1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
|
/**
* EdDSA-Java by str4d
*
* To the extent possible under law, the person who associated CC0 with
* EdDSA-Java has waived all copyright and related or neighboring rights
* to EdDSA-Java.
*
* You should have received a copy of the CC0 legalcode along with this
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
*
*/
package net.i2p.crypto.eddsa.math.ed25519;
import net.i2p.crypto.eddsa.Utils;
import net.i2p.crypto.eddsa.math.*;
import java.util.Arrays;
/**
* Class to represent a field element of the finite field $p = 2^{255} - 19$ elements.
* <p>
* An element $t$, entries $t[0] \dots t[9]$, represents the integer
* $t[0]+2^{26} t[1]+2^{51} t[2]+2^{77} t[3]+2^{102} t[4]+\dots+2^{230} t[9]$.
* Bounds on each $t[i]$ vary depending on context.
* <p>
* Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
*/
public class Ed25519FieldElement extends FieldElement {
/**
* Variable is package private for encoding.
*/
final int[] t;
/**
* Creates a field element.
*
* @param f The underlying field, must be the finite field with $p = 2^{255} - 19$ elements
* @param t The $2^{25.5}$ bit representation of the field element.
*/
public Ed25519FieldElement(Field f, int[] t) {
super(f);
if (t.length != 10)
throw new IllegalArgumentException("Invalid radix-2^51 representation");
this.t = t;
}
private static final byte[] ZERO = new byte[32];
/**
* Gets a value indicating whether or not the field element is non-zero.
*
* @return 1 if it is non-zero, 0 otherwise.
*/
public boolean isNonZero() {
final byte[] s = toByteArray();
return Utils.equal(s, ZERO) == 0;
}
/**
* $h = f + g$
* <p>
* TODO-CR BR: $h$ is allocated via new, probably not a good idea. Do we need the copying into temp variables if we do that?
* <p>
* Preconditions:
* </p><ul>
* <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
* <li>$|g|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
* </ul><p>
* Postconditions:
* </p><ul>
* <li>$|h|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25},$ etc.
* </ul>
*
* @param val The field element to add.
* @return The field element this + val.
*/
public FieldElement add(FieldElement val) {
int[] g = ((Ed25519FieldElement)val).t;
int[] h = new int[10];
for (int i = 0; i < 10; i++) {
h[i] = t[i] + g[i];
}
return new Ed25519FieldElement(f, h);
}
/**
* $h = f - g$
* <p>
* Can overlap $h$ with $f$ or $g$.
* <p>
* TODO-CR BR: See above.
* <p>
* Preconditions:
* </p><ul>
* <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
* <li>$|g|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
* </ul><p>
* Postconditions:
* </p><ul>
* <li>$|h|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25},$ etc.
* </ul>
*
* @param val The field element to subtract.
* @return The field element this - val.
**/
public FieldElement subtract(FieldElement val) {
int[] g = ((Ed25519FieldElement)val).t;
int[] h = new int[10];
for (int i = 0; i < 10; i++) {
h[i] = t[i] - g[i];
}
return new Ed25519FieldElement(f, h);
}
/**
* $h = -f$
* <p>
* TODO-CR BR: see above.
* <p>
* Preconditions:
* </p><ul>
* <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
* </ul><p>
* Postconditions:
* </p><ul>
* <li>$|h|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
* </ul>
*
* @return The field element (-1) * this.
*/
public FieldElement negate() {
int[] h = new int[10];
for (int i = 0; i < 10; i++) {
h[i] = - t[i];
}
return new Ed25519FieldElement(f, h);
}
/**
* $h = f * g$
* <p>
* Can overlap $h$ with $f$ or $g$.
* <p>
* Preconditions:
* </p><ul>
* <li>$|f|$ bounded by
* $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
* <li>$|g|$ bounded by
* $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
* </ul><p>
* Postconditions:
* </p><ul>
* <li>$|h|$ bounded by
* $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
* </ul><p>
* Notes on implementation strategy:
* <p>
* Using schoolbook multiplication. Karatsuba would save a little in some
* cost models.
* <p>
* Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than
* 64-bit postcomputations.
* <p>
* There is one remaining multiplication by 19 in the carry chain; one *19
* precomputation can be merged into this, but the resulting data flow is
* considerably less clean.
* <p>
* There are 12 carries below. 10 of them are 2-way parallelizable and
* vectorizable. Can get away with 11 carries, but then data flow is much
* deeper.
* <p>
* With tighter constraints on inputs can squeeze carries into int32.
*
* @param val The field element to multiply.
* @return The (reasonably reduced) field element this * val.
*/
public FieldElement multiply(FieldElement val) {
int[] g = ((Ed25519FieldElement)val).t;
int g1_19 = 19 * g[1]; /* 1.959375*2^29 */
int g2_19 = 19 * g[2]; /* 1.959375*2^30; still ok */
int g3_19 = 19 * g[3];
int g4_19 = 19 * g[4];
int g5_19 = 19 * g[5];
int g6_19 = 19 * g[6];
int g7_19 = 19 * g[7];
int g8_19 = 19 * g[8];
int g9_19 = 19 * g[9];
int f1_2 = 2 * t[1];
int f3_2 = 2 * t[3];
int f5_2 = 2 * t[5];
int f7_2 = 2 * t[7];
int f9_2 = 2 * t[9];
long f0g0 = t[0] * (long) g[0];
long f0g1 = t[0] * (long) g[1];
long f0g2 = t[0] * (long) g[2];
long f0g3 = t[0] * (long) g[3];
long f0g4 = t[0] * (long) g[4];
long f0g5 = t[0] * (long) g[5];
long f0g6 = t[0] * (long) g[6];
long f0g7 = t[0] * (long) g[7];
long f0g8 = t[0] * (long) g[8];
long f0g9 = t[0] * (long) g[9];
long f1g0 = t[1] * (long) g[0];
long f1g1_2 = f1_2 * (long) g[1];
long f1g2 = t[1] * (long) g[2];
long f1g3_2 = f1_2 * (long) g[3];
long f1g4 = t[1] * (long) g[4];
long f1g5_2 = f1_2 * (long) g[5];
long f1g6 = t[1] * (long) g[6];
long f1g7_2 = f1_2 * (long) g[7];
long f1g8 = t[1] * (long) g[8];
long f1g9_38 = f1_2 * (long) g9_19;
long f2g0 = t[2] * (long) g[0];
long f2g1 = t[2] * (long) g[1];
long f2g2 = t[2] * (long) g[2];
long f2g3 = t[2] * (long) g[3];
long f2g4 = t[2] * (long) g[4];
long f2g5 = t[2] * (long) g[5];
long f2g6 = t[2] * (long) g[6];
long f2g7 = t[2] * (long) g[7];
long f2g8_19 = t[2] * (long) g8_19;
long f2g9_19 = t[2] * (long) g9_19;
long f3g0 = t[3] * (long) g[0];
long f3g1_2 = f3_2 * (long) g[1];
long f3g2 = t[3] * (long) g[2];
long f3g3_2 = f3_2 * (long) g[3];
long f3g4 = t[3] * (long) g[4];
long f3g5_2 = f3_2 * (long) g[5];
long f3g6 = t[3] * (long) g[6];
long f3g7_38 = f3_2 * (long) g7_19;
long f3g8_19 = t[3] * (long) g8_19;
long f3g9_38 = f3_2 * (long) g9_19;
long f4g0 = t[4] * (long) g[0];
long f4g1 = t[4] * (long) g[1];
long f4g2 = t[4] * (long) g[2];
long f4g3 = t[4] * (long) g[3];
long f4g4 = t[4] * (long) g[4];
long f4g5 = t[4] * (long) g[5];
long f4g6_19 = t[4] * (long) g6_19;
long f4g7_19 = t[4] * (long) g7_19;
long f4g8_19 = t[4] * (long) g8_19;
long f4g9_19 = t[4] * (long) g9_19;
long f5g0 = t[5] * (long) g[0];
long f5g1_2 = f5_2 * (long) g[1];
long f5g2 = t[5] * (long) g[2];
long f5g3_2 = f5_2 * (long) g[3];
long f5g4 = t[5] * (long) g[4];
long f5g5_38 = f5_2 * (long) g5_19;
long f5g6_19 = t[5] * (long) g6_19;
long f5g7_38 = f5_2 * (long) g7_19;
long f5g8_19 = t[5] * (long) g8_19;
long f5g9_38 = f5_2 * (long) g9_19;
long f6g0 = t[6] * (long) g[0];
long f6g1 = t[6] * (long) g[1];
long f6g2 = t[6] * (long) g[2];
long f6g3 = t[6] * (long) g[3];
long f6g4_19 = t[6] * (long) g4_19;
long f6g5_19 = t[6] * (long) g5_19;
long f6g6_19 = t[6] * (long) g6_19;
long f6g7_19 = t[6] * (long) g7_19;
long f6g8_19 = t[6] * (long) g8_19;
long f6g9_19 = t[6] * (long) g9_19;
long f7g0 = t[7] * (long) g[0];
long f7g1_2 = f7_2 * (long) g[1];
long f7g2 = t[7] * (long) g[2];
long f7g3_38 = f7_2 * (long) g3_19;
long f7g4_19 = t[7] * (long) g4_19;
long f7g5_38 = f7_2 * (long) g5_19;
long f7g6_19 = t[7] * (long) g6_19;
long f7g7_38 = f7_2 * (long) g7_19;
long f7g8_19 = t[7] * (long) g8_19;
long f7g9_38 = f7_2 * (long) g9_19;
long f8g0 = t[8] * (long) g[0];
long f8g1 = t[8] * (long) g[1];
long f8g2_19 = t[8] * (long) g2_19;
long f8g3_19 = t[8] * (long) g3_19;
long f8g4_19 = t[8] * (long) g4_19;
long f8g5_19 = t[8] * (long) g5_19;
long f8g6_19 = t[8] * (long) g6_19;
long f8g7_19 = t[8] * (long) g7_19;
long f8g8_19 = t[8] * (long) g8_19;
long f8g9_19 = t[8] * (long) g9_19;
long f9g0 = t[9] * (long) g[0];
long f9g1_38 = f9_2 * (long) g1_19;
long f9g2_19 = t[9] * (long) g2_19;
long f9g3_38 = f9_2 * (long) g3_19;
long f9g4_19 = t[9] * (long) g4_19;
long f9g5_38 = f9_2 * (long) g5_19;
long f9g6_19 = t[9] * (long) g6_19;
long f9g7_38 = f9_2 * (long) g7_19;
long f9g8_19 = t[9] * (long) g8_19;
long f9g9_38 = f9_2 * (long) g9_19;
/**
* Remember: 2^255 congruent 19 modulo p.
* h = h0 * 2^0 + h1 * 2^26 + h2 * 2^(26+25) + h3 * 2^(26+25+26) + ... + h9 * 2^(5*26+5*25).
* So to get the real number we would have to multiply the coefficients with the corresponding powers of 2.
* To get an idea what is going on below, look at the calculation of h0:
* h0 is the coefficient to the power 2^0 so it collects (sums) all products that have the power 2^0.
* f0 * g0 really is f0 * 2^0 * g0 * 2^0 = (f0 * g0) * 2^0.
* f1 * g9 really is f1 * 2^26 * g9 * 2^230 = f1 * g9 * 2^256 = 2 * f1 * g9 * 2^255 congruent 2 * 19 * f1 * g9 * 2^0 modulo p.
* f2 * g8 really is f2 * 2^51 * g8 * 2^204 = f2 * g8 * 2^255 congruent 19 * f2 * g8 * 2^0 modulo p.
* and so on...
*/
long h0 = f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38;
long h1 = f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19;
long h2 = f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38;
long h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19;
long h4 = f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38;
long h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19;
long h6 = f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38;
long h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19;
long h8 = f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38;
long h9 = f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0;
long carry0;
long carry1;
long carry2;
long carry3;
long carry4;
long carry5;
long carry6;
long carry7;
long carry8;
long carry9;
/*
|h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
|h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9
*/
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
/* |h0| <= 2^25 */
/* |h4| <= 2^25 */
/* |h1| <= 1.71*2^59 */
/* |h5| <= 1.71*2^59 */
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
/* |h1| <= 2^24; from now on fits into int32 */
/* |h5| <= 2^24; from now on fits into int32 */
/* |h2| <= 1.41*2^60 */
/* |h6| <= 1.41*2^60 */
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
/* |h2| <= 2^25; from now on fits into int32 unchanged */
/* |h6| <= 2^25; from now on fits into int32 unchanged */
/* |h3| <= 1.71*2^59 */
/* |h7| <= 1.71*2^59 */
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
/* |h3| <= 2^24; from now on fits into int32 unchanged */
/* |h7| <= 2^24; from now on fits into int32 unchanged */
/* |h4| <= 1.72*2^34 */
/* |h8| <= 1.41*2^60 */
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
/* |h4| <= 2^25; from now on fits into int32 unchanged */
/* |h8| <= 2^25; from now on fits into int32 unchanged */
/* |h5| <= 1.01*2^24 */
/* |h9| <= 1.71*2^59 */
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
/* |h9| <= 2^24; from now on fits into int32 unchanged */
/* |h0| <= 1.1*2^39 */
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
/* |h0| <= 2^25; from now on fits into int32 unchanged */
/* |h1| <= 1.01*2^24 */
int[] h = new int[10];
h[0] = (int) h0;
h[1] = (int) h1;
h[2] = (int) h2;
h[3] = (int) h3;
h[4] = (int) h4;
h[5] = (int) h5;
h[6] = (int) h6;
h[7] = (int) h7;
h[8] = (int) h8;
h[9] = (int) h9;
return new Ed25519FieldElement(f, h);
}
/**
* $h = f * f$
* <p>
* Can overlap $h$ with $f$.
* <p>
* Preconditions:
* </p><ul>
* <li>$|f|$ bounded by $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
* </ul><p>
* Postconditions:
* </p><ul>
* <li>$|h|$ bounded by $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
* </ul><p>
* See {@link #multiply(FieldElement)} for discussion
* of implementation strategy.
*
* @return The (reasonably reduced) square of this field element.
*/
public FieldElement square() {
int f0 = t[0];
int f1 = t[1];
int f2 = t[2];
int f3 = t[3];
int f4 = t[4];
int f5 = t[5];
int f6 = t[6];
int f7 = t[7];
int f8 = t[8];
int f9 = t[9];
int f0_2 = 2 * f0;
int f1_2 = 2 * f1;
int f2_2 = 2 * f2;
int f3_2 = 2 * f3;
int f4_2 = 2 * f4;
int f5_2 = 2 * f5;
int f6_2 = 2 * f6;
int f7_2 = 2 * f7;
int f5_38 = 38 * f5; /* 1.959375*2^30 */
int f6_19 = 19 * f6; /* 1.959375*2^30 */
int f7_38 = 38 * f7; /* 1.959375*2^30 */
int f8_19 = 19 * f8; /* 1.959375*2^30 */
int f9_38 = 38 * f9; /* 1.959375*2^30 */
long f0f0 = f0 * (long) f0;
long f0f1_2 = f0_2 * (long) f1;
long f0f2_2 = f0_2 * (long) f2;
long f0f3_2 = f0_2 * (long) f3;
long f0f4_2 = f0_2 * (long) f4;
long f0f5_2 = f0_2 * (long) f5;
long f0f6_2 = f0_2 * (long) f6;
long f0f7_2 = f0_2 * (long) f7;
long f0f8_2 = f0_2 * (long) f8;
long f0f9_2 = f0_2 * (long) f9;
long f1f1_2 = f1_2 * (long) f1;
long f1f2_2 = f1_2 * (long) f2;
long f1f3_4 = f1_2 * (long) f3_2;
long f1f4_2 = f1_2 * (long) f4;
long f1f5_4 = f1_2 * (long) f5_2;
long f1f6_2 = f1_2 * (long) f6;
long f1f7_4 = f1_2 * (long) f7_2;
long f1f8_2 = f1_2 * (long) f8;
long f1f9_76 = f1_2 * (long) f9_38;
long f2f2 = f2 * (long) f2;
long f2f3_2 = f2_2 * (long) f3;
long f2f4_2 = f2_2 * (long) f4;
long f2f5_2 = f2_2 * (long) f5;
long f2f6_2 = f2_2 * (long) f6;
long f2f7_2 = f2_2 * (long) f7;
long f2f8_38 = f2_2 * (long) f8_19;
long f2f9_38 = f2 * (long) f9_38;
long f3f3_2 = f3_2 * (long) f3;
long f3f4_2 = f3_2 * (long) f4;
long f3f5_4 = f3_2 * (long) f5_2;
long f3f6_2 = f3_2 * (long) f6;
long f3f7_76 = f3_2 * (long) f7_38;
long f3f8_38 = f3_2 * (long) f8_19;
long f3f9_76 = f3_2 * (long) f9_38;
long f4f4 = f4 * (long) f4;
long f4f5_2 = f4_2 * (long) f5;
long f4f6_38 = f4_2 * (long) f6_19;
long f4f7_38 = f4 * (long) f7_38;
long f4f8_38 = f4_2 * (long) f8_19;
long f4f9_38 = f4 * (long) f9_38;
long f5f5_38 = f5 * (long) f5_38;
long f5f6_38 = f5_2 * (long) f6_19;
long f5f7_76 = f5_2 * (long) f7_38;
long f5f8_38 = f5_2 * (long) f8_19;
long f5f9_76 = f5_2 * (long) f9_38;
long f6f6_19 = f6 * (long) f6_19;
long f6f7_38 = f6 * (long) f7_38;
long f6f8_38 = f6_2 * (long) f8_19;
long f6f9_38 = f6 * (long) f9_38;
long f7f7_38 = f7 * (long) f7_38;
long f7f8_38 = f7_2 * (long) f8_19;
long f7f9_76 = f7_2 * (long) f9_38;
long f8f8_19 = f8 * (long) f8_19;
long f8f9_38 = f8 * (long) f9_38;
long f9f9_38 = f9 * (long) f9_38;
/**
* Same procedure as in multiply, but this time we have a higher symmetry leading to less summands.
* e.g. f1f9_76 really stands for f1 * 2^26 * f9 * 2^230 + f9 * 2^230 + f1 * 2^26 congruent 2 * 2 * 19 * f1 * f9 2^0 modulo p.
*/
long h0 = f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
long h2 = f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
long h3 = f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38;
long h4 = f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38;
long h5 = f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38;
long h6 = f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19;
long h7 = f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38;
long h8 = f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38;
long h9 = f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2;
long carry0;
long carry1;
long carry2;
long carry3;
long carry4;
long carry5;
long carry6;
long carry7;
long carry8;
long carry9;
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
int[] h = new int[10];
h[0] = (int) h0;
h[1] = (int) h1;
h[2] = (int) h2;
h[3] = (int) h3;
h[4] = (int) h4;
h[5] = (int) h5;
h[6] = (int) h6;
h[7] = (int) h7;
h[8] = (int) h8;
h[9] = (int) h9;
return new Ed25519FieldElement(f, h);
}
/**
* $h = 2 * f * f$
* <p>
* Can overlap $h$ with $f$.
* <p>
* Preconditions:
* </p><ul>
* <li>$|f|$ bounded by $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
* </ul><p>
* Postconditions:
* </p><ul>
* <li>$|h|$ bounded by $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
* </ul><p>
* See {@link #multiply(FieldElement)} for discussion
* of implementation strategy.
*
* @return The (reasonably reduced) square of this field element times 2.
*/
public FieldElement squareAndDouble() {
int f0 = t[0];
int f1 = t[1];
int f2 = t[2];
int f3 = t[3];
int f4 = t[4];
int f5 = t[5];
int f6 = t[6];
int f7 = t[7];
int f8 = t[8];
int f9 = t[9];
int f0_2 = 2 * f0;
int f1_2 = 2 * f1;
int f2_2 = 2 * f2;
int f3_2 = 2 * f3;
int f4_2 = 2 * f4;
int f5_2 = 2 * f5;
int f6_2 = 2 * f6;
int f7_2 = 2 * f7;
int f5_38 = 38 * f5; /* 1.959375*2^30 */
int f6_19 = 19 * f6; /* 1.959375*2^30 */
int f7_38 = 38 * f7; /* 1.959375*2^30 */
int f8_19 = 19 * f8; /* 1.959375*2^30 */
int f9_38 = 38 * f9; /* 1.959375*2^30 */
long f0f0 = f0 * (long) f0;
long f0f1_2 = f0_2 * (long) f1;
long f0f2_2 = f0_2 * (long) f2;
long f0f3_2 = f0_2 * (long) f3;
long f0f4_2 = f0_2 * (long) f4;
long f0f5_2 = f0_2 * (long) f5;
long f0f6_2 = f0_2 * (long) f6;
long f0f7_2 = f0_2 * (long) f7;
long f0f8_2 = f0_2 * (long) f8;
long f0f9_2 = f0_2 * (long) f9;
long f1f1_2 = f1_2 * (long) f1;
long f1f2_2 = f1_2 * (long) f2;
long f1f3_4 = f1_2 * (long) f3_2;
long f1f4_2 = f1_2 * (long) f4;
long f1f5_4 = f1_2 * (long) f5_2;
long f1f6_2 = f1_2 * (long) f6;
long f1f7_4 = f1_2 * (long) f7_2;
long f1f8_2 = f1_2 * (long) f8;
long f1f9_76 = f1_2 * (long) f9_38;
long f2f2 = f2 * (long) f2;
long f2f3_2 = f2_2 * (long) f3;
long f2f4_2 = f2_2 * (long) f4;
long f2f5_2 = f2_2 * (long) f5;
long f2f6_2 = f2_2 * (long) f6;
long f2f7_2 = f2_2 * (long) f7;
long f2f8_38 = f2_2 * (long) f8_19;
long f2f9_38 = f2 * (long) f9_38;
long f3f3_2 = f3_2 * (long) f3;
long f3f4_2 = f3_2 * (long) f4;
long f3f5_4 = f3_2 * (long) f5_2;
long f3f6_2 = f3_2 * (long) f6;
long f3f7_76 = f3_2 * (long) f7_38;
long f3f8_38 = f3_2 * (long) f8_19;
long f3f9_76 = f3_2 * (long) f9_38;
long f4f4 = f4 * (long) f4;
long f4f5_2 = f4_2 * (long) f5;
long f4f6_38 = f4_2 * (long) f6_19;
long f4f7_38 = f4 * (long) f7_38;
long f4f8_38 = f4_2 * (long) f8_19;
long f4f9_38 = f4 * (long) f9_38;
long f5f5_38 = f5 * (long) f5_38;
long f5f6_38 = f5_2 * (long) f6_19;
long f5f7_76 = f5_2 * (long) f7_38;
long f5f8_38 = f5_2 * (long) f8_19;
long f5f9_76 = f5_2 * (long) f9_38;
long f6f6_19 = f6 * (long) f6_19;
long f6f7_38 = f6 * (long) f7_38;
long f6f8_38 = f6_2 * (long) f8_19;
long f6f9_38 = f6 * (long) f9_38;
long f7f7_38 = f7 * (long) f7_38;
long f7f8_38 = f7_2 * (long) f8_19;
long f7f9_76 = f7_2 * (long) f9_38;
long f8f8_19 = f8 * (long) f8_19;
long f8f9_38 = f8 * (long) f9_38;
long f9f9_38 = f9 * (long) f9_38;
long h0 = f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
long h2 = f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
long h3 = f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38;
long h4 = f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38;
long h5 = f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38;
long h6 = f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19;
long h7 = f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38;
long h8 = f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38;
long h9 = f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2;
long carry0;
long carry1;
long carry2;
long carry3;
long carry4;
long carry5;
long carry6;
long carry7;
long carry8;
long carry9;
h0 += h0;
h1 += h1;
h2 += h2;
h3 += h3;
h4 += h4;
h5 += h5;
h6 += h6;
h7 += h7;
h8 += h8;
h9 += h9;
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
int[] h = new int[10];
h[0] = (int) h0;
h[1] = (int) h1;
h[2] = (int) h2;
h[3] = (int) h3;
h[4] = (int) h4;
h[5] = (int) h5;
h[6] = (int) h6;
h[7] = (int) h7;
h[8] = (int) h8;
h[9] = (int) h9;
return new Ed25519FieldElement(f, h);
}
/**
* Invert this field element.
* <p>
* The inverse is found via Fermat's little theorem:<br>
* $a^p \cong a \mod p$ and therefore $a^{(p-2)} \cong a^{-1} \mod p$
*
* @return The inverse of this field element.
*/
public FieldElement invert() {
FieldElement t0, t1, t2, t3;
// 2 == 2 * 1
t0 = square();
// 4 == 2 * 2
t1 = t0.square();
// 8 == 2 * 4
t1 = t1.square();
// 9 == 8 + 1
t1 = multiply(t1);
// 11 == 9 + 2
t0 = t0.multiply(t1);
// 22 == 2 * 11
t2 = t0.square();
// 31 == 22 + 9
t1 = t1.multiply(t2);
// 2^6 - 2^1
t2 = t1.square();
// 2^10 - 2^5
for (int i = 1; i < 5; ++i) {
t2 = t2.square();
}
// 2^10 - 2^0
t1 = t2.multiply(t1);
// 2^11 - 2^1
t2 = t1.square();
// 2^20 - 2^10
for (int i = 1; i < 10; ++i) {
t2 = t2.square();
}
// 2^20 - 2^0
t2 = t2.multiply(t1);
// 2^21 - 2^1
t3 = t2.square();
// 2^40 - 2^20
for (int i = 1; i < 20; ++i) {
t3 = t3.square();
}
// 2^40 - 2^0
t2 = t3.multiply(t2);
// 2^41 - 2^1
t2 = t2.square();
// 2^50 - 2^10
for (int i = 1; i < 10; ++i) {
t2 = t2.square();
}
// 2^50 - 2^0
t1 = t2.multiply(t1);
// 2^51 - 2^1
t2 = t1.square();
// 2^100 - 2^50
for (int i = 1; i < 50; ++i) {
t2 = t2.square();
}
// 2^100 - 2^0
t2 = t2.multiply(t1);
// 2^101 - 2^1
t3 = t2.square();
// 2^200 - 2^100
for (int i = 1; i < 100; ++i) {
t3 = t3.square();
}
// 2^200 - 2^0
t2 = t3.multiply(t2);
// 2^201 - 2^1
t2 = t2.square();
// 2^250 - 2^50
for (int i = 1; i < 50; ++i) {
t2 = t2.square();
}
// 2^250 - 2^0
t1 = t2.multiply(t1);
// 2^251 - 2^1
t1 = t1.square();
// 2^255 - 2^5
for (int i = 1; i < 5; ++i) {
t1 = t1.square();
}
// 2^255 - 21
return t1.multiply(t0);
}
/**
* Gets this field element to the power of $(2^{252} - 3)$.
* This is a helper function for calculating the square root.
* <p>
* TODO-CR BR: I think it makes sense to have a sqrt function.
*
* @return This field element to the power of $(2^{252} - 3)$.
*/
public FieldElement pow22523() {
FieldElement t0, t1, t2;
// 2 == 2 * 1
t0 = square();
// 4 == 2 * 2
t1 = t0.square();
// 8 == 2 * 4
t1 = t1.square();
// z9 = z1*z8
t1 = multiply(t1);
// 11 == 9 + 2
t0 = t0.multiply(t1);
// 22 == 2 * 11
t0 = t0.square();
// 31 == 22 + 9
t0 = t1.multiply(t0);
// 2^6 - 2^1
t1 = t0.square();
// 2^10 - 2^5
for (int i = 1; i < 5; ++i) {
t1 = t1.square();
}
// 2^10 - 2^0
t0 = t1.multiply(t0);
// 2^11 - 2^1
t1 = t0.square();
// 2^20 - 2^10
for (int i = 1; i < 10; ++i) {
t1 = t1.square();
}
// 2^20 - 2^0
t1 = t1.multiply(t0);
// 2^21 - 2^1
t2 = t1.square();
// 2^40 - 2^20
for (int i = 1; i < 20; ++i) {
t2 = t2.square();
}
// 2^40 - 2^0
t1 = t2.multiply(t1);
// 2^41 - 2^1
t1 = t1.square();
// 2^50 - 2^10
for (int i = 1; i < 10; ++i) {
t1 = t1.square();
}
// 2^50 - 2^0
t0 = t1.multiply(t0);
// 2^51 - 2^1
t1 = t0.square();
// 2^100 - 2^50
for (int i = 1; i < 50; ++i) {
t1 = t1.square();
}
// 2^100 - 2^0
t1 = t1.multiply(t0);
// 2^101 - 2^1
t2 = t1.square();
// 2^200 - 2^100
for (int i = 1; i < 100; ++i) {
t2 = t2.square();
}
// 2^200 - 2^0
t1 = t2.multiply(t1);
// 2^201 - 2^1
t1 = t1.square();
// 2^250 - 2^50
for (int i = 1; i < 50; ++i) {
t1 = t1.square();
}
// 2^250 - 2^0
t0 = t1.multiply(t0);
// 2^251 - 2^1
t0 = t0.square();
// 2^252 - 2^2
t0 = t0.square();
// 2^252 - 3
return multiply(t0);
}
/**
* Constant-time conditional move. Well, actually it is a conditional copy.
* Logic is inspired by the SUPERCOP implementation at:
* https://github.com/floodyberry/supercop/blob/master/crypto_sign/ed25519/ref10/fe_cmov.c
*
* @param val the other field element.
* @param b must be 0 or 1, otherwise results are undefined.
* @return a copy of this if $b == 0$, or a copy of val if $b == 1$.
*/
@Override
public FieldElement cmov(FieldElement val, int b) {
Ed25519FieldElement that = (Ed25519FieldElement) val;
b = -b;
int[] result = new int[10];
for (int i = 0; i < 10; i++) {
result[i] = this.t[i];
int x = this.t[i] ^ that.t[i];
x &= b;
result[i] ^= x;
}
return new Ed25519FieldElement(this.f, result);
}
@Override
public int hashCode() {
return Arrays.hashCode(t);
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Ed25519FieldElement))
return false;
Ed25519FieldElement fe = (Ed25519FieldElement) obj;
return 1==Utils.equal(toByteArray(), fe.toByteArray());
}
@Override
public String toString() {
return "[Ed25519FieldElement val="+Utils.bytesToHex(toByteArray())+"]";
}
}
|