.
     * @return The (reasonably reduced) field element this * val.
     */
    public FieldElement multiply(FieldElement val) {
        int[] g = ((Ed25519FieldElement)val).t;
        int g1_19 = 19 * g[1]; /* 1.959375*2^29 */
        int g2_19 = 19 * g[2]; /* 1.959375*2^30; still ok */
        int g3_19 = 19 * g[3];
        int g4_19 = 19 * g[4];
        int g5_19 = 19 * g[5];
        int g6_19 = 19 * g[6];
        int g7_19 = 19 * g[7];
        int g8_19 = 19 * g[8];
        int g9_19 = 19 * g[9];
        int f1_2 = 2 * t[1];
        int f3_2 = 2 * t[3];
        int f5_2 = 2 * t[5];
        int f7_2 = 2 * t[7];
        int f9_2 = 2 * t[9];
        long f0g0    = t[0] * (long) g[0];
        long f0g1    = t[0] * (long) g[1];
        long f0g2    = t[0] * (long) g[2];
        long f0g3    = t[0] * (long) g[3];
        long f0g4    = t[0] * (long) g[4];
        long f0g5    = t[0] * (long) g[5];
        long f0g6    = t[0] * (long) g[6];
        long f0g7    = t[0] * (long) g[7];
        long f0g8    = t[0] * (long) g[8];
        long f0g9    = t[0] * (long) g[9];
        long f1g0    = t[1] * (long) g[0];
        long f1g1_2  = f1_2 * (long) g[1];
        long f1g2    = t[1] * (long) g[2];
        long f1g3_2  = f1_2 * (long) g[3];
        long f1g4    = t[1] * (long) g[4];
        long f1g5_2  = f1_2 * (long) g[5];
        long f1g6    = t[1] * (long) g[6];
        long f1g7_2  = f1_2 * (long) g[7];
        long f1g8    = t[1] * (long) g[8];
        long f1g9_38 = f1_2 * (long) g9_19;
        long f2g0    = t[2] * (long) g[0];
        long f2g1    = t[2] * (long) g[1];
        long f2g2    = t[2] * (long) g[2];
        long f2g3    = t[2] * (long) g[3];
        long f2g4    = t[2] * (long) g[4];
        long f2g5    = t[2] * (long) g[5];
        long f2g6    = t[2] * (long) g[6];
        long f2g7    = t[2] * (long) g[7];
        long f2g8_19 = t[2] * (long) g8_19;
        long f2g9_19 = t[2] * (long) g9_19;
        long f3g0    = t[3] * (long) g[0];
        long f3g1_2  = f3_2 * (long) g[1];
        long f3g2    = t[3] * (long) g[2];
        long f3g3_2  = f3_2 * (long) g[3];
        long f3g4    = t[3] * (long) g[4];
        long f3g5_2  = f3_2 * (long) g[5];
        long f3g6    = t[3] * (long) g[6];
        long f3g7_38 = f3_2 * (long) g7_19;
        long f3g8_19 = t[3] * (long) g8_19;
        long f3g9_38 = f3_2 * (long) g9_19;
        long f4g0    = t[4] * (long) g[0];
        long f4g1    = t[4] * (long) g[1];
        long f4g2    = t[4] * (long) g[2];
        long f4g3    = t[4] * (long) g[3];
        long f4g4    = t[4] * (long) g[4];
        long f4g5    = t[4] * (long) g[5];
        long f4g6_19 = t[4] * (long) g6_19;
        long f4g7_19 = t[4] * (long) g7_19;
        long f4g8_19 = t[4] * (long) g8_19;
        long f4g9_19 = t[4] * (long) g9_19;
        long f5g0    = t[5] * (long) g[0];
        long f5g1_2  = f5_2 * (long) g[1];
        long f5g2    = t[5] * (long) g[2];
        long f5g3_2  = f5_2 * (long) g[3];
        long f5g4    = t[5] * (long) g[4];
        long f5g5_38 = f5_2 * (long) g5_19;
        long f5g6_19 = t[5] * (long) g6_19;
        long f5g7_38 = f5_2 * (long) g7_19;
        long f5g8_19 = t[5] * (long) g8_19;
        long f5g9_38 = f5_2 * (long) g9_19;
        long f6g0    = t[6] * (long) g[0];
        long f6g1    = t[6] * (long) g[1];
        long f6g2    = t[6] * (long) g[2];
        long f6g3    = t[6] * (long) g[3];
        long f6g4_19 = t[6] * (long) g4_19;
        long f6g5_19 = t[6] * (long) g5_19;
        long f6g6_19 = t[6] * (long) g6_19;
        long f6g7_19 = t[6] * (long) g7_19;
        long f6g8_19 = t[6] * (long) g8_19;
        long f6g9_19 = t[6] * (long) g9_19;
        long f7g0    = t[7] * (long) g[0];
        long f7g1_2  = f7_2 * (long) g[1];
        long f7g2    = t[7] * (long) g[2];
        long f7g3_38 = f7_2 * (long) g3_19;
        long f7g4_19 = t[7] * (long) g4_19;
        long f7g5_38 = f7_2 * (long) g5_19;
        long f7g6_19 = t[7] * (long) g6_19;
        long f7g7_38 = f7_2 * (long) g7_19;
        long f7g8_19 = t[7] * (long) g8_19;
        long f7g9_38 = f7_2 * (long) g9_19;
        long f8g0    = t[8] * (long) g[0];
        long f8g1    = t[8] * (long) g[1];
        long f8g2_19 = t[8] * (long) g2_19;
        long f8g3_19 = t[8] * (long) g3_19;
        long f8g4_19 = t[8] * (long) g4_19;
        long f8g5_19 = t[8] * (long) g5_19;
        long f8g6_19 = t[8] * (long) g6_19;
        long f8g7_19 = t[8] * (long) g7_19;
        long f8g8_19 = t[8] * (long) g8_19;
        long f8g9_19 = t[8] * (long) g9_19;
        long f9g0    = t[9] * (long) g[0];
        long f9g1_38 = f9_2 * (long) g1_19;
        long f9g2_19 = t[9] * (long) g2_19;
        long f9g3_38 = f9_2 * (long) g3_19;
        long f9g4_19 = t[9] * (long) g4_19;
        long f9g5_38 = f9_2 * (long) g5_19;
        long f9g6_19 = t[9] * (long) g6_19;
        long f9g7_38 = f9_2 * (long) g7_19;
        long f9g8_19 = t[9] * (long) g8_19;
        long f9g9_38 = f9_2 * (long) g9_19;

        /**
         * Remember: 2^255 congruent 19 modulo p.
         * h = h0 * 2^0 + h1 * 2^26 + h2 * 2^(26+25) + h3 * 2^(26+25+26) + ... + h9 * 2^(5*26+5*25).
         * So to get the real number we would have to multiply the coefficients with the corresponding powers of 2.
         * To get an idea what is going on below, look at the calculation of h0:
         * h0 is the coefficient to the power 2^0 so it collects (sums) all products that have the power 2^0.
         * f0 * g0 really is f0 * 2^0 * g0 * 2^0 = (f0 * g0) * 2^0.
         * f1 * g9 really is f1 * 2^26 * g9 * 2^230 = f1 * g9 * 2^256 = 2 * f1 * g9 * 2^255 congruent 2 * 19 * f1 * g9 * 2^0 modulo p.
         * f2 * g8 really is f2 * 2^51 * g8 * 2^204 = f2 * g8 * 2^255 congruent 19 * f2 * g8 * 2^0 modulo p.
         * and so on...
         */
        long h0 = f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38;
        long h1 = f0g1 + f1g0    + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19;
        long h2 = f0g2 + f1g1_2  + f2g0    + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38;
        long h3 = f0g3 + f1g2    + f2g1    + f3g0    + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19;
        long h4 = f0g4 + f1g3_2  + f2g2    + f3g1_2  + f4g0    + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38;
        long h5 = f0g5 + f1g4    + f2g3    + f3g2    + f4g1    + f5g0    + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19;
        long h6 = f0g6 + f1g5_2  + f2g4    + f3g3_2  + f4g2    + f5g1_2  + f6g0    + f7g9_38 + f8g8_19 + f9g7_38;
        long h7 = f0g7 + f1g6    + f2g5    + f3g4    + f4g3    + f5g2    + f6g1    + f7g0    + f8g9_19 + f9g8_19;
        long h8 = f0g8 + f1g7_2  + f2g6    + f3g5_2  + f4g4    + f5g3_2  + f6g2    + f7g1_2  + f8g0    + f9g9_38;
        long h9 = f0g9 + f1g8    + f2g7    + f3g6    + f4g5    + f5g4    + f6g3    + f7g2    + f8g1    + f9g0;
        long carry0;
        long carry1;
        long carry2;
        long carry3;
        long carry4;
        long carry5;
        long carry6;
        long carry7;
        long carry8;
        long carry9;

        /*
        |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
          i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
        |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
          i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9
        */

        carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
        carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
        /* |h0| <= 2^25 */
        /* |h4| <= 2^25 */
        /* |h1| <= 1.71*2^59 */
        /* |h5| <= 1.71*2^59 */

        carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
        carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
        /* |h1| <= 2^24; from now on fits into int32 */
        /* |h5| <= 2^24; from now on fits into int32 */
        /* |h2| <= 1.41*2^60 */
        /* |h6| <= 1.41*2^60 */

        carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
        carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
        /* |h2| <= 2^25; from now on fits into int32 unchanged */
        /* |h6| <= 2^25; from now on fits into int32 unchanged */
        /* |h3| <= 1.71*2^59 */
        /* |h7| <= 1.71*2^59 */

        carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
        carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
        /* |h3| <= 2^24; from now on fits into int32 unchanged */
        /* |h7| <= 2^24; from now on fits into int32 unchanged */
        /* |h4| <= 1.72*2^34 */
        /* |h8| <= 1.41*2^60 */

        carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
        carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
        /* |h4| <= 2^25; from now on fits into int32 unchanged */
        /* |h8| <= 2^25; from now on fits into int32 unchanged */
        /* |h5| <= 1.01*2^24 */
        /* |h9| <= 1.71*2^59 */

        carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
        /* |h9| <= 2^24; from now on fits into int32 unchanged */
        /* |h0| <= 1.1*2^39 */

        carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
        /* |h0| <= 2^25; from now on fits into int32 unchanged */
        /* |h1| <= 1.01*2^24 */

        int[] h = new int[10];
        h[0] = (int) h0;
        h[1] = (int) h1;
        h[2] = (int) h2;
        h[3] = (int) h3;
        h[4] = (int) h4;
        h[5] = (int) h5;
        h[6] = (int) h6;
        h[7] = (int) h7;
        h[8] = (int) h8;
        h[9] = (int) h9;
        return new Ed25519FieldElement(f, h);
    }

    /**
     * $h = f * f$
     * <p>
     * Can overlap $h$ with $f$.
     * <p>
     * Preconditions:
     * </p><ul>
     * <li>$|f|$ bounded by $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
     * </ul><p>
     * Postconditions:
     * </p><ul>
     * <li>$|h|$ bounded by $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
     * </ul><p>
     * See {@link #multiply(FieldElement)} for discussion
     * of implementation strategy.
     *
     * @return The (reasonably reduced) square of this field element.
     */
    public FieldElement square() {
        int f0 = t[0];
        int f1 = t[1];
        int f2 = t[2];
        int f3 = t[3];
        int f4 = t[4];
        int f5 = t[5];
        int f6 = t[6];
        int f7 = t[7];
        int f8 = t[8];
        int f9 = t[9];
        int f0_2 = 2 * f0;
        int f1_2 = 2 * f1;
        int f2_2 = 2 * f2;
        int f3_2 = 2 * f3;
        int f4_2 = 2 * f4;
        int f5_2 = 2 * f5;
        int f6_2 = 2 * f6;
        int f7_2 = 2 * f7;
        int f5_38 = 38 * f5; /* 1.959375*2^30 */
        int f6_19 = 19 * f6; /* 1.959375*2^30 */
        int f7_38 = 38 * f7; /* 1.959375*2^30 */
        int f8_19 = 19 * f8; /* 1.959375*2^30 */
        int f9_38 = 38 * f9; /* 1.959375*2^30 */
        long f0f0    = f0   * (long) f0;
        long f0f1_2  = f0_2 * (long) f1;
        long f0f2_2  = f0_2 * (long) f2;
        long f0f3_2  = f0_2 * (long) f3;
        long f0f4_2  = f0_2 * (long) f4;
        long f0f5_2  = f0_2 * (long) f5;
        long f0f6_2  = f0_2 * (long) f6;
        long f0f7_2  = f0_2 * (long) f7;
        long f0f8_2  = f0_2 * (long) f8;
        long f0f9_2  = f0_2 * (long) f9;
        long f1f1_2  = f1_2 * (long) f1;
        long f1f2_2  = f1_2 * (long) f2;
        long f1f3_4  = f1_2 * (long) f3_2;
        long f1f4_2  = f1_2 * (long) f4;
        long f1f5_4  = f1_2 * (long) f5_2;
        long f1f6_2  = f1_2 * (long) f6;
        long f1f7_4  = f1_2 * (long) f7_2;
        long f1f8_2  = f1_2 * (long) f8;
        long f1f9_76 = f1_2 * (long) f9_38;
        long f2f2    = f2   * (long) f2;
        long f2f3_2  = f2_2 * (long) f3;
        long f2f4_2  = f2_2 * (long) f4;
        long f2f5_2  = f2_2 * (long) f5;
        long f2f6_2  = f2_2 * (long) f6;
        long f2f7_2  = f2_2 * (long) f7;
        long f2f8_38 = f2_2 * (long) f8_19;
        long f2f9_38 = f2   * (long) f9_38;
        long f3f3_2  = f3_2 * (long) f3;
        long f3f4_2  = f3_2 * (long) f4;
        long f3f5_4  = f3_2 * (long) f5_2;
        long f3f6_2  = f3_2 * (long) f6;
        long f3f7_76 = f3_2 * (long) f7_38;
        long f3f8_38 = f3_2 * (long) f8_19;
        long f3f9_76 = f3_2 * (long) f9_38;
        long f4f4    = f4   * (long) f4;
        long f4f5_2  = f4_2 * (long) f5;
        long f4f6_38 = f4_2 * (long) f6_19;
        long f4f7_38 = f4   * (long) f7_38;
        long f4f8_38 = f4_2 * (long) f8_19;
        long f4f9_38 = f4   * (long) f9_38;
        long f5f5_38 = f5   * (long) f5_38;
        long f5f6_38 = f5_2 * (long) f6_19;
        long f5f7_76 = f5_2 * (long) f7_38;
        long f5f8_38 = f5_2 * (long) f8_19;
        long f5f9_76 = f5_2 * (long) f9_38;
        long f6f6_19 = f6   * (long) f6_19;
        long f6f7_38 = f6   * (long) f7_38;
        long f6f8_38 = f6_2 * (long) f8_19;
        long f6f9_38 = f6   * (long) f9_38;
        long f7f7_38 = f7   * (long) f7_38;
        long f7f8_38 = f7_2 * (long) f8_19;
        long f7f9_76 = f7_2 * (long) f9_38;
        long f8f8_19 = f8   * (long) f8_19;
        long f8f9_38 = f8   * (long) f9_38;
        long f9f9_38 = f9   * (long) f9_38;

        /**
         * Same procedure as in multiply, but this time we have a higher symmetry leading to less summands.
         * e.g. f1f9_76 really stands for f1 * 2^26 * f9 * 2^230 + f9 * 2^230 + f1 * 2^26 congruent 2 * 2 * 19 * f1 * f9  2^0 modulo p.
         */
        long h0 = f0f0   + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
        long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
        long h2 = f0f2_2 + f1f1_2  + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
        long h3 = f0f3_2 + f1f2_2  + f4f9_38 + f5f8_38 + f6f7_38;
        long h4 = f0f4_2 + f1f3_4  + f2f2    + f5f9_76 + f6f8_38 + f7f7_38;
        long h5 = f0f5_2 + f1f4_2  + f2f3_2  + f6f9_38 + f7f8_38;
        long h6 = f0f6_2 + f1f5_4  + f2f4_2  + f3f3_2  + f7f9_76 + f8f8_19;
        long h7 = f0f7_2 + f1f6_2  + f2f5_2  + f3f4_2  + f8f9_38;
        long h8 = f0f8_2 + f1f7_4  + f2f6_2  + f3f5_4  + f4f4    + f9f9_38;
        long h9 = f0f9_2 + f1f8_2  + f2f7_2  + f3f6_2  + f4f5_2;
        long carry0;
        long carry1;
        long carry2;
        long carry3;
        long carry4;
        long carry5;
        long carry6;
        long carry7;
        long carry8;
        long carry9;

        carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
        carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;

        carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
        carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;

        carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
        carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;

        carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
        carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;

        carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
        carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;

        carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;

        carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;

        int[] h = new int[10];
        h[0] = (int) h0;
        h[1] = (int) h1;
        h[2] = (int) h2;
        h[3] = (int) h3;
        h[4] = (int) h4;
        h[5] = (int) h5;
        h[6] = (int) h6;
        h[7] = (int) h7;
        h[8] = (int) h8;
        h[9] = (int) h9;
        return new Ed25519FieldElement(f, h);
    }

    /**
     * $h = 2 * f * f$
     * <p>
     * Can overlap $h$ with $f$.
     * <p>
     * Preconditions:
     * </p><ul>
     * <li>$|f|$ bounded by $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
     * </ul><p>
     * Postconditions:
     * </p><ul>
     * <li>$|h|$ bounded by $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
     * </ul><p>
     * See {@link #multiply(FieldElement)} for discussion
     * of implementation strategy.
     *
     * @return The (reasonably reduced) square of this field element times 2.
     */
    public FieldElement squareAndDouble() {
        int f0 = t[0];
        int f1 = t[1];
        int f2 = t[2];
        int f3 = t[3];
        int f4 = t[4];
        int f5 = t[5];
        int f6 = t[6];
        int f7 = t[7];
        int f8 = t[8];
        int f9 = t[9];
        int f0_2 = 2 * f0;
        int f1_2 = 2 * f1;
        int f2_2 = 2 * f2;
        int f3_2 = 2 * f3;
        int f4_2 = 2 * f4;
        int f5_2 = 2 * f5;
        int f6_2 = 2 * f6;
        int f7_2 = 2 * f7;
        int f5_38 = 38 * f5; /* 1.959375*2^30 */
        int f6_19 = 19 * f6; /* 1.959375*2^30 */
        int f7_38 = 38 * f7; /* 1.959375*2^30 */
        int f8_19 = 19 * f8; /* 1.959375*2^30 */
        int f9_38 = 38 * f9; /* 1.959375*2^30 */
        long f0f0    = f0   * (long) f0;
        long f0f1_2  = f0_2 * (long) f1;
        long f0f2_2  = f0_2 * (long) f2;
        long f0f3_2  = f0_2 * (long) f3;
        long f0f4_2  = f0_2 * (long) f4;
        long f0f5_2  = f0_2 * (long) f5;
        long f0f6_2  = f0_2 * (long) f6;
        long f0f7_2  = f0_2 * (long) f7;
        long f0f8_2  = f0_2 * (long) f8;
        long f0f9_2  = f0_2 * (long) f9;
        long f1f1_2  = f1_2 * (long) f1;
        long f1f2_2  = f1_2 * (long) f2;
        long f1f3_4  = f1_2 * (long) f3_2;
        long f1f4_2  = f1_2 * (long) f4;
        long f1f5_4  = f1_2 * (long) f5_2;
        long f1f6_2  = f1_2 * (long) f6;
        long f1f7_4  = f1_2 * (long) f7_2;
        long f1f8_2  = f1_2 * (long) f8;
        long f1f9_76 = f1_2 * (long) f9_38;
        long f2f2    = f2   * (long) f2;
        long f2f3_2  = f2_2 * (long) f3;
        long f2f4_2  = f2_2 * (long) f4;
        long f2f5_2  = f2_2 * (long) f5;
        long f2f6_2  = f2_2 * (long) f6;
        long f2f7_2  = f2_2 * (long) f7;
        long f2f8_38 = f2_2 * (long) f8_19;
        long f2f9_38 = f2   * (long) f9_38;
        long f3f3_2  = f3_2 * (long) f3;
        long f3f4_2  = f3_2 * (long) f4;
        long f3f5_4  = f3_2 * (long) f5_2;
        long f3f6_2  = f3_2 * (long) f6;
        long f3f7_76 = f3_2 * (long) f7_38;
        long f3f8_38 = f3_2 * (long) f8_19;
        long f3f9_76 = f3_2 * (long) f9_38;
        long f4f4    = f4   * (long) f4;
        long f4f5_2  = f4_2 * (long) f5;
        long f4f6_38 = f4_2 * (long) f6_19;
        long f4f7_38 = f4   * (long) f7_38;
        long f4f8_38 = f4_2 * (long) f8_19;
        long f4f9_38 = f4   * (long) f9_38;
        long f5f5_38 = f5   * (long) f5_38;
        long f5f6_38 = f5_2 * (long) f6_19;
        long f5f7_76 = f5_2 * (long) f7_38;
        long f5f8_38 = f5_2 * (long) f8_19;
        long f5f9_76 = f5_2 * (long) f9_38;
        long f6f6_19 = f6   * (long) f6_19;
        long f6f7_38 = f6   * (long) f7_38;
        long f6f8_38 = f6_2 * (long) f8_19;
        long f6f9_38 = f6   * (long) f9_38;
        long f7f7_38 = f7   * (long) f7_38;
        long f7f8_38 = f7_2 * (long) f8_19;
        long f7f9_76 = f7_2 * (long) f9_38;
        long f8f8_19 = f8   * (long) f8_19;
        long f8f9_38 = f8   * (long) f9_38;
        long f9f9_38 = f9   * (long) f9_38;
        long h0 = f0f0   + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
        long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
        long h2 = f0f2_2 + f1f1_2  + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
        long h3 = f0f3_2 + f1f2_2  + f4f9_38 + f5f8_38 + f6f7_38;
        long h4 = f0f4_2 + f1f3_4  + f2f2    + f5f9_76 + f6f8_38 + f7f7_38;
        long h5 = f0f5_2 + f1f4_2  + f2f3_2  + f6f9_38 + f7f8_38;
        long h6 = f0f6_2 + f1f5_4  + f2f4_2  + f3f3_2  + f7f9_76 + f8f8_19;
        long h7 = f0f7_2 + f1f6_2  + f2f5_2  + f3f4_2  + f8f9_38;
        long h8 = f0f8_2 + f1f7_4  + f2f6_2  + f3f5_4  + f4f4    + f9f9_38;
        long h9 = f0f9_2 + f1f8_2  + f2f7_2  + f3f6_2  + f4f5_2;
        long carry0;
        long carry1;
        long carry2;
        long carry3;
        long carry4;
        long carry5;
        long carry6;
        long carry7;
        long carry8;
        long carry9;

        h0 += h0;
        h1 += h1;
        h2 += h2;
        h3 += h3;
        h4 += h4;
        h5 += h5;
        h6 += h6;
        h7 += h7;
        h8 += h8;
        h9 += h9;

        carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
        carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;

        carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
        carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;

        carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
        carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;

        carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
        carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;

        carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
        carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;

        carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;

        carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;

        int[] h = new int[10];
        h[0] = (int) h0;
        h[1] = (int) h1;
        h[2] = (int) h2;
        h[3] = (int) h3;
        h[4] = (int) h4;
        h[5] = (int) h5;
        h[6] = (int) h6;
        h[7] = (int) h7;
        h[8] = (int) h8;
        h[9] = (int) h9;
        return new Ed25519FieldElement(f, h);
    }

    /**
     * Invert this field element.
     * <p>
     * The inverse is found via Fermat's little theorem:<br>
     * $a^p \cong a \mod p$ and therefore $a^{(p-2)} \cong a^{-1} \mod p$
     *
     * @return The inverse of this field element.
     */
    public FieldElement invert() {
        FieldElement t0, t1, t2, t3;

        // 2 == 2 * 1
        t0 = square();

        // 4 == 2 * 2
        t1 = t0.square();

        // 8 == 2 * 4
        t1 = t1.square();

        // 9 == 8 + 1
        t1 = multiply(t1);

        // 11 == 9 + 2
        t0 = t0.multiply(t1);

        // 22 == 2 * 11
        t2 = t0.square();

        // 31 == 22 + 9
        t1 = t1.multiply(t2);

        // 2^6 - 2^1
        t2 = t1.square();

        // 2^10 - 2^5
        for (int i = 1; i < 5; ++i) {
            t2 = t2.square();
        }

        // 2^10 - 2^0
        t1 = t2.multiply(t1);

        // 2^11 - 2^1
        t2 = t1.square();

        // 2^20 - 2^10
        for (int i = 1; i < 10; ++i) {
            t2 = t2.square();
        }

        // 2^20 - 2^0
        t2 = t2.multiply(t1);

        // 2^21 - 2^1
        t3 = t2.square();

        // 2^40 - 2^20
        for (int i = 1; i < 20; ++i) {
            t3 = t3.square();
        }

        // 2^40 - 2^0
        t2 = t3.multiply(t2);

        // 2^41 - 2^1
        t2 = t2.square();

        // 2^50 - 2^10
        for (int i = 1; i < 10; ++i) {
            t2 = t2.square();
        }

        // 2^50 - 2^0
        t1 = t2.multiply(t1);

        // 2^51 - 2^1
        t2 = t1.square();

        // 2^100 - 2^50
        for (int i = 1; i < 50; ++i) {
            t2 = t2.square();
        }

        // 2^100 - 2^0
        t2 = t2.multiply(t1);

        // 2^101 - 2^1
        t3 = t2.square();

        // 2^200 - 2^100
        for (int i = 1; i < 100; ++i) {
            t3 = t3.square();
        }

        // 2^200 - 2^0
        t2 = t3.multiply(t2);

        // 2^201 - 2^1
        t2 = t2.square();

        // 2^250 - 2^50
        for (int i = 1; i < 50; ++i) {
            t2 = t2.square();
        }

        // 2^250 - 2^0
        t1 = t2.multiply(t1);

        // 2^251 - 2^1
        t1 = t1.square();

        // 2^255 - 2^5
        for (int i = 1; i < 5; ++i) {
            t1 = t1.square();
        }

        // 2^255 - 21
        return t1.multiply(t0);
    }

    /**
     * Gets this field element to the power of $(2^{252} - 3)$.
     * This is a helper function for calculating the square root.
     * <p>
     * TODO-CR BR: I think it makes sense to have a sqrt function.
     *
     * @return This field element to the power of $(2^{252} - 3)$.
     */
    public FieldElement pow22523() {
        FieldElement t0, t1, t2;

        // 2 == 2 * 1
        t0 = square();

        // 4 == 2 * 2
        t1 = t0.square();

        // 8 == 2 * 4
        t1 = t1.square();

        // z9 = z1*z8
        t1 = multiply(t1);

        // 11 == 9 + 2
        t0 = t0.multiply(t1);

        // 22 == 2 * 11
        t0 = t0.square();

        // 31 == 22 + 9
        t0 = t1.multiply(t0);

        // 2^6 - 2^1
        t1 = t0.square();

        // 2^10 - 2^5
        for (int i = 1; i < 5; ++i) {
            t1 = t1.square();
        }

        // 2^10 - 2^0
        t0 = t1.multiply(t0);

        // 2^11 - 2^1
        t1 = t0.square();

        // 2^20 - 2^10
        for (int i = 1; i < 10; ++i) {
            t1 = t1.square();
        }

        // 2^20 - 2^0
        t1 = t1.multiply(t0);

        // 2^21 - 2^1
        t2 = t1.square();

        // 2^40 - 2^20
        for (int i = 1; i < 20; ++i) {
            t2 = t2.square();
        }

        // 2^40 - 2^0
        t1 = t2.multiply(t1);

        // 2^41 - 2^1
        t1 = t1.square();

        // 2^50 - 2^10
        for (int i = 1; i < 10; ++i) {
            t1 = t1.square();
        }

        // 2^50 - 2^0
        t0 = t1.multiply(t0);

        // 2^51 - 2^1
        t1 = t0.square();

        // 2^100 - 2^50
        for (int i = 1; i < 50; ++i) {
            t1 = t1.square();
        }

        // 2^100 - 2^0
        t1 = t1.multiply(t0);

        // 2^101 - 2^1
        t2 = t1.square();

        // 2^200 - 2^100
        for (int i = 1; i < 100; ++i) {
            t2 = t2.square();
        }

        // 2^200 - 2^0
        t1 = t2.multiply(t1);

        // 2^201 - 2^1
        t1 = t1.square();

        // 2^250 - 2^50
        for (int i = 1; i < 50; ++i) {
            t1 = t1.square();
        }

        // 2^250 - 2^0
        t0 = t1.multiply(t0);

        // 2^251 - 2^1
        t0 = t0.square();

        // 2^252 - 2^2
        t0 = t0.square();

        // 2^252 - 3
        return multiply(t0);
    }

    /**
     * Constant-time conditional move. Well, actually it is a conditional copy.
     * Logic is inspired by the SUPERCOP implementation at:
     *   https://github.com/floodyberry/supercop/blob/master/crypto_sign/ed25519/ref10/fe_cmov.c
     *
     * @param val the other field element.
     * @param b must be 0 or 1, otherwise results are undefined.
     * @return a copy of this if $b == 0$, or a copy of val if $b == 1$.
     */
    @Override
    public FieldElement cmov(FieldElement val, int b) {
        Ed25519FieldElement that = (Ed25519FieldElement) val;
        b = -b;
        int[] result = new int[10];
        for (int i = 0; i < 10; i++) {
            result[i] = this.t[i];
            int x = this.t[i] ^ that.t[i];
            x &= b;
            result[i] ^= x;
        }
        return new Ed25519FieldElement(this.f, result);
    }

    @Override
    public int hashCode() {
        return Arrays.hashCode(t);
    }

    @Override
    public boolean equals(Object obj) {
        if (!(obj instanceof Ed25519FieldElement))
            return false;
        Ed25519FieldElement fe = (Ed25519FieldElement) obj;
        return 1==Utils.equal(toByteArray(), fe.toByteArray());
    }

    @Override
    public String toString() {
        return "[Ed25519FieldElement val="+Utils.bytesToHex(toByteArray())+"]";
    }
}