1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/**
* EdDSA-Java by str4d
*
* To the extent possible under law, the person who associated CC0 with
* EdDSA-Java has waived all copyright and related or neighboring rights
* to EdDSA-Java.
*
* You should have received a copy of the CC0 legalcode along with this
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
*
*/
package net.i2p.crypto.eddsa.math.ed25519;
import net.i2p.crypto.eddsa.math.*;
/**
* Helper class for encoding/decoding from/to the 32 byte representation.
* <p>
* Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
*/
public class Ed25519LittleEndianEncoding extends Encoding {
/**
* Encodes a given field element in its 32 byte representation. This is done in two steps:
* <ol>
* <li>Reduce the value of the field element modulo $p$.
* <li>Convert the field element to the 32 byte representation.
* </ol><p>
* The idea for the modulo $p$ reduction algorithm is as follows:
* </p>
* <h2>Assumption:</h2>
* <ul>
* <li>$p = 2^{255} - 19$
* <li>$h = h_0 + 2^{25} * h_1 + 2^{(26+25)} * h_2 + \dots + 2^{230} * h_9$ where $0 \le |h_i| \lt 2^{27}$ for all $i=0,\dots,9$.
* <li>$h \cong r \mod p$, i.e. $h = r + q * p$ for some suitable $0 \le r \lt p$ and an integer $q$.
* </ul><p>
* Then $q = [2^{-255} * (h + 19 * 2^{-25} * h_9 + 1/2)]$ where $[x] = floor(x)$.
* </p>
* <h2>Proof:</h2>
* <p>
* We begin with some very raw estimation for the bounds of some expressions:
* <p>
* $$
* \begin{equation}
* |h| \lt 2^{230} * 2^{30} = 2^{260} \Rightarrow |r + q * p| \lt 2^{260} \Rightarrow |q| \lt 2^{10}. \\
* \Rightarrow -1/4 \le a := 19^2 * 2^{-255} * q \lt 1/4. \\
* |h - 2^{230} * h_9| = |h_0 + \dots + 2^{204} * h_8| \lt 2^{204} * 2^{30} = 2^{234}. \\
* \Rightarrow -1/4 \le b := 19 * 2^{-255} * (h - 2^{230} * h_9) \lt 1/4
* \end{equation}
* $$
* <p>
* Therefore $0 \lt 1/2 - a - b \lt 1$.
* <p>
* Set $x := r + 19 * 2^{-255} * r + 1/2 - a - b$. Then:
* <p>
* $$
* 0 \le x \lt 255 - 20 + 19 + 1 = 2^{255} \\
* \Rightarrow 0 \le 2^{-255} * x \lt 1.
* $$
* <p>
* Since $q$ is an integer we have
* <p>
* $$
* [q + 2^{-255} * x] = q \quad (1)
* $$
* <p>
* Have a closer look at $x$:
* <p>
* $$
* \begin{align}
* x &= h - q * (2^{255} - 19) + 19 * 2^{-255} * (h - q * (2^{255} - 19)) + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * (h - 2^{230} * h_9) \\
* &= h - q * 2^{255} + 19 * q + 19 * 2^{-255} * h - 19 * q + 19^2 * 2^{-255} * q + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * h + 19 * 2^{-25} * h_9 \\
* &= h + 19 * 2^{-25} * h_9 + 1/2 - q^{255}.
* \end{align}
* $$
* <p>
* Inserting the expression for $x$ into $(1)$ we get the desired expression for $q$.
*/
public byte[] encode(FieldElement x) {
int[] h = ((Ed25519FieldElement)x).t;
int h0 = h[0];
int h1 = h[1];
int h2 = h[2];
int h3 = h[3];
int h4 = h[4];
int h5 = h[5];
int h6 = h[6];
int h7 = h[7];
int h8 = h[8];
int h9 = h[9];
int q;
int carry0;
int carry1;
int carry2;
int carry3;
int carry4;
int carry5;
int carry6;
int carry7;
int carry8;
int carry9;
// Step 1:
// Calculate q
q = (19 * h9 + (1 << 24)) >> 25;
q = (h0 + q) >> 26;
q = (h1 + q) >> 25;
q = (h2 + q) >> 26;
q = (h3 + q) >> 25;
q = (h4 + q) >> 26;
q = (h5 + q) >> 25;
q = (h6 + q) >> 26;
q = (h7 + q) >> 25;
q = (h8 + q) >> 26;
q = (h9 + q) >> 25;
// r = h - q * p = h - 2^255 * q + 19 * q
// First add 19 * q then discard the bit 255
h0 += 19 * q;
carry0 = h0 >> 26; h1 += carry0; h0 -= carry0 << 26;
carry1 = h1 >> 25; h2 += carry1; h1 -= carry1 << 25;
carry2 = h2 >> 26; h3 += carry2; h2 -= carry2 << 26;
carry3 = h3 >> 25; h4 += carry3; h3 -= carry3 << 25;
carry4 = h4 >> 26; h5 += carry4; h4 -= carry4 << 26;
carry5 = h5 >> 25; h6 += carry5; h5 -= carry5 << 25;
carry6 = h6 >> 26; h7 += carry6; h6 -= carry6 << 26;
carry7 = h7 >> 25; h8 += carry7; h7 -= carry7 << 25;
carry8 = h8 >> 26; h9 += carry8; h8 -= carry8 << 26;
carry9 = h9 >> 25; h9 -= carry9 << 25;
// Step 2 (straight forward conversion):
byte[] s = new byte[32];
s[0] = (byte) h0;
s[1] = (byte) (h0 >> 8);
s[2] = (byte) (h0 >> 16);
s[3] = (byte) ((h0 >> 24) | (h1 << 2));
s[4] = (byte) (h1 >> 6);
s[5] = (byte) (h1 >> 14);
s[6] = (byte) ((h1 >> 22) | (h2 << 3));
s[7] = (byte) (h2 >> 5);
s[8] = (byte) (h2 >> 13);
s[9] = (byte) ((h2 >> 21) | (h3 << 5));
s[10] = (byte) (h3 >> 3);
s[11] = (byte) (h3 >> 11);
s[12] = (byte) ((h3 >> 19) | (h4 << 6));
s[13] = (byte) (h4 >> 2);
s[14] = (byte) (h4 >> 10);
s[15] = (byte) (h4 >> 18);
s[16] = (byte) h5;
s[17] = (byte) (h5 >> 8);
s[18] = (byte) (h5 >> 16);
s[19] = (byte) ((h5 >> 24) | (h6 << 1));
s[20] = (byte) (h6 >> 7);
s[21] = (byte) (h6 >> 15);
s[22] = (byte) ((h6 >> 23) | (h7 << 3));
s[23] = (byte) (h7 >> 5);
s[24] = (byte) (h7 >> 13);
s[25] = (byte) ((h7 >> 21) | (h8 << 4));
s[26] = (byte) (h8 >> 4);
s[27] = (byte) (h8 >> 12);
s[28] = (byte) ((h8 >> 20) | (h9 << 6));
s[29] = (byte) (h9 >> 2);
s[30] = (byte) (h9 >> 10);
s[31] = (byte) (h9 >> 18);
return s;
}
static int load_3(byte[] in, int offset) {
int result = in[offset++] & 0xff;
result |= (in[offset++] & 0xff) << 8;
result |= (in[offset] & 0xff) << 16;
return result;
}
static long load_4(byte[] in, int offset) {
int result = in[offset++] & 0xff;
result |= (in[offset++] & 0xff) << 8;
result |= (in[offset++] & 0xff) << 16;
result |= in[offset] << 24;
return ((long)result) & 0xffffffffL;
}
/**
* Decodes a given field element in its 10 byte $2^{25.5}$ representation.
*
* @param in The 32 byte representation.
* @return The field element in its $2^{25.5}$ bit representation.
*/
public FieldElement decode(byte[] in) {
long h0 = load_4(in, 0);
long h1 = load_3(in, 4) << 6;
long h2 = load_3(in, 7) << 5;
long h3 = load_3(in, 10) << 3;
long h4 = load_3(in, 13) << 2;
long h5 = load_4(in, 16);
long h6 = load_3(in, 20) << 7;
long h7 = load_3(in, 23) << 5;
long h8 = load_3(in, 26) << 4;
long h9 = (load_3(in, 29) & 0x7FFFFF) << 2;
long carry0;
long carry1;
long carry2;
long carry3;
long carry4;
long carry5;
long carry6;
long carry7;
long carry8;
long carry9;
// Remember: 2^255 congruent 19 modulo p
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
int[] h = new int[10];
h[0] = (int) h0;
h[1] = (int) h1;
h[2] = (int) h2;
h[3] = (int) h3;
h[4] = (int) h4;
h[5] = (int) h5;
h[6] = (int) h6;
h[7] = (int) h7;
h[8] = (int) h8;
h[9] = (int) h9;
return new Ed25519FieldElement(f, h);
}
/**
* Is the FieldElement negative in this encoding?
* <p>
* Return true if $x$ is in $\{1,3,5,\dots,q-2\}$<br>
* Return false if $x$ is in $\{0,2,4,\dots,q-1\}$
* <p>
* Preconditions:
* </p><ul>
* <li>$|x|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25}$, etc.
* </ul>
*
* @return true if $x$ is in $\{1,3,5,\dots,q-2\}$, false otherwise.
*/
public boolean isNegative(FieldElement x) {
byte[] s = encode(x);
return (s[0] & 1) != 0;
}
}
|