1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
|
/*****************************************************************************
$Id$
File: ed.cpp
Date: 06Apr06
Copyright (C) 2006-07 by Francis Cianfrocca. All Rights Reserved.
Gmail: blackhedd
This program is free software; you can redistribute it and/or modify
it under the terms of either: 1) the GNU General Public License
as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version; or 2) Ruby's License.
See the file COPYING for complete licensing information.
*****************************************************************************/
#include "project.h"
/********************
SetSocketNonblocking
********************/
bool SetSocketNonblocking (SOCKET sd)
{
#ifdef OS_UNIX
int val = fcntl (sd, F_GETFL, 0);
return (fcntl (sd, F_SETFL, val | O_NONBLOCK) != SOCKET_ERROR) ? true : false;
#endif
#ifdef OS_WIN32
#ifdef BUILD_FOR_RUBY
// 14Jun09 Ruby provides its own wrappers for ioctlsocket. On 1.8 this is a simple wrapper,
// however, 1.9 keeps its own state about the socket.
// NOTE: F_GETFL is not supported
return (fcntl (sd, F_SETFL, O_NONBLOCK) == 0) ? true : false;
#else
unsigned long one = 1;
return (ioctlsocket (sd, FIONBIO, &one) == 0) ? true : false;
#endif
#endif
}
/****************************************
EventableDescriptor::EventableDescriptor
****************************************/
EventableDescriptor::EventableDescriptor (int sd, EventMachine_t *em):
bCloseNow (false),
bCloseAfterWriting (false),
MySocket (sd),
bAttached (false),
bWatchOnly (false),
EventCallback (NULL),
bCallbackUnbind (true),
UnbindReasonCode (0),
ProxyTarget(NULL),
ProxiedFrom(NULL),
ProxiedBytes(0),
MaxOutboundBufSize(0),
MyEventMachine (em),
PendingConnectTimeout(20000000),
InactivityTimeout (0),
bPaused (false)
{
/* There are three ways to close a socket, all of which should
* automatically signal to the event machine that this object
* should be removed from the polling scheduler.
* First is a hard close, intended for bad errors or possible
* security violations. It immediately closes the connection
* and puts this object into an error state.
* Second is to set bCloseNow, which will cause the event machine
* to delete this object (and thus close the connection in our
* destructor) the next chance it gets. bCloseNow also inhibits
* the writing of new data on the socket (but not necessarily
* the reading of new data).
* The third way is to set bCloseAfterWriting, which inhibits
* the writing of new data and converts to bCloseNow as soon
* as everything in the outbound queue has been written.
* bCloseAfterWriting is really for use only by protocol handlers
* (for example, HTTP writes an HTML page and then closes the
* connection). All of the error states we generate internally
* cause an immediate close to be scheduled, which may have the
* effect of discarding outbound data.
*/
if (sd == INVALID_SOCKET)
throw std::runtime_error ("bad eventable descriptor");
if (MyEventMachine == NULL)
throw std::runtime_error ("bad em in eventable descriptor");
CreatedAt = MyEventMachine->GetCurrentLoopTime();
#ifdef HAVE_EPOLL
EpollEvent.events = 0;
EpollEvent.data.ptr = this;
#endif
LastActivity = MyEventMachine->GetCurrentLoopTime();
}
/*****************************************
EventableDescriptor::~EventableDescriptor
*****************************************/
EventableDescriptor::~EventableDescriptor()
{
if (NextHeartbeat)
MyEventMachine->ClearHeartbeat(NextHeartbeat, this);
if (EventCallback && bCallbackUnbind)
(*EventCallback)(GetBinding(), EM_CONNECTION_UNBOUND, NULL, UnbindReasonCode);
if (ProxiedFrom) {
(*EventCallback)(ProxiedFrom->GetBinding(), EM_PROXY_TARGET_UNBOUND, NULL, 0);
ProxiedFrom->StopProxy();
}
MyEventMachine->NumCloseScheduled--;
StopProxy();
Close();
}
/*************************************
EventableDescriptor::SetEventCallback
*************************************/
void EventableDescriptor::SetEventCallback (EMCallback cb)
{
EventCallback = cb;
}
/**************************
EventableDescriptor::Close
**************************/
void EventableDescriptor::Close()
{
/* EventMachine relies on the fact that when close(fd)
* is called that the fd is removed from any
* epoll event queues.
*
* However, this is not *always* the behavior of close(fd)
*
* See man 4 epoll Q6/A6 and then consider what happens
* when using pipes with eventmachine.
* (As is often done when communicating with a subprocess)
*
* The pipes end up looking like:
*
* ls -l /proc/<pid>/fd
* ...
* lr-x------ 1 root root 64 2011-08-19 21:31 3 -> pipe:[940970]
* l-wx------ 1 root root 64 2011-08-19 21:31 4 -> pipe:[940970]
*
* This meets the critera from man 4 epoll Q6/A4 for not
* removing fds from epoll event queues until all fds
* that reference the underlying file have been removed.
*
* If the EventableDescriptor associated with fd 3 is deleted,
* its dtor will call EventableDescriptor::Close(),
* which will call ::close(int fd).
*
* However, unless the EventableDescriptor associated with fd 4 is
* also deleted before the next call to epoll_wait, events may fire
* for fd 3 that were registered with an already deleted
* EventableDescriptor.
*
* Therefore, it is necessary to notify EventMachine that
* the fd associated with this EventableDescriptor is
* closing.
*
* EventMachine also never closes fds for STDIN, STDOUT and
* STDERR (0, 1 & 2)
*/
// Close the socket right now. Intended for emergencies.
if (MySocket != INVALID_SOCKET) {
MyEventMachine->Deregister (this);
// Do not close STDIN, STDOUT, STDERR
if (MySocket > 2 && !bAttached) {
shutdown (MySocket, 1);
close (MySocket);
}
MySocket = INVALID_SOCKET;
}
}
/*********************************
EventableDescriptor::ShouldDelete
*********************************/
bool EventableDescriptor::ShouldDelete()
{
/* For use by a socket manager, which needs to know if this object
* should be removed from scheduling events and deleted.
* Has an immediate close been scheduled, or are we already closed?
* If either of these are the case, return true. In theory, the manager will
* then delete us, which in turn will make sure the socket is closed.
* Note, if bCloseAfterWriting is true, we check a virtual method to see
* if there is outbound data to write, and only request a close if there is none.
*/
return ((MySocket == INVALID_SOCKET) || bCloseNow || (bCloseAfterWriting && (GetOutboundDataSize() <= 0)));
}
/**********************************
EventableDescriptor::ScheduleClose
**********************************/
void EventableDescriptor::ScheduleClose (bool after_writing)
{
MyEventMachine->NumCloseScheduled++;
// KEEP THIS SYNCHRONIZED WITH ::IsCloseScheduled.
if (after_writing)
bCloseAfterWriting = true;
else
bCloseNow = true;
}
/*************************************
EventableDescriptor::IsCloseScheduled
*************************************/
bool EventableDescriptor::IsCloseScheduled()
{
// KEEP THIS SYNCHRONIZED WITH ::ScheduleClose.
return (bCloseNow || bCloseAfterWriting);
}
/*******************************
EventableDescriptor::StartProxy
*******************************/
void EventableDescriptor::StartProxy(const unsigned long to, const unsigned long bufsize, const unsigned long length)
{
EventableDescriptor *ed = dynamic_cast <EventableDescriptor*> (Bindable_t::GetObject (to));
if (ed) {
StopProxy();
ProxyTarget = ed;
BytesToProxy = length;
ProxiedBytes = 0;
ed->SetProxiedFrom(this, bufsize);
return;
}
throw std::runtime_error ("Tried to proxy to an invalid descriptor");
}
/******************************
EventableDescriptor::StopProxy
******************************/
void EventableDescriptor::StopProxy()
{
if (ProxyTarget) {
ProxyTarget->SetProxiedFrom(NULL, 0);
ProxyTarget = NULL;
}
}
/***********************************
EventableDescriptor::SetProxiedFrom
***********************************/
void EventableDescriptor::SetProxiedFrom(EventableDescriptor *from, const unsigned long bufsize)
{
if (from != NULL && ProxiedFrom != NULL)
throw std::runtime_error ("Tried to proxy to a busy target");
ProxiedFrom = from;
MaxOutboundBufSize = bufsize;
}
/********************************************
EventableDescriptor::_GenericInboundDispatch
********************************************/
void EventableDescriptor::_GenericInboundDispatch(const char *buf, int size)
{
assert(EventCallback);
if (ProxyTarget) {
if (BytesToProxy > 0) {
unsigned long proxied = min(BytesToProxy, (unsigned long) size);
ProxyTarget->SendOutboundData(buf, proxied);
ProxiedBytes += (unsigned long) proxied;
BytesToProxy -= proxied;
if (BytesToProxy == 0) {
StopProxy();
(*EventCallback)(GetBinding(), EM_PROXY_COMPLETED, NULL, 0);
if (proxied < size) {
(*EventCallback)(GetBinding(), EM_CONNECTION_READ, buf + proxied, size - proxied);
}
}
} else {
ProxyTarget->SendOutboundData(buf, size);
ProxiedBytes += (unsigned long) size;
}
} else {
(*EventCallback)(GetBinding(), EM_CONNECTION_READ, buf, size);
}
}
/*********************************************
EventableDescriptor::GetPendingConnectTimeout
*********************************************/
uint64_t EventableDescriptor::GetPendingConnectTimeout()
{
return PendingConnectTimeout / 1000;
}
/*********************************************
EventableDescriptor::SetPendingConnectTimeout
*********************************************/
int EventableDescriptor::SetPendingConnectTimeout (uint64_t value)
{
if (value > 0) {
PendingConnectTimeout = value * 1000;
MyEventMachine->QueueHeartbeat(this);
return 1;
}
return 0;
}
/*************************************
EventableDescriptor::GetNextHeartbeat
*************************************/
uint64_t EventableDescriptor::GetNextHeartbeat()
{
if (NextHeartbeat)
MyEventMachine->ClearHeartbeat(NextHeartbeat, this);
NextHeartbeat = 0;
if (!ShouldDelete()) {
uint64_t time_til_next = InactivityTimeout;
if (IsConnectPending()) {
if (time_til_next == 0 || PendingConnectTimeout < time_til_next)
time_til_next = PendingConnectTimeout;
}
if (time_til_next == 0)
return 0;
NextHeartbeat = time_til_next + MyEventMachine->GetRealTime();
}
return NextHeartbeat;
}
/******************************************
ConnectionDescriptor::ConnectionDescriptor
******************************************/
ConnectionDescriptor::ConnectionDescriptor (int sd, EventMachine_t *em):
EventableDescriptor (sd, em),
bConnectPending (false),
bNotifyReadable (false),
bNotifyWritable (false),
bReadAttemptedAfterClose (false),
bWriteAttemptedAfterClose (false),
OutboundDataSize (0),
#ifdef WITH_SSL
SslBox (NULL),
bHandshakeSignaled (false),
bSslVerifyPeer (false),
bSslPeerAccepted(false),
#endif
#ifdef HAVE_KQUEUE
bGotExtraKqueueEvent(false),
#endif
bIsServer (false)
{
// 22Jan09: Moved ArmKqueueWriter into SetConnectPending() to fix assertion failure in _WriteOutboundData()
// 5May09: Moved EPOLLOUT into SetConnectPending() so it doesn't happen for attached read pipes
}
/*******************************************
ConnectionDescriptor::~ConnectionDescriptor
*******************************************/
ConnectionDescriptor::~ConnectionDescriptor()
{
// Run down any stranded outbound data.
for (size_t i=0; i < OutboundPages.size(); i++)
OutboundPages[i].Free();
#ifdef WITH_SSL
if (SslBox)
delete SslBox;
#endif
}
/***********************************
ConnectionDescriptor::_UpdateEvents
************************************/
void ConnectionDescriptor::_UpdateEvents()
{
_UpdateEvents(true, true);
}
void ConnectionDescriptor::_UpdateEvents(bool read, bool write)
{
if (MySocket == INVALID_SOCKET)
return;
#ifdef HAVE_EPOLL
unsigned int old = EpollEvent.events;
if (read) {
if (SelectForRead())
EpollEvent.events |= EPOLLIN;
else
EpollEvent.events &= ~EPOLLIN;
}
if (write) {
if (SelectForWrite())
EpollEvent.events |= EPOLLOUT;
else
EpollEvent.events &= ~EPOLLOUT;
}
if (old != EpollEvent.events)
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
if (read && SelectForRead())
MyEventMachine->ArmKqueueReader (this);
if (write && SelectForWrite())
MyEventMachine->ArmKqueueWriter (this);
#endif
}
/***************************************
ConnectionDescriptor::SetConnectPending
****************************************/
void ConnectionDescriptor::SetConnectPending(bool f)
{
bConnectPending = f;
MyEventMachine->QueueHeartbeat(this);
_UpdateEvents();
}
/**********************************
ConnectionDescriptor::SetAttached
***********************************/
void ConnectionDescriptor::SetAttached(bool state)
{
bAttached = state;
}
/**********************************
ConnectionDescriptor::SetWatchOnly
***********************************/
void ConnectionDescriptor::SetWatchOnly(bool watching)
{
bWatchOnly = watching;
_UpdateEvents();
}
/*********************************
ConnectionDescriptor::HandleError
*********************************/
void ConnectionDescriptor::HandleError()
{
if (bWatchOnly) {
// An EPOLLHUP | EPOLLIN condition will call Read() before HandleError(), in which case the
// socket is already detached and invalid, so we don't need to do anything.
if (MySocket == INVALID_SOCKET) return;
// HandleError() is called on WatchOnly descriptors by the epoll reactor
// when it gets a EPOLLERR | EPOLLHUP. Usually this would show up as a readable and
// writable event on other reactors, so we have to fire those events ourselves.
if (bNotifyReadable) Read();
if (bNotifyWritable) Write();
} else {
ScheduleClose (false);
}
}
/***********************************
ConnectionDescriptor::ScheduleClose
***********************************/
void ConnectionDescriptor::ScheduleClose (bool after_writing)
{
if (bWatchOnly)
throw std::runtime_error ("cannot close 'watch only' connections");
EventableDescriptor::ScheduleClose(after_writing);
}
/***************************************
ConnectionDescriptor::SetNotifyReadable
****************************************/
void ConnectionDescriptor::SetNotifyReadable(bool readable)
{
if (!bWatchOnly)
throw std::runtime_error ("notify_readable must be on 'watch only' connections");
bNotifyReadable = readable;
_UpdateEvents(true, false);
}
/***************************************
ConnectionDescriptor::SetNotifyWritable
****************************************/
void ConnectionDescriptor::SetNotifyWritable(bool writable)
{
if (!bWatchOnly)
throw std::runtime_error ("notify_writable must be on 'watch only' connections");
bNotifyWritable = writable;
_UpdateEvents(false, true);
}
/**************************************
ConnectionDescriptor::SendOutboundData
**************************************/
int ConnectionDescriptor::SendOutboundData (const char *data, int length)
{
if (bWatchOnly)
throw std::runtime_error ("cannot send data on a 'watch only' connection");
if (ProxiedFrom && MaxOutboundBufSize && (unsigned int)(GetOutboundDataSize() + length) > MaxOutboundBufSize)
ProxiedFrom->Pause();
#ifdef WITH_SSL
if (SslBox) {
if (length > 0) {
int w = SslBox->PutPlaintext (data, length);
if (w < 0)
ScheduleClose (false);
else
_DispatchCiphertext();
}
// TODO: What's the correct return value?
return 1; // That's a wild guess, almost certainly wrong.
}
else
#endif
return _SendRawOutboundData (data, length);
}
/******************************************
ConnectionDescriptor::_SendRawOutboundData
******************************************/
int ConnectionDescriptor::_SendRawOutboundData (const char *data, int length)
{
/* This internal method is called to schedule bytes that
* will be sent out to the remote peer.
* It's not directly accessed by the caller, who hits ::SendOutboundData,
* which may or may not filter or encrypt the caller's data before
* sending it here.
*/
// Highly naive and incomplete implementation.
// There's no throttle for runaways (which should abort only this connection
// and not the whole process), and no coalescing of small pages.
// (Well, not so bad, small pages are coalesced in ::Write)
if (IsCloseScheduled())
return 0;
// 25Mar10: Ignore 0 length packets as they are not meaningful in TCP (as opposed to UDP)
// and can cause the assert(nbytes>0) to fail when OutboundPages has a bunch of 0 length pages.
if (length == 0)
return 0;
if (!data && (length > 0))
throw std::runtime_error ("bad outbound data");
char *buffer = (char *) malloc (length + 1);
if (!buffer)
throw std::runtime_error ("no allocation for outbound data");
memcpy (buffer, data, length);
buffer [length] = 0;
OutboundPages.push_back (OutboundPage (buffer, length));
OutboundDataSize += length;
_UpdateEvents(false, true);
return length;
}
/***********************************
ConnectionDescriptor::SelectForRead
***********************************/
bool ConnectionDescriptor::SelectForRead()
{
/* A connection descriptor is always scheduled for read,
* UNLESS it's in a pending-connect state.
* On Linux, unlike Unix, a nonblocking socket on which
* connect has been called, does NOT necessarily select
* both readable and writable in case of error.
* The socket will select writable when the disposition
* of the connect is known. On the other hand, a socket
* which successfully connects and selects writable may
* indeed have some data available on it, so it will
* select readable in that case, violating expectations!
* So we will not poll for readability until the socket
* is known to be in a connected state.
*/
if (bPaused)
return false;
else if (bConnectPending)
return false;
else if (bWatchOnly)
return bNotifyReadable ? true : false;
else
return true;
}
/************************************
ConnectionDescriptor::SelectForWrite
************************************/
bool ConnectionDescriptor::SelectForWrite()
{
/* Cf the notes under SelectForRead.
* In a pending-connect state, we ALWAYS select for writable.
* In a normal state, we only select for writable when we
* have outgoing data to send.
*/
if (bPaused)
return false;
else if (bConnectPending)
return true;
else if (bWatchOnly)
return bNotifyWritable ? true : false;
else
return (GetOutboundDataSize() > 0);
}
/***************************
ConnectionDescriptor::Pause
***************************/
bool ConnectionDescriptor::Pause()
{
if (bWatchOnly)
throw std::runtime_error ("cannot pause/resume 'watch only' connections, set notify readable/writable instead");
bool old = bPaused;
bPaused = true;
_UpdateEvents();
return old == false;
}
/****************************
ConnectionDescriptor::Resume
****************************/
bool ConnectionDescriptor::Resume()
{
if (bWatchOnly)
throw std::runtime_error ("cannot pause/resume 'watch only' connections, set notify readable/writable instead");
bool old = bPaused;
bPaused = false;
_UpdateEvents();
return old == true;
}
/**************************
ConnectionDescriptor::Read
**************************/
void ConnectionDescriptor::Read()
{
/* Read and dispatch data on a socket that has selected readable.
* It's theoretically possible to get and dispatch incoming data on
* a socket that has already been scheduled for closing or close-after-writing.
* In those cases, we'll leave it up the to protocol handler to "do the
* right thing" (which probably means to ignore the incoming data).
*
* 22Aug06: Chris Ochs reports that on FreeBSD, it's possible to come
* here with the socket already closed, after the process receives
* a ctrl-C signal (not sure if that's TERM or INT on BSD). The application
* was one in which network connections were doing a lot of interleaved reads
* and writes.
* Since we always write before reading (in order to keep the outbound queues
* as light as possible), I think what happened is that an interrupt caused
* the socket to be closed in ConnectionDescriptor::Write. We'll then
* come here in the same pass through the main event loop, and won't get
* cleaned up until immediately after.
* We originally asserted that the socket was valid when we got here.
* To deal properly with the possibility that we are closed when we get here,
* I removed the assert. HOWEVER, the potential for an infinite loop scares me,
* so even though this is really clunky, I added a flag to assert that we never
* come here more than once after being closed. (FCianfrocca)
*/
int sd = GetSocket();
//assert (sd != INVALID_SOCKET); (original, removed 22Aug06)
if (sd == INVALID_SOCKET) {
assert (!bReadAttemptedAfterClose);
bReadAttemptedAfterClose = true;
return;
}
if (bWatchOnly) {
if (bNotifyReadable && EventCallback)
(*EventCallback)(GetBinding(), EM_CONNECTION_NOTIFY_READABLE, NULL, 0);
return;
}
LastActivity = MyEventMachine->GetCurrentLoopTime();
int total_bytes_read = 0;
char readbuffer [16 * 1024 + 1];
for (int i=0; i < 10; i++) {
// Don't read just one buffer and then move on. This is faster
// if there is a lot of incoming.
// But don't read indefinitely. Give other sockets a chance to run.
// NOTICE, we're reading one less than the buffer size.
// That's so we can put a guard byte at the end of what we send
// to user code.
int r = read (sd, readbuffer, sizeof(readbuffer) - 1);
int e = errno;
//cerr << "<R:" << r << ">";
if (r > 0) {
total_bytes_read += r;
// Add a null-terminator at the the end of the buffer
// that we will send to the callback.
// DO NOT EVER CHANGE THIS. We want to explicitly allow users
// to be able to depend on this behavior, so they will have
// the option to do some things faster. Additionally it's
// a security guard against buffer overflows.
readbuffer [r] = 0;
_DispatchInboundData (readbuffer, r);
}
else if (r == 0) {
break;
}
else {
#ifdef OS_UNIX
if ((e != EINPROGRESS) && (e != EWOULDBLOCK) && (e != EAGAIN) && (e != EINTR)) {
#endif
#ifdef OS_WIN32
if ((e != WSAEINPROGRESS) && (e != WSAEWOULDBLOCK)) {
#endif
// 26Mar11: Previously, all read errors were assumed to be EWOULDBLOCK and ignored.
// Now, instead, we call Close() on errors like ECONNRESET and ENOTCONN.
UnbindReasonCode = e;
Close();
break;
} else {
// Basically a would-block, meaning we've read everything there is to read.
break;
}
}
}
if (total_bytes_read == 0) {
// If we read no data on a socket that selected readable,
// it generally means the other end closed the connection gracefully.
ScheduleClose (false);
//bCloseNow = true;
}
}
/******************************************
ConnectionDescriptor::_DispatchInboundData
******************************************/
void ConnectionDescriptor::_DispatchInboundData (const char *buffer, int size)
{
#ifdef WITH_SSL
if (SslBox) {
SslBox->PutCiphertext (buffer, size);
int s;
char B [2048];
while ((s = SslBox->GetPlaintext (B, sizeof(B) - 1)) > 0) {
_CheckHandshakeStatus();
B [s] = 0;
_GenericInboundDispatch(B, s);
}
// If our SSL handshake had a problem, shut down the connection.
if (s == -2) {
ScheduleClose(false);
return;
}
_CheckHandshakeStatus();
_DispatchCiphertext();
}
else {
_GenericInboundDispatch(buffer, size);
}
#endif
#ifdef WITHOUT_SSL
_GenericInboundDispatch(buffer, size);
#endif
}
/*******************************************
ConnectionDescriptor::_CheckHandshakeStatus
*******************************************/
void ConnectionDescriptor::_CheckHandshakeStatus()
{
#ifdef WITH_SSL
if (SslBox && (!bHandshakeSignaled) && SslBox->IsHandshakeCompleted()) {
bHandshakeSignaled = true;
if (EventCallback)
(*EventCallback)(GetBinding(), EM_SSL_HANDSHAKE_COMPLETED, NULL, 0);
}
#endif
}
/***************************
ConnectionDescriptor::Write
***************************/
void ConnectionDescriptor::Write()
{
/* A socket which is in a pending-connect state will select
* writable when the disposition of the connect is known.
* At that point, check to be sure there are no errors,
* and if none, then promote the socket out of the pending
* state.
* TODO: I haven't figured out how Windows signals errors on
* unconnected sockets. Maybe it does the untraditional but
* logical thing and makes the socket selectable for error.
* If so, it's unsupported here for the time being, and connect
* errors will have to be caught by the timeout mechanism.
*/
if (bConnectPending) {
int error;
socklen_t len;
len = sizeof(error);
#ifdef OS_UNIX
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, &error, &len);
#endif
#ifdef OS_WIN32
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, (char*)&error, &len);
#endif
if ((o == 0) && (error == 0)) {
if (EventCallback)
(*EventCallback)(GetBinding(), EM_CONNECTION_COMPLETED, "", 0);
// 5May09: Moved epoll/kqueue read/write arming into SetConnectPending, so it can be called
// from EventMachine_t::AttachFD as well.
SetConnectPending (false);
}
else {
if (o == 0)
UnbindReasonCode = error;
ScheduleClose (false);
//bCloseNow = true;
}
}
else {
if (bNotifyWritable) {
if (EventCallback)
(*EventCallback)(GetBinding(), EM_CONNECTION_NOTIFY_WRITABLE, NULL, 0);
_UpdateEvents(false, true);
return;
}
assert(!bWatchOnly);
/* 5May09: Kqueue bugs on OSX cause one extra writable event to fire even though we're using
EV_ONESHOT. We ignore this extra event once, but only the first time. If it happens again,
we should fall through to the assert(nbytes>0) failure to catch any EM bugs which might cause
::Write to be called in a busy-loop.
*/
#ifdef HAVE_KQUEUE
if (MyEventMachine->UsingKqueue()) {
if (OutboundDataSize == 0 && !bGotExtraKqueueEvent) {
bGotExtraKqueueEvent = true;
return;
} else if (OutboundDataSize > 0) {
bGotExtraKqueueEvent = false;
}
}
#endif
_WriteOutboundData();
}
}
/****************************************
ConnectionDescriptor::_WriteOutboundData
****************************************/
void ConnectionDescriptor::_WriteOutboundData()
{
/* This is a helper function called by ::Write.
* It's possible for a socket to select writable and then no longer
* be writable by the time we get around to writing. The kernel might
* have used up its available output buffers between the select call
* and when we get here. So this condition is not an error.
*
* 20Jul07, added the same kind of protection against an invalid socket
* that is at the top of ::Read. Not entirely how this could happen in
* real life (connection-reset from the remote peer, perhaps?), but I'm
* doing it to address some reports of crashing under heavy loads.
*/
int sd = GetSocket();
//assert (sd != INVALID_SOCKET);
if (sd == INVALID_SOCKET) {
assert (!bWriteAttemptedAfterClose);
bWriteAttemptedAfterClose = true;
return;
}
LastActivity = MyEventMachine->GetCurrentLoopTime();
size_t nbytes = 0;
#ifdef HAVE_WRITEV
int iovcnt = OutboundPages.size();
// Max of 16 outbound pages at a time
if (iovcnt > 16) iovcnt = 16;
#ifdef CC_SUNWspro
struct iovec iov[16];
#else
struct iovec iov[ iovcnt ];
#endif
for(int i = 0; i < iovcnt; i++){
OutboundPage *op = &(OutboundPages[i]);
#ifdef CC_SUNWspro
iov[i].iov_base = (char *)(op->Buffer + op->Offset);
#else
iov[i].iov_base = (void *)(op->Buffer + op->Offset);
#endif
iov[i].iov_len = op->Length - op->Offset;
nbytes += iov[i].iov_len;
}
#else
char output_buffer [16 * 1024];
while ((OutboundPages.size() > 0) && (nbytes < sizeof(output_buffer))) {
OutboundPage *op = &(OutboundPages[0]);
if ((nbytes + op->Length - op->Offset) < sizeof (output_buffer)) {
memcpy (output_buffer + nbytes, op->Buffer + op->Offset, op->Length - op->Offset);
nbytes += (op->Length - op->Offset);
op->Free();
OutboundPages.pop_front();
}
else {
int len = sizeof(output_buffer) - nbytes;
memcpy (output_buffer + nbytes, op->Buffer + op->Offset, len);
op->Offset += len;
nbytes += len;
}
}
#endif
// We should never have gotten here if there were no data to write,
// so assert that as a sanity check.
// Don't bother to make sure nbytes is less than output_buffer because
// if it were we probably would have crashed already.
assert (nbytes > 0);
assert (GetSocket() != INVALID_SOCKET);
#ifdef HAVE_WRITEV
int bytes_written = writev (GetSocket(), iov, iovcnt);
#else
int bytes_written = write (GetSocket(), output_buffer, nbytes);
#endif
bool err = false;
int e = errno;
if (bytes_written < 0) {
err = true;
bytes_written = 0;
}
assert (bytes_written >= 0);
OutboundDataSize -= bytes_written;
if (ProxiedFrom && MaxOutboundBufSize && (unsigned int)GetOutboundDataSize() < MaxOutboundBufSize && ProxiedFrom->IsPaused())
ProxiedFrom->Resume();
#ifdef HAVE_WRITEV
if (!err) {
unsigned int sent = bytes_written;
deque<OutboundPage>::iterator op = OutboundPages.begin();
for (int i = 0; i < iovcnt; i++) {
if (iov[i].iov_len <= sent) {
// Sent this page in full, free it.
op->Free();
OutboundPages.pop_front();
sent -= iov[i].iov_len;
} else {
// Sent part (or none) of this page, increment offset to send the remainder
op->Offset += sent;
break;
}
// Shouldn't be possible run out of pages before the loop ends
assert(op != OutboundPages.end());
*op++;
}
}
#else
if ((size_t)bytes_written < nbytes) {
int len = nbytes - bytes_written;
char *buffer = (char*) malloc (len + 1);
if (!buffer)
throw std::runtime_error ("bad alloc throwing back data");
memcpy (buffer, output_buffer + bytes_written, len);
buffer [len] = 0;
OutboundPages.push_front (OutboundPage (buffer, len));
}
#endif
_UpdateEvents(false, true);
if (err) {
#ifdef OS_UNIX
if ((e != EINPROGRESS) && (e != EWOULDBLOCK) && (e != EINTR)) {
#endif
#ifdef OS_WIN32
if ((e != WSAEINPROGRESS) && (e != WSAEWOULDBLOCK)) {
#endif
UnbindReasonCode = e;
Close();
}
}
}
/***************************************
ConnectionDescriptor::ReportErrorStatus
***************************************/
int ConnectionDescriptor::ReportErrorStatus()
{
if (MySocket == INVALID_SOCKET) {
return -1;
}
int error;
socklen_t len;
len = sizeof(error);
#ifdef OS_UNIX
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, &error, &len);
#endif
#ifdef OS_WIN32
int o = getsockopt (GetSocket(), SOL_SOCKET, SO_ERROR, (char*)&error, &len);
#endif
if ((o == 0) && (error == 0))
return 0;
else if (o == 0)
return error;
else
return -1;
}
/******************************
ConnectionDescriptor::StartTls
******************************/
void ConnectionDescriptor::StartTls()
{
#ifdef WITH_SSL
if (SslBox)
throw std::runtime_error ("SSL/TLS already running on connection");
SslBox = new SslBox_t (bIsServer, PrivateKeyFilename, CertChainFilename, bSslVerifyPeer, GetBinding());
_DispatchCiphertext();
#endif
#ifdef WITHOUT_SSL
throw std::runtime_error ("Encryption not available on this event-machine");
#endif
}
/*********************************
ConnectionDescriptor::SetTlsParms
*********************************/
void ConnectionDescriptor::SetTlsParms (const char *privkey_filename, const char *certchain_filename, bool verify_peer)
{
#ifdef WITH_SSL
if (SslBox)
throw std::runtime_error ("call SetTlsParms before calling StartTls");
if (privkey_filename && *privkey_filename)
PrivateKeyFilename = privkey_filename;
if (certchain_filename && *certchain_filename)
CertChainFilename = certchain_filename;
bSslVerifyPeer = verify_peer;
#endif
#ifdef WITHOUT_SSL
throw std::runtime_error ("Encryption not available on this event-machine");
#endif
}
/*********************************
ConnectionDescriptor::GetPeerCert
*********************************/
#ifdef WITH_SSL
X509 *ConnectionDescriptor::GetPeerCert()
{
if (!SslBox)
throw std::runtime_error ("SSL/TLS not running on this connection");
return SslBox->GetPeerCert();
}
#endif
/***********************************
ConnectionDescriptor::VerifySslPeer
***********************************/
#ifdef WITH_SSL
bool ConnectionDescriptor::VerifySslPeer(const char *cert)
{
bSslPeerAccepted = false;
if (EventCallback)
(*EventCallback)(GetBinding(), EM_SSL_VERIFY, cert, strlen(cert));
return bSslPeerAccepted;
}
#endif
/***********************************
ConnectionDescriptor::AcceptSslPeer
***********************************/
#ifdef WITH_SSL
void ConnectionDescriptor::AcceptSslPeer()
{
bSslPeerAccepted = true;
}
#endif
/*****************************************
ConnectionDescriptor::_DispatchCiphertext
*****************************************/
#ifdef WITH_SSL
void ConnectionDescriptor::_DispatchCiphertext()
{
assert (SslBox);
char BigBuf [2048];
bool did_work;
do {
did_work = false;
// try to drain ciphertext
while (SslBox->CanGetCiphertext()) {
int r = SslBox->GetCiphertext (BigBuf, sizeof(BigBuf));
assert (r > 0);
_SendRawOutboundData (BigBuf, r);
did_work = true;
}
// Pump the SslBox, in case it has queued outgoing plaintext
// This will return >0 if data was written,
// 0 if no data was written, and <0 if there was a fatal error.
bool pump;
do {
pump = false;
int w = SslBox->PutPlaintext (NULL, 0);
if (w > 0) {
did_work = true;
pump = true;
}
else if (w < 0)
ScheduleClose (false);
} while (pump);
// try to put plaintext. INCOMPLETE, doesn't belong here?
// In SendOutboundData, we're spooling plaintext directly
// into SslBox. That may be wrong, we may need to buffer it
// up here!
/*
const char *ptr;
int ptr_length;
while (OutboundPlaintext.GetPage (&ptr, &ptr_length)) {
assert (ptr && (ptr_length > 0));
int w = SslMachine.PutPlaintext (ptr, ptr_length);
if (w > 0) {
OutboundPlaintext.DiscardBytes (w);
did_work = true;
}
else
break;
}
*/
} while (did_work);
}
#endif
/*******************************
ConnectionDescriptor::Heartbeat
*******************************/
void ConnectionDescriptor::Heartbeat()
{
/* Only allow a certain amount of time to go by while waiting
* for a pending connect. If it expires, then kill the socket.
* For a connected socket, close it if its inactivity timer
* has expired.
*/
if (bConnectPending) {
if ((MyEventMachine->GetCurrentLoopTime() - CreatedAt) >= PendingConnectTimeout) {
UnbindReasonCode = ETIMEDOUT;
ScheduleClose (false);
//bCloseNow = true;
}
}
else {
if (InactivityTimeout && ((MyEventMachine->GetCurrentLoopTime() - LastActivity) >= InactivityTimeout)) {
UnbindReasonCode = ETIMEDOUT;
ScheduleClose (false);
//bCloseNow = true;
}
}
}
/****************************************
LoopbreakDescriptor::LoopbreakDescriptor
****************************************/
LoopbreakDescriptor::LoopbreakDescriptor (int sd, EventMachine_t *parent_em):
EventableDescriptor (sd, parent_em)
{
/* This is really bad and ugly. Change someday if possible.
* We have to know about an event-machine (probably the one that owns us),
* so we can pass newly-created connections to it.
*/
bCallbackUnbind = false;
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueReader (this);
#endif
}
/*************************
LoopbreakDescriptor::Read
*************************/
void LoopbreakDescriptor::Read()
{
// TODO, refactor, this code is probably in the wrong place.
assert (MyEventMachine);
MyEventMachine->_ReadLoopBreaker();
}
/**************************
LoopbreakDescriptor::Write
**************************/
void LoopbreakDescriptor::Write()
{
// Why are we here?
throw std::runtime_error ("bad code path in loopbreak");
}
/**************************************
AcceptorDescriptor::AcceptorDescriptor
**************************************/
AcceptorDescriptor::AcceptorDescriptor (int sd, EventMachine_t *parent_em):
EventableDescriptor (sd, parent_em)
{
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueReader (this);
#endif
}
/***************************************
AcceptorDescriptor::~AcceptorDescriptor
***************************************/
AcceptorDescriptor::~AcceptorDescriptor()
{
}
/****************************************
STATIC: AcceptorDescriptor::StopAcceptor
****************************************/
void AcceptorDescriptor::StopAcceptor (const unsigned long binding)
{
// TODO: This is something of a hack, or at least it's a static method of the wrong class.
AcceptorDescriptor *ad = dynamic_cast <AcceptorDescriptor*> (Bindable_t::GetObject (binding));
if (ad)
ad->ScheduleClose (false);
else
throw std::runtime_error ("failed to close nonexistent acceptor");
}
/************************
AcceptorDescriptor::Read
************************/
void AcceptorDescriptor::Read()
{
/* Accept up to a certain number of sockets on the listening connection.
* Don't try to accept all that are present, because this would allow a DoS attack
* in which no data were ever read or written. We should accept more than one,
* if available, to keep the partially accepted sockets from backing up in the kernel.
*/
/* Make sure we use non-blocking i/o on the acceptor socket, since we're selecting it
* for readability. According to Stevens UNP, it's possible for an acceptor to select readable
* and then block when we call accept. For example, the other end resets the connection after
* the socket selects readable and before we call accept. The kernel will remove the dead
* socket from the accept queue. If the accept queue is now empty, accept will block.
*/
struct sockaddr_in pin;
socklen_t addrlen = sizeof (pin);
for (int i=0; i < 10; i++) {
int sd = accept (GetSocket(), (struct sockaddr*)&pin, &addrlen);
if (sd == INVALID_SOCKET) {
// This breaks the loop when we've accepted everything on the kernel queue,
// up to 10 new connections. But what if the *first* accept fails?
// Does that mean anything serious is happening, beyond the situation
// described in the note above?
break;
}
// Set the newly-accepted socket non-blocking.
// On Windows, this may fail because, weirdly, Windows inherits the non-blocking
// attribute that we applied to the acceptor socket into the accepted one.
if (!SetSocketNonblocking (sd)) {
//int val = fcntl (sd, F_GETFL, 0);
//if (fcntl (sd, F_SETFL, val | O_NONBLOCK) == -1) {
shutdown (sd, 1);
close (sd);
continue;
}
// Disable slow-start (Nagle algorithm). Eventually make this configurable.
int one = 1;
setsockopt (sd, IPPROTO_TCP, TCP_NODELAY, (char*) &one, sizeof(one));
ConnectionDescriptor *cd = new ConnectionDescriptor (sd, MyEventMachine);
if (!cd)
throw std::runtime_error ("no newly accepted connection");
cd->SetServerMode();
if (EventCallback) {
(*EventCallback) (GetBinding(), EM_CONNECTION_ACCEPTED, NULL, cd->GetBinding());
}
#ifdef HAVE_EPOLL
cd->GetEpollEvent()->events =
(cd->SelectForRead() ? EPOLLIN : 0) | (cd->SelectForWrite() ? EPOLLOUT : 0);
#endif
assert (MyEventMachine);
MyEventMachine->Add (cd);
#ifdef HAVE_KQUEUE
if (cd->SelectForWrite())
MyEventMachine->ArmKqueueWriter (cd);
if (cd->SelectForRead())
MyEventMachine->ArmKqueueReader (cd);
#endif
}
}
/*************************
AcceptorDescriptor::Write
*************************/
void AcceptorDescriptor::Write()
{
// Why are we here?
throw std::runtime_error ("bad code path in acceptor");
}
/*****************************
AcceptorDescriptor::Heartbeat
*****************************/
void AcceptorDescriptor::Heartbeat()
{
// No-op
}
/*******************************
AcceptorDescriptor::GetSockname
*******************************/
bool AcceptorDescriptor::GetSockname (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getsockname (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/**************************************
DatagramDescriptor::DatagramDescriptor
**************************************/
DatagramDescriptor::DatagramDescriptor (int sd, EventMachine_t *parent_em):
EventableDescriptor (sd, parent_em),
OutboundDataSize (0)
{
memset (&ReturnAddress, 0, sizeof(ReturnAddress));
/* Provisionally added 19Oct07. All datagram sockets support broadcasting.
* Until now, sending to a broadcast address would give EACCES (permission denied)
* on systems like Linux and BSD that require the SO_BROADCAST socket-option in order
* to accept a packet to a broadcast address. Solaris doesn't require it. I think
* Windows DOES require it but I'm not sure.
*
* Ruby does NOT do what we're doing here. In Ruby, you have to explicitly set SO_BROADCAST
* on a UDP socket in order to enable broadcasting. The reason for requiring the option
* in the first place is so that applications don't send broadcast datagrams by mistake.
* I imagine that could happen if a user of an application typed in an address that happened
* to be a broadcast address on that particular subnet.
*
* This is provisional because someone may eventually come up with a good reason not to
* do it for all UDP sockets. If that happens, then we'll need to add a usercode-level API
* to set the socket option, just like Ruby does. AND WE'LL ALSO BREAK CODE THAT DOESN'T
* EXPLICITLY SET THE OPTION.
*/
int oval = 1;
setsockopt (GetSocket(), SOL_SOCKET, SO_BROADCAST, (char*)&oval, sizeof(oval));
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueReader (this);
#endif
}
/***************************************
DatagramDescriptor::~DatagramDescriptor
***************************************/
DatagramDescriptor::~DatagramDescriptor()
{
// Run down any stranded outbound data.
for (size_t i=0; i < OutboundPages.size(); i++)
OutboundPages[i].Free();
}
/*****************************
DatagramDescriptor::Heartbeat
*****************************/
void DatagramDescriptor::Heartbeat()
{
// Close it if its inactivity timer has expired.
if (InactivityTimeout && ((MyEventMachine->GetCurrentLoopTime() - LastActivity) >= InactivityTimeout))
ScheduleClose (false);
//bCloseNow = true;
}
/************************
DatagramDescriptor::Read
************************/
void DatagramDescriptor::Read()
{
int sd = GetSocket();
assert (sd != INVALID_SOCKET);
LastActivity = MyEventMachine->GetCurrentLoopTime();
// This is an extremely large read buffer.
// In many cases you wouldn't expect to get any more than 4K.
char readbuffer [16 * 1024];
for (int i=0; i < 10; i++) {
// Don't read just one buffer and then move on. This is faster
// if there is a lot of incoming.
// But don't read indefinitely. Give other sockets a chance to run.
// NOTICE, we're reading one less than the buffer size.
// That's so we can put a guard byte at the end of what we send
// to user code.
struct sockaddr_in sin;
socklen_t slen = sizeof (sin);
memset (&sin, 0, slen);
int r = recvfrom (sd, readbuffer, sizeof(readbuffer) - 1, 0, (struct sockaddr*)&sin, &slen);
//cerr << "<R:" << r << ">";
// In UDP, a zero-length packet is perfectly legal.
if (r >= 0) {
// Add a null-terminator at the the end of the buffer
// that we will send to the callback.
// DO NOT EVER CHANGE THIS. We want to explicitly allow users
// to be able to depend on this behavior, so they will have
// the option to do some things faster. Additionally it's
// a security guard against buffer overflows.
readbuffer [r] = 0;
// Set up a "temporary" return address so that callers can "reply" to us
// from within the callback we are about to invoke. That means that ordinary
// calls to "send_data_to_connection" (which is of course misnamed in this
// case) will result in packets being sent back to the same place that sent
// us this one.
// There is a different call (evma_send_datagram) for cases where the caller
// actually wants to send a packet somewhere else.
memset (&ReturnAddress, 0, sizeof(ReturnAddress));
memcpy (&ReturnAddress, &sin, slen);
_GenericInboundDispatch(readbuffer, r);
}
else {
// Basically a would-block, meaning we've read everything there is to read.
break;
}
}
}
/*************************
DatagramDescriptor::Write
*************************/
void DatagramDescriptor::Write()
{
/* It's possible for a socket to select writable and then no longer
* be writable by the time we get around to writing. The kernel might
* have used up its available output buffers between the select call
* and when we get here. So this condition is not an error.
* This code is very reminiscent of ConnectionDescriptor::_WriteOutboundData,
* but differs in the that the outbound data pages (received from the
* user) are _message-structured._ That is, we send each of them out
* one message at a time.
* TODO, we are currently suppressing the EMSGSIZE error!!!
*/
int sd = GetSocket();
assert (sd != INVALID_SOCKET);
LastActivity = MyEventMachine->GetCurrentLoopTime();
assert (OutboundPages.size() > 0);
// Send out up to 10 packets, then cycle the machine.
for (int i = 0; i < 10; i++) {
if (OutboundPages.size() <= 0)
break;
OutboundPage *op = &(OutboundPages[0]);
// The nasty cast to (char*) is needed because Windows is brain-dead.
int s = sendto (sd, (char*)op->Buffer, op->Length, 0, (struct sockaddr*)&(op->From), sizeof(op->From));
int e = errno;
OutboundDataSize -= op->Length;
op->Free();
OutboundPages.pop_front();
if (s == SOCKET_ERROR) {
#ifdef OS_UNIX
if ((e != EINPROGRESS) && (e != EWOULDBLOCK) && (e != EINTR)) {
#endif
#ifdef OS_WIN32
if ((e != WSAEINPROGRESS) && (e != WSAEWOULDBLOCK)) {
#endif
UnbindReasonCode = e;
Close();
break;
}
}
}
#ifdef HAVE_EPOLL
EpollEvent.events = (EPOLLIN | (SelectForWrite() ? EPOLLOUT : 0));
assert (MyEventMachine);
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
if (SelectForWrite())
MyEventMachine->ArmKqueueWriter (this);
#endif
}
/**********************************
DatagramDescriptor::SelectForWrite
**********************************/
bool DatagramDescriptor::SelectForWrite()
{
/* Changed 15Nov07, per bug report by Mark Zvillius.
* The outbound data size will be zero if there are zero-length outbound packets,
* so we now select writable in case the outbound page buffer is not empty.
* Note that the superclass ShouldDelete method still checks for outbound data size,
* which may be wrong.
*/
//return (GetOutboundDataSize() > 0); (Original)
return (OutboundPages.size() > 0);
}
/************************************
DatagramDescriptor::SendOutboundData
************************************/
int DatagramDescriptor::SendOutboundData (const char *data, int length)
{
// This is almost an exact clone of ConnectionDescriptor::_SendRawOutboundData.
// That means most of it could be factored to a common ancestor. Note that
// empty datagrams are meaningful, which isn't the case for TCP streams.
if (IsCloseScheduled())
return 0;
if (!data && (length > 0))
throw std::runtime_error ("bad outbound data");
char *buffer = (char *) malloc (length + 1);
if (!buffer)
throw std::runtime_error ("no allocation for outbound data");
memcpy (buffer, data, length);
buffer [length] = 0;
OutboundPages.push_back (OutboundPage (buffer, length, ReturnAddress));
OutboundDataSize += length;
#ifdef HAVE_EPOLL
EpollEvent.events = (EPOLLIN | EPOLLOUT);
assert (MyEventMachine);
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueWriter (this);
#endif
return length;
}
/****************************************
DatagramDescriptor::SendOutboundDatagram
****************************************/
int DatagramDescriptor::SendOutboundDatagram (const char *data, int length, const char *address, int port)
{
// This is an exact clone of ConnectionDescriptor::SendOutboundData.
// That means it needs to move to a common ancestor.
// TODO: Refactor this so there's no overlap with SendOutboundData.
if (IsCloseScheduled())
//if (bCloseNow || bCloseAfterWriting)
return 0;
if (!address || !*address || !port)
return 0;
sockaddr_in pin;
unsigned long HostAddr;
HostAddr = inet_addr (address);
if (HostAddr == INADDR_NONE) {
// The nasty cast to (char*) is because Windows is brain-dead.
hostent *hp = gethostbyname ((char*)address);
if (!hp)
return 0;
HostAddr = ((in_addr*)(hp->h_addr))->s_addr;
}
memset (&pin, 0, sizeof(pin));
pin.sin_family = AF_INET;
pin.sin_addr.s_addr = HostAddr;
pin.sin_port = htons (port);
if (!data && (length > 0))
throw std::runtime_error ("bad outbound data");
char *buffer = (char *) malloc (length + 1);
if (!buffer)
throw std::runtime_error ("no allocation for outbound data");
memcpy (buffer, data, length);
buffer [length] = 0;
OutboundPages.push_back (OutboundPage (buffer, length, pin));
OutboundDataSize += length;
#ifdef HAVE_EPOLL
EpollEvent.events = (EPOLLIN | EPOLLOUT);
assert (MyEventMachine);
MyEventMachine->Modify (this);
#endif
#ifdef HAVE_KQUEUE
MyEventMachine->ArmKqueueWriter (this);
#endif
return length;
}
/*********************************
ConnectionDescriptor::GetPeername
*********************************/
bool ConnectionDescriptor::GetPeername (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getpeername (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/*********************************
ConnectionDescriptor::GetSockname
*********************************/
bool ConnectionDescriptor::GetSockname (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getsockname (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/**********************************************
ConnectionDescriptor::GetCommInactivityTimeout
**********************************************/
uint64_t ConnectionDescriptor::GetCommInactivityTimeout()
{
return InactivityTimeout / 1000;
}
/**********************************************
ConnectionDescriptor::SetCommInactivityTimeout
**********************************************/
int ConnectionDescriptor::SetCommInactivityTimeout (uint64_t value)
{
InactivityTimeout = value * 1000;
MyEventMachine->QueueHeartbeat(this);
return 1;
}
/*******************************
DatagramDescriptor::GetPeername
*******************************/
bool DatagramDescriptor::GetPeername (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
*len = sizeof(struct sockaddr);
memset (s, 0, sizeof(struct sockaddr));
memcpy (s, &ReturnAddress, sizeof(ReturnAddress));
ok = true;
}
return ok;
}
/*******************************
DatagramDescriptor::GetSockname
*******************************/
bool DatagramDescriptor::GetSockname (struct sockaddr *s, socklen_t *len)
{
bool ok = false;
if (s) {
int gp = getsockname (GetSocket(), s, len);
if (gp == 0)
ok = true;
}
return ok;
}
/********************************************
DatagramDescriptor::GetCommInactivityTimeout
********************************************/
uint64_t DatagramDescriptor::GetCommInactivityTimeout()
{
return InactivityTimeout / 1000;
}
/********************************************
DatagramDescriptor::SetCommInactivityTimeout
********************************************/
int DatagramDescriptor::SetCommInactivityTimeout (uint64_t value)
{
if (value > 0) {
InactivityTimeout = value * 1000;
MyEventMachine->QueueHeartbeat(this);
return 1;
}
return 0;
}
/************************************
InotifyDescriptor::InotifyDescriptor
*************************************/
InotifyDescriptor::InotifyDescriptor (EventMachine_t *em):
EventableDescriptor(0, em)
{
bCallbackUnbind = false;
#ifndef HAVE_INOTIFY
throw std::runtime_error("no inotify support on this system");
#else
int fd = inotify_init();
if (fd == -1) {
char buf[200];
snprintf (buf, sizeof(buf)-1, "unable to create inotify descriptor: %s", strerror(errno));
throw std::runtime_error (buf);
}
MySocket = fd;
SetSocketNonblocking(MySocket);
#ifdef HAVE_EPOLL
EpollEvent.events = EPOLLIN;
#endif
#endif
}
/*************************************
InotifyDescriptor::~InotifyDescriptor
**************************************/
InotifyDescriptor::~InotifyDescriptor()
{
close(MySocket);
MySocket = INVALID_SOCKET;
}
/***********************
InotifyDescriptor::Read
************************/
void InotifyDescriptor::Read()
{
assert (MyEventMachine);
MyEventMachine->_ReadInotifyEvents();
}
/************************
InotifyDescriptor::Write
*************************/
void InotifyDescriptor::Write()
{
throw std::runtime_error("bad code path in inotify");
}
|