1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
|
/**
* EdDSA-Java by str4d
*
* To the extent possible under law, the person who associated CC0 with
* EdDSA-Java has waived all copyright and related or neighboring rights
* to EdDSA-Java.
*
* You should have received a copy of the CC0 legalcode along with this
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
*
*/
package net.i2p.crypto.eddsa.math;
import net.i2p.crypto.eddsa.Utils;
import java.io.Serializable;
import java.util.Arrays;
/**
* A point $(x,y)$ on an EdDSA curve.
* <p>
* Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
* <p>
* Literature:<br>
* [1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang : High-speed high-security signatures<br>
* [2] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson: Twisted Edwards Curves Revisited<br>
* [3] Daniel J. Bernsteina, Tanja Lange: A complete set of addition laws for incomplete Edwards curves<br>
* [4] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters: Twisted Edwards Curves<br>
* [5] Christiane Pascale Peters: Curves, Codes, and Cryptography (PhD thesis)<br>
* [6] Daniel J. Bernstein, Peter Birkner, Tanja Lange and Christiane Peters: Optimizing double-base elliptic-curve single-scalar multiplication<br>
*
* @author str4d
*/
public class GroupElement implements Serializable {
private static final long serialVersionUID = 2395879087349587L;
/**
* Available representations for a group element.
* <ul>
* <li>P2: Projective representation $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$.
* <li>P3: Extended projective representation $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$.
* <li>P1P1: Completed representation $((X:Z), (Y:T))$ satisfying $x=X/Z, y=Y/T$.
* <li>PRECOMP: Precomputed representation $(y+x, y-x, 2dxy)$.
* <li>CACHED: Cached representation $(Y+X, Y-X, Z, 2dT)$
* </ul>
*/
public enum Representation {
/** Projective ($P^2$): $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$ */
P2,
/** Extended ($P^3$): $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$ */
P3,
/** Completed ($P \times P$): $((X:Z),(Y:T))$ satisfying $x=X/Z, y=Y/T$ */
P1P1,
/** Precomputed (Duif): $(y+x,y-x,2dxy)$ */
PRECOMP,
/** Cached: $(Y+X,Y-X,Z,2dT)$ */
CACHED
}
/**
* Creates a new group element in P2 representation.
*
* @param curve The curve.
* @param X The $X$ coordinate.
* @param Y The $Y$ coordinate.
* @param Z The $Z$ coordinate.
* @return The group element in P2 representation.
*/
public static GroupElement p2(
final Curve curve,
final FieldElement X,
final FieldElement Y,
final FieldElement Z) {
return new GroupElement(curve, Representation.P2, X, Y, Z, null);
}
/**
* Creates a new group element in P3 representation.
*
* @param curve The curve.
* @param X The $X$ coordinate.
* @param Y The $Y$ coordinate.
* @param Z The $Z$ coordinate.
* @param T The $T$ coordinate.
* @return The group element in P3 representation.
*/
public static GroupElement p3(
final Curve curve,
final FieldElement X,
final FieldElement Y,
final FieldElement Z,
final FieldElement T) {
return new GroupElement(curve, Representation.P3, X, Y, Z, T);
}
/**
* Creates a new group element in P1P1 representation.
*
* @param curve The curve.
* @param X The $X$ coordinate.
* @param Y The $Y$ coordinate.
* @param Z The $Z$ coordinate.
* @param T The $T$ coordinate.
* @return The group element in P1P1 representation.
*/
public static GroupElement p1p1(
final Curve curve,
final FieldElement X,
final FieldElement Y,
final FieldElement Z,
final FieldElement T) {
return new GroupElement(curve, Representation.P1P1, X, Y, Z, T);
}
/**
* Creates a new group element in PRECOMP representation.
*
* @param curve The curve.
* @param ypx The $y + x$ value.
* @param ymx The $y - x$ value.
* @param xy2d The $2 * d * x * y$ value.
* @return The group element in PRECOMP representation.
*/
public static GroupElement precomp(
final Curve curve,
final FieldElement ypx,
final FieldElement ymx,
final FieldElement xy2d) {
return new GroupElement(curve, Representation.PRECOMP, ypx, ymx, xy2d, null);
}
/**
* Creates a new group element in CACHED representation.
*
* @param curve The curve.
* @param YpX The $Y + X$ value.
* @param YmX The $Y - X$ value.
* @param Z The $Z$ coordinate.
* @param T2d The $2 * d * T$ value.
* @return The group element in CACHED representation.
*/
public static GroupElement cached(
final Curve curve,
final FieldElement YpX,
final FieldElement YmX,
final FieldElement Z,
final FieldElement T2d) {
return new GroupElement(curve, Representation.CACHED, YpX, YmX, Z, T2d);
}
/**
* Variable is package private only so that tests run.
*/
final Curve curve;
/**
* Variable is package private only so that tests run.
*/
final Representation repr;
/**
* Variable is package private only so that tests run.
*/
final FieldElement X;
/**
* Variable is package private only so that tests run.
*/
final FieldElement Y;
/**
* Variable is package private only so that tests run.
*/
final FieldElement Z;
/**
* Variable is package private only so that tests run.
*/
final FieldElement T;
/**
* Precomputed table for {@link #scalarMultiply(byte[])},
* filled if necessary.
* <p>
* Variable is package private only so that tests run.
*/
GroupElement[][] precmp;
/**
* Precomputed table for {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])},
* filled if necessary.
* <p>
* Variable is package private only so that tests run.
*/
GroupElement[] dblPrecmp;
/**
* Creates a group element for a curve.
*
* @param curve The curve.
* @param repr The representation used to represent the group element.
* @param X The $X$ coordinate.
* @param Y The $Y$ coordinate.
* @param Z The $Z$ coordinate.
* @param T The $T$ coordinate.
*/
public GroupElement(
final Curve curve,
final Representation repr,
final FieldElement X,
final FieldElement Y,
final FieldElement Z,
final FieldElement T) {
this.curve = curve;
this.repr = repr;
this.X = X;
this.Y = Y;
this.Z = Z;
this.T = T;
}
/**
* Creates a group element for a curve from a given encoded point.
* <p>
* A point $(x,y)$ is encoded by storing $y$ in bit 0 to bit 254 and the sign of $x$ in bit 255.
* $x$ is recovered in the following way:
* </p><ul>
* <li>$x = sign(x) * \sqrt{(y^2 - 1) / (d * y^2 + 1)} = sign(x) * \sqrt{u / v}$ with $u = y^2 - 1$ and $v = d * y^2 + 1$.
* <li>Setting $β = (u * v^3) * (u * v^7)^{((q - 5) / 8)}$ one has $β^2 = \pm(u / v)$.
* <li>If $v * β = -u$ multiply $β$ with $i=\sqrt{-1}$.
* <li>Set $x := β$.
* <li>If $sign(x) \ne$ bit 255 of $s$ then negate $x$.
* </ul>
*
* @param curve The curve.
* @param s The encoded point.
*/
public GroupElement(final Curve curve, final byte[] s) {
FieldElement x, y, yy, u, v, v3, vxx, check;
y = curve.getField().fromByteArray(s);
yy = y.square();
// u = y^2-1
u = yy.subtractOne();
// v = dy^2+1
v = yy.multiply(curve.getD()).addOne();
// v3 = v^3
v3 = v.square().multiply(v);
// x = (v3^2)vu, aka x = uv^7
x = v3.square().multiply(v).multiply(u);
// x = (uv^7)^((q-5)/8)
x = x.pow22523();
// x = uv^3(uv^7)^((q-5)/8)
x = v3.multiply(u).multiply(x);
vxx = x.square().multiply(v);
check = vxx.subtract(u); // vx^2-u
if (check.isNonZero()) {
check = vxx.add(u); // vx^2+u
if (check.isNonZero())
throw new IllegalArgumentException("not a valid GroupElement");
x = x.multiply(curve.getI());
}
if ((x.isNegative() ? 1 : 0) != Utils.bit(s, curve.getField().getb()-1)) {
x = x.negate();
}
this.curve = curve;
this.repr = Representation.P3;
this.X = x;
this.Y = y;
this.Z = curve.getField().ONE;
this.T = this.X.multiply(this.Y);
}
/**
* Gets the curve of the group element.
*
* @return The curve.
*/
public Curve getCurve() {
return this.curve;
}
/**
* Gets the representation of the group element.
*
* @return The representation.
*/
public Representation getRepresentation() {
return this.repr;
}
/**
* Gets the $X$ value of the group element.
* This is for most representation the projective $X$ coordinate.
*
* @return The $X$ value.
*/
public FieldElement getX() {
return this.X;
}
/**
* Gets the $Y$ value of the group element.
* This is for most representation the projective $Y$ coordinate.
*
* @return The $Y$ value.
*/
public FieldElement getY() {
return this.Y;
}
/**
* Gets the $Z$ value of the group element.
* This is for most representation the projective $Z$ coordinate.
*
* @return The $Z$ value.
*/
public FieldElement getZ() {
return this.Z;
}
/**
* Gets the $T$ value of the group element.
* This is for most representation the projective $T$ coordinate.
*
* @return The $T$ value.
*/
public FieldElement getT() {
return this.T;
}
/**
* Converts the group element to an encoded point on the curve.
*
* @return The encoded point as byte array.
*/
public byte[] toByteArray() {
switch (this.repr) {
case P2:
case P3:
FieldElement recip = Z.invert();
FieldElement x = X.multiply(recip);
FieldElement y = Y.multiply(recip);
byte[] s = y.toByteArray();
s[s.length-1] |= (x.isNegative() ? (byte) 0x80 : 0);
return s;
default:
return toP2().toByteArray();
}
}
/**
* Converts the group element to the P2 representation.
*
* @return The group element in the P2 representation.
*/
public GroupElement toP2() {
return toRep(Representation.P2);
}
/**
* Converts the group element to the P3 representation.
*
* @return The group element in the P3 representation.
*/
public GroupElement toP3() {
return toRep(Representation.P3);
}
/**
* Converts the group element to the CACHED representation.
*
* @return The group element in the CACHED representation.
*/
public GroupElement toCached() {
return toRep(Representation.CACHED);
}
/**
* Convert a GroupElement from one Representation to another.
* TODO-CR: Add additional conversion?
* $r = p$
* <p>
* Supported conversions:
* <p><ul>
* <li>P3 $\rightarrow$ P2
* <li>P3 $\rightarrow$ CACHED (1 multiply, 1 add, 1 subtract)
* <li>P1P1 $\rightarrow$ P2 (3 multiply)
* <li>P1P1 $\rightarrow$ P3 (4 multiply)
*
* @param repr The representation to convert to.
* @return A new group element in the given representation.
*/
private GroupElement toRep(final Representation repr) {
switch (this.repr) {
case P2:
switch (repr) {
case P2:
return p2(this.curve, this.X, this.Y, this.Z);
default:
throw new IllegalArgumentException();
}
case P3:
switch (repr) {
case P2:
return p2(this.curve, this.X, this.Y, this.Z);
case P3:
return p3(this.curve, this.X, this.Y, this.Z, this.T);
case CACHED:
return cached(this.curve, this.Y.add(this.X), this.Y.subtract(this.X), this.Z, this.T.multiply(this.curve.get2D()));
default:
throw new IllegalArgumentException();
}
case P1P1:
switch (repr) {
case P2:
return p2(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T));
case P3:
return p3(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T), this.X.multiply(this.Y));
case P1P1:
return p1p1(this.curve, this.X, this.Y, this.Z, this.T);
default:
throw new IllegalArgumentException();
}
case PRECOMP:
switch (repr) {
case PRECOMP:
return precomp(this.curve, this.X, this.Y, this.Z);
default:
throw new IllegalArgumentException();
}
case CACHED:
switch (repr) {
case CACHED:
return cached(this.curve, this.X, this.Y, this.Z, this.T);
default:
throw new IllegalArgumentException();
}
default:
throw new UnsupportedOperationException();
}
}
/**
* Precomputes several tables.
* <p>
* The precomputed tables are used for {@link #scalarMultiply(byte[])}
* and {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])}.
*
* @param precomputeSingle should the matrix for scalarMultiply() be precomputed?
*/
public synchronized void precompute(final boolean precomputeSingle) {
GroupElement Bi;
if (precomputeSingle && this.precmp == null) {
// Precomputation for single scalar multiplication.
this.precmp = new GroupElement[32][8];
// TODO-CR BR: check that this == base point when the method is called.
Bi = this;
for (int i = 0; i < 32; i++) {
GroupElement Bij = Bi;
for (int j = 0; j < 8; j++) {
final FieldElement recip = Bij.Z.invert();
final FieldElement x = Bij.X.multiply(recip);
final FieldElement y = Bij.Y.multiply(recip);
this.precmp[i][j] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
Bij = Bij.add(Bi.toCached()).toP3();
}
// Only every second summand is precomputed (16^2 = 256)
for (int k = 0; k < 8; k++) {
Bi = Bi.add(Bi.toCached()).toP3();
}
}
}
// Precomputation for double scalar multiplication.
// P,3P,5P,7P,9P,11P,13P,15P
if (this.dblPrecmp != null)
return;
this.dblPrecmp = new GroupElement[8];
Bi = this;
for (int i = 0; i < 8; i++) {
final FieldElement recip = Bi.Z.invert();
final FieldElement x = Bi.X.multiply(recip);
final FieldElement y = Bi.Y.multiply(recip);
this.dblPrecmp[i] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
// Bi = edwards(B,edwards(B,Bi))
Bi = this.add(this.add(Bi.toCached()).toP3().toCached()).toP3();
}
}
/**
* Doubles a given group element $p$ in $P^2$ or $P^3$ representation and returns the result in $P \times P$ representation.
* $r = 2 * p$ where $p = (X : Y : Z)$ or $p = (X : Y : Z : T)$
* <p>
* $r$ in $P \times P$ representation:
* <p>
* $r = ((X' : Z'), (Y' : T'))$ where
* </p><ul>
* <li>$X' = (X + Y)^2 - (Y^2 + X^2)$
* <li>$Y' = Y^2 + X^2$
* <li>$Z' = y^2 - X^2$
* <li>$T' = 2 * Z^2 - (y^2 - X^2)$
* </ul><p>
* $r$ converted from $P \times P$ to $P^2$ representation:
* <p>
* $r = (X'' : Y'' : Z'')$ where
* </p><ul>
* <li>$X'' = X' * Z' = ((X + Y)^2 - Y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
* <li>$Y'' = Y' * T' = (Y^2 + X^2) * (2 * Z^2 - (y^2 - X^2))$
* <li>$Z'' = Z' * T' = (y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
* </ul><p>
* Formula for the $P^2$ representation is in agreement with the formula given in [4] page 12 (with $a = -1$)
* up to a common factor -1 which does not matter:
* <p>
* $$
* B = (X + Y)^2; C = X^2; D = Y^2; E = -C = -X^2; F := E + D = Y^2 - X^2; H = Z^2; J = F − 2 * H; \\
* X3 = (B − C − D) · J = X' * (-T'); \\
* Y3 = F · (E − D) = Z' * (-Y'); \\
* Z3 = F · J = Z' * (-T').
* $$
*
* @return The P1P1 representation
*/
public GroupElement dbl() {
switch (this.repr) {
case P2:
case P3: // Ignore T for P3 representation
FieldElement XX, YY, B, A, AA, Yn, Zn;
XX = this.X.square();
YY = this.Y.square();
B = this.Z.squareAndDouble();
A = this.X.add(this.Y);
AA = A.square();
Yn = YY.add(XX);
Zn = YY.subtract(XX);
return p1p1(this.curve, AA.subtract(Yn), Yn, Zn, B.subtract(Zn));
default:
throw new UnsupportedOperationException();
}
}
/**
* GroupElement addition using the twisted Edwards addition law with
* extended coordinates (Hisil2008).
* <p>
* this must be in $P^3$ representation and $q$ in PRECOMP representation.
* $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
* <p>
* $r$ in $P \times P$ representation:
* <p>
* $r = ((X' : Z'), (Y' : T'))$ where
* <p><ul>
* <li>$X' = (Y1 + X1) * q.X - (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) * 1/Z2$
* <li>$Y' = (Y1 + X1) * q.X + (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)) * 1/Z2$
* <li>$Z' = 2 * Z1 + T1 * q.Z = 2 * Z1 + T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 + 2 * d * T1 * T2) * 1/Z2$
* <li>$T' = 2 * Z1 - T1 * q.Z = 2 * Z1 - T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 - 2 * d * T1 * T2) * 1/Z2$
* </ul><p>
* Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
* <p><ul>
* <li>$X' = (B - A) * 1/Z2$
* <li>$Y' = (B + A) * 1/Z2$
* <li>$Z' = (D + C) * 1/Z2$
* <li>$T' = (D - C) * 1/Z2$
* </ul><p>
* $r$ converted from $P \times P$ to $P^2$ representation:
* <p>
* $r = (X'' : Y'' : Z'' : T'')$ where
* <p><ul>
* <li>$X'' = X' * Z' = (B - A) * (D + C) * 1/Z2^2$
* <li>$Y'' = Y' * T' = (B + A) * (D - C) * 1/Z2^2$
* <li>$Z'' = Z' * T' = (D + C) * (D - C) * 1/Z2^2$
* <li>$T'' = X' * Y' = (B - A) * (B + A) * 1/Z2^2$
* </ul><p>
* TODO-CR BR: Formula for the $P^2$ representation is not in agreement with the formula given in [2] page 6<br>
* TODO-CR BR: (the common factor $1/Z2^2$ does not matter):<br>
* $$
* E = B - A, F = D - C, G = D + C, H = B + A \\
* X3 = E * F = (B - A) * (D - C); \\
* Y3 = G * H = (D + C) * (B + A); \\
* Z3 = F * G = (D - C) * (D + C); \\
* T3 = E * H = (B - A) * (B + A);
* $$
*
* @param q the PRECOMP representation of the GroupElement to add.
* @return the P1P1 representation of the result.
*/
private GroupElement madd(GroupElement q) {
if (this.repr != Representation.P3)
throw new UnsupportedOperationException();
if (q.repr != Representation.PRECOMP)
throw new IllegalArgumentException();
FieldElement YpX, YmX, A, B, C, D;
YpX = this.Y.add(this.X);
YmX = this.Y.subtract(this.X);
A = YpX.multiply(q.X); // q->y+x
B = YmX.multiply(q.Y); // q->y-x
C = q.Z.multiply(this.T); // q->2dxy
D = this.Z.add(this.Z);
return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
}
/**
* GroupElement subtraction using the twisted Edwards addition law with
* extended coordinates (Hisil2008).
* <p>
* this must be in $P^3$ representation and $q$ in PRECOMP representation.
* $r = p - q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
* <p>
* Negating $q$ means negating the value of $X2$ and $T2$ (the latter is irrelevant here).
* The formula is in accordance to {@link #madd the above addition}.
*
* @param q the PRECOMP representation of the GroupElement to subtract.
* @return the P1P1 representation of the result.
*/
private GroupElement msub(GroupElement q) {
if (this.repr != Representation.P3)
throw new UnsupportedOperationException();
if (q.repr != Representation.PRECOMP)
throw new IllegalArgumentException();
FieldElement YpX, YmX, A, B, C, D;
YpX = this.Y.add(this.X);
YmX = this.Y.subtract(this.X);
A = YpX.multiply(q.Y); // q->y-x
B = YmX.multiply(q.X); // q->y+x
C = q.Z.multiply(this.T); // q->2dxy
D = this.Z.add(this.Z);
return p1p1(this.curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
}
/**
* GroupElement addition using the twisted Edwards addition law with
* extended coordinates (Hisil2008).
* <p>
* this must be in $P^3$ representation and $q$ in CACHED representation.
* $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z, q.T) = (Y2 + X2, Y2 - X2, Z2, 2 * d * T2)$
* <p>
* $r$ in $P \times P$ representation:
* </p><ul>
* <li>$X' = (Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)$
* <li>$Y' = (Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)$
* <li>$Z' = 2 * Z1 * Z2 + 2 * d * T1 * T2$
* <li>$T' = 2 * Z1 * T2 - 2 * d * T1 * T2$
* </ul><p>
* Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
* </p><ul>
* <li>$X' = (B - A)$
* <li>$Y' = (B + A)$
* <li>$Z' = (D + C)$
* <li>$T' = (D - C)$
* </ul><p>
* Same result as in {@link #madd} (up to a common factor which does not matter).
*
* @param q the CACHED representation of the GroupElement to add.
* @return the P1P1 representation of the result.
*/
public GroupElement add(GroupElement q) {
if (this.repr != Representation.P3)
throw new UnsupportedOperationException();
if (q.repr != Representation.CACHED)
throw new IllegalArgumentException();
FieldElement YpX, YmX, A, B, C, ZZ, D;
YpX = this.Y.add(this.X);
YmX = this.Y.subtract(this.X);
A = YpX.multiply(q.X); // q->Y+X
B = YmX.multiply(q.Y); // q->Y-X
C = q.T.multiply(this.T); // q->2dT
ZZ = this.Z.multiply(q.Z);
D = ZZ.add(ZZ);
return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
}
/**
* GroupElement subtraction using the twisted Edwards addition law with
* extended coordinates (Hisil2008).
* <p>
* $r = p - q$
* <p>
* Negating $q$ means negating the value of the coordinate $X2$ and $T2$.
* The formula is in accordance to {@link #add the above addition}.
*
* @param q the PRECOMP representation of the GroupElement to subtract.
* @return the P1P1 representation of the result.
*/
public GroupElement sub(GroupElement q) {
if (this.repr != Representation.P3)
throw new UnsupportedOperationException();
if (q.repr != Representation.CACHED)
throw new IllegalArgumentException();
FieldElement YpX, YmX, A, B, C, ZZ, D;
YpX = Y.add(X);
YmX = Y.subtract(X);
A = YpX.multiply(q.Y); // q->Y-X
B = YmX.multiply(q.X); // q->Y+X
C = q.T.multiply(T); // q->2dT
ZZ = Z.multiply(q.Z);
D = ZZ.add(ZZ);
return p1p1(curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
}
/**
* Negates this group element by subtracting it from the neutral group element.
* <p>
* TODO-CR BR: why not simply negate the coordinates $X$ and $T$?
*
* @return The negative of this group element.
*/
public GroupElement negate() {
if (this.repr != Representation.P3)
throw new UnsupportedOperationException();
return this.curve.getZero(Representation.P3).sub(toCached()).toP3();
}
@Override
public int hashCode() {
return Arrays.hashCode(this.toByteArray());
}
@Override
public boolean equals(Object obj) {
if (obj == this)
return true;
if (!(obj instanceof GroupElement))
return false;
GroupElement ge = (GroupElement) obj;
if (!this.repr.equals(ge.repr)) {
try {
ge = ge.toRep(this.repr);
} catch (RuntimeException e) {
return false;
}
}
switch (this.repr) {
case P2:
case P3:
// Try easy way first
if (this.Z.equals(ge.Z))
return this.X.equals(ge.X) && this.Y.equals(ge.Y);
// X1/Z1 = X2/Z2 --> X1*Z2 = X2*Z1
final FieldElement x1 = this.X.multiply(ge.Z);
final FieldElement y1 = this.Y.multiply(ge.Z);
final FieldElement x2 = ge.X.multiply(this.Z);
final FieldElement y2 = ge.Y.multiply(this.Z);
return x1.equals(x2) && y1.equals(y2);
case P1P1:
return toP2().equals(ge);
case PRECOMP:
// Compare directly, PRECOMP is derived directly from x and y
return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.Z.equals(ge.Z);
case CACHED:
// Try easy way first
if (this.Z.equals(ge.Z))
return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.T.equals(ge.T);
// (Y+X)/Z = y+x etc.
final FieldElement x3 = this.X.multiply(ge.Z);
final FieldElement y3 = this.Y.multiply(ge.Z);
final FieldElement t3 = this.T.multiply(ge.Z);
final FieldElement x4 = ge.X.multiply(this.Z);
final FieldElement y4 = ge.Y.multiply(this.Z);
final FieldElement t4 = ge.T.multiply(this.Z);
return x3.equals(x4) && y3.equals(y4) && t3.equals(t4);
default:
return false;
}
}
/**
* Convert a to radix 16.
* <p>
* Method is package private only so that tests run.
*
* @param a $= a[0]+256*a[1]+...+256^{31} a[31]$
* @return 64 bytes, each between -8 and 7
*/
static byte[] toRadix16(final byte[] a) {
final byte[] e = new byte[64];
int i;
// Radix 16 notation
for (i = 0; i < 32; i++) {
e[2*i+0] = (byte) (a[i] & 15);
e[2*i+1] = (byte) ((a[i] >> 4) & 15);
}
/* each e[i] is between 0 and 15 */
/* e[63] is between 0 and 7 */
int carry = 0;
for (i = 0; i < 63; i++) {
e[i] += carry;
carry = e[i] + 8;
carry >>= 4;
e[i] -= carry << 4;
}
e[63] += carry;
/* each e[i] is between -8 and 7 */
return e;
}
/**
* Constant-time conditional move.
* <p>
* Replaces this with $u$ if $b == 1$.<br>
* Replaces this with this if $b == 0$.
* <p>
* Method is package private only so that tests run.
*
* @param u The group element to return if $b == 1$.
* @param b in $\{0, 1\}$
* @return $u$ if $b == 1$; this if $b == 0$. Results undefined if $b$ is not in $\{0, 1\}$.
*/
GroupElement cmov(final GroupElement u, final int b) {
return precomp(curve, X.cmov(u.X, b), Y.cmov(u.Y, b), Z.cmov(u.Z, b));
}
/**
* Look up $16^i r_i B$ in the precomputed table.
* <p>
* No secret array indices, no secret branching.
* Constant time.
* <p>
* Must have previously precomputed.
* <p>
* Method is package private only so that tests run.
*
* @param pos $= i/2$ for $i$ in $\{0, 2, 4,..., 62\}$
* @param b $= r_i$
* @return the GroupElement
*/
GroupElement select(final int pos, final int b) {
// Is r_i negative?
final int bnegative = Utils.negative(b);
// |r_i|
final int babs = b - (((-bnegative) & b) << 1);
// 16^i |r_i| B
final GroupElement t = this.curve.getZero(Representation.PRECOMP)
.cmov(this.precmp[pos][0], Utils.equal(babs, 1))
.cmov(this.precmp[pos][1], Utils.equal(babs, 2))
.cmov(this.precmp[pos][2], Utils.equal(babs, 3))
.cmov(this.precmp[pos][3], Utils.equal(babs, 4))
.cmov(this.precmp[pos][4], Utils.equal(babs, 5))
.cmov(this.precmp[pos][5], Utils.equal(babs, 6))
.cmov(this.precmp[pos][6], Utils.equal(babs, 7))
.cmov(this.precmp[pos][7], Utils.equal(babs, 8));
// -16^i |r_i| B
final GroupElement tminus = precomp(curve, t.Y, t.X, t.Z.negate());
// 16^i r_i B
return t.cmov(tminus, bnegative);
}
/**
* $h = a * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$ and
* $B$ is this point. If its lookup table has not been precomputed, it
* will be at the start of the method (and cached for later calls).
* Constant time.
* <p>
* Preconditions: (TODO: Check this applies here)
* $a[31] \le 127$
* @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
* @return the GroupElement
*/
public GroupElement scalarMultiply(final byte[] a) {
GroupElement t;
int i;
final byte[] e = toRadix16(a);
GroupElement h = this.curve.getZero(Representation.P3);
synchronized(this) {
// TODO: Get opinion from a crypto professional.
// This should in practice never be necessary, the only point that
// this should get called on is EdDSA's B.
//precompute();
for (i = 1; i < 64; i += 2) {
t = select(i/2, e[i]);
h = h.madd(t).toP3();
}
h = h.dbl().toP2().dbl().toP2().dbl().toP2().dbl().toP3();
for (i = 0; i < 64; i += 2) {
t = select(i/2, e[i]);
h = h.madd(t).toP3();
}
}
return h;
}
/**
* Calculates a sliding-windows base 2 representation for a given value $a$.
* To learn more about it see [6] page 8.
* <p>
* Output: $r$ which satisfies
* $a = r0 * 2^0 + r1 * 2^1 + \dots + r255 * 2^{255}$ with $ri$ in $\{-15, -13, -11, -9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9, 11, 13, 15\}$
* <p>
* Method is package private only so that tests run.
*
* @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$.
* @return The byte array $r$ in the above described form.
*/
static byte[] slide(final byte[] a) {
byte[] r = new byte[256];
// Put each bit of 'a' into a separate byte, 0 or 1
for (int i = 0; i < 256; ++i) {
r[i] = (byte) (1 & (a[i >> 3] >> (i & 7)));
}
// Note: r[i] will always be odd.
for (int i = 0; i < 256; ++i) {
if (r[i] != 0) {
for (int b = 1; b <= 6 && i + b < 256; ++b) {
// Accumulate bits if possible
if (r[i + b] != 0) {
if (r[i] + (r[i + b] << b) <= 15) {
r[i] += r[i + b] << b;
r[i + b] = 0;
} else if (r[i] - (r[i + b] << b) >= -15) {
r[i] -= r[i + b] << b;
for (int k = i + b; k < 256; ++k) {
if (r[k] == 0) {
r[k] = 1;
break;
}
r[k] = 0;
}
} else
break;
}
}
}
}
return r;
}
/**
* $r = a * A + b * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$,
* $b = b[0]+256*b[1]+\dots+256^{31} b[31]$ and $B$ is this point.
* <p>
* $A$ must have been previously precomputed.
*
* @param A in P3 representation.
* @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
* @param b $= b[0]+256*b[1]+\dots+256^{31} b[31]$
* @return the GroupElement
*/
public GroupElement doubleScalarMultiplyVariableTime(final GroupElement A, final byte[] a, final byte[] b) {
// TODO-CR BR: A check that this is the base point is needed.
final byte[] aslide = slide(a);
final byte[] bslide = slide(b);
GroupElement r = this.curve.getZero(Representation.P2);
int i;
for (i = 255; i >= 0; --i) {
if (aslide[i] != 0 || bslide[i] != 0) break;
}
synchronized(this) {
// TODO-CR BR strange comment below.
// TODO: Get opinion from a crypto professional.
// This should in practice never be necessary, the only point that
// this should get called on is EdDSA's B.
//precompute();
for (; i >= 0; --i) {
GroupElement t = r.dbl();
if (aslide[i] > 0) {
t = t.toP3().madd(A.dblPrecmp[aslide[i]/2]);
} else if(aslide[i] < 0) {
t = t.toP3().msub(A.dblPrecmp[(-aslide[i])/2]);
}
if (bslide[i] > 0) {
t = t.toP3().madd(this.dblPrecmp[bslide[i]/2]);
} else if(bslide[i] < 0) {
t = t.toP3().msub(this.dblPrecmp[(-bslide[i])/2]);
}
r = t.toP2();
}
}
return r;
}
/**
* Verify that a point is on its curve.
* @return true if the point lies on its curve.
*/
public boolean isOnCurve() {
return isOnCurve(curve);
}
/**
* Verify that a point is on the curve.
* @param curve The curve to check.
* @return true if the point lies on the curve.
*/
public boolean isOnCurve(Curve curve) {
switch (repr) {
case P2:
case P3:
FieldElement recip = Z.invert();
FieldElement x = X.multiply(recip);
FieldElement y = Y.multiply(recip);
FieldElement xx = x.square();
FieldElement yy = y.square();
FieldElement dxxyy = curve.getD().multiply(xx).multiply(yy);
return curve.getField().ONE.add(dxxyy).add(xx).equals(yy);
default:
return toP2().isOnCurve(curve);
}
}
@Override
public String toString() {
return "[GroupElement\nX="+X+"\nY="+Y+"\nZ="+Z+"\nT="+T+"\n]";
}
}
|