1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
#
# Copyright (C) 2009, 2010 Wayne Meissner
# Copyright (C) 2009 Luc Heinrich
#
# This file is part of ruby-ffi.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the Ruby FFI project nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
module FFI
# An instance of this class permits to manage {Enum}s. In fact, Enums is a collection of {Enum}s.
class Enums
def initialize
@all_enums = Array.new
@tagged_enums = Hash.new
@symbol_map = Hash.new
end
# @param [Enum] enum
# Add an {Enum} to the collection.
def <<(enum)
@all_enums << enum
@tagged_enums[enum.tag] = enum unless enum.tag.nil?
@symbol_map.merge!(enum.symbol_map)
end
# @param query enum tag or part of an enum name
# @return [Enum]
# Find a {Enum} in collection.
def find(query)
if @tagged_enums.has_key?(query)
@tagged_enums[query]
else
@all_enums.detect { |enum| enum.symbols.include?(query) }
end
end
# @param symbol a symbol to find in merge symbol maps of all enums.
# @return a symbol
def __map_symbol(symbol)
@symbol_map[symbol]
end
end
# Represents a C enum.
#
# For a C enum:
# enum fruits {
# apple,
# banana,
# orange,
# pineapple
# };
# are defined this vocabulary:
# * a _symbol_ is a word from the enumeration (ie. _apple_, by example);
# * a _value_ is the value of a symbol in the enumeration (by example, apple has value _0_ and banana _1_).
class Enum
include DataConverter
attr_reader :tag
attr_reader :native_type
# @overload initialize(info, tag=nil)
# @param [nil, Enumerable] info
# @param [nil, Symbol] tag enum tag
# @overload initialize(native_type, info, tag=nil)
# @param [FFI::Type] native_type Native type for new Enum
# @param [nil, Enumerable] info symbols and values for new Enum
# @param [nil, Symbol] tag name of new Enum
def initialize(*args)
@native_type = args.first.kind_of?(FFI::Type) ? args.shift : Type::INT
info, @tag = *args
@kv_map = Hash.new
unless info.nil?
last_cst = nil
value = 0
info.each do |i|
case i
when Symbol
raise ArgumentError, "duplicate enum key" if @kv_map.has_key?(i)
@kv_map[i] = value
last_cst = i
value += 1
when Integer
@kv_map[last_cst] = i
value = i+1
end
end
end
@vk_map = @kv_map.invert
end
# @return [Array] enum symbol names
def symbols
@kv_map.keys
end
# Get a symbol or a value from the enum.
# @overload [](query)
# Get enum value from symbol.
# @param [Symbol] query
# @return [Integer]
# @overload [](query)
# Get enum symbol from value.
# @param [Integer] query
# @return [Symbol]
def [](query)
case query
when Symbol
@kv_map[query]
when Integer
@vk_map[query]
end
end
alias find []
# Get the symbol map.
# @return [Hash]
def symbol_map
@kv_map
end
alias to_h symbol_map
alias to_hash symbol_map
# @param [Symbol, Integer, #to_int] val
# @param ctx unused
# @return [Integer] value of a enum symbol
def to_native(val, ctx)
@kv_map[val] || if val.is_a?(Integer)
val
elsif val.respond_to?(:to_int)
val.to_int
else
raise ArgumentError, "invalid enum value, #{val.inspect}"
end
end
# @param val
# @return symbol name if it exists for +val+.
def from_native(val, ctx)
@vk_map[val] || val
end
end
# Represents a C enum whose values are power of 2
#
# @example
# enum {
# red = (1<<0),
# green = (1<<1),
# blue = (1<<2)
# }
#
# Contrary to classical enums, bitmask values are usually combined
# when used.
class Bitmask < Enum
# @overload initialize(info, tag=nil)
# @param [nil, Enumerable] info symbols and bit rank for new Bitmask
# @param [nil, Symbol] tag name of new Bitmask
# @overload initialize(native_type, info, tag=nil)
# @param [FFI::Type] native_type Native type for new Bitmask
# @param [nil, Enumerable] info symbols and bit rank for new Bitmask
# @param [nil, Symbol] tag name of new Bitmask
def initialize(*args)
@native_type = args.first.kind_of?(FFI::Type) ? args.shift : Type::INT
@signed = [Type::INT8, Type::INT16, Type::INT32, Type::INT64].include?(@native_type)
info, @tag = *args
@kv_map = Hash.new
unless info.nil?
last_cst = nil
value = 0
info.each do |i|
case i
when Symbol
raise ArgumentError, "duplicate bitmask key" if @kv_map.has_key?(i)
@kv_map[i] = 1 << value
last_cst = i
value += 1
when Integer
raise ArgumentError, "bitmask index should be positive" if i<0
@kv_map[last_cst] = 1 << i
value = i+1
end
end
end
@vk_map = @kv_map.invert
end
# Get a symbol list or a value from the bitmask
# @overload [](*query)
# Get bitmask value from symbol list
# @param [Symbol] query
# @return [Integer]
# @overload [](query)
# Get bitmask value from symbol array
# @param [Array<Symbol>] query
# @return [Integer]
# @overload [](*query)
# Get a list of bitmask symbols corresponding to
# the or reduction of a list of integer
# @param [Integer] query
# @return [Array<Symbol>]
# @overload [](query)
# Get a list of bitmask symbols corresponding to
# the or reduction of a list of integer
# @param [Array<Integer>] query
# @return [Array<Symbol>]
def [](*query)
flat_query = query.flatten
raise ArgumentError, "query should be homogeneous, #{query.inspect}" unless flat_query.all? { |o| o.is_a?(Symbol) } || flat_query.all? { |o| o.is_a?(Integer) || o.respond_to?(:to_int) }
case flat_query[0]
when Symbol
flat_query.inject(0) do |val, o|
v = @kv_map[o]
if v then val | v else val end
end
when Integer, ->(o) { o.respond_to?(:to_int) }
val = flat_query.inject(0) { |mask, o| mask |= o.to_int }
@kv_map.select { |_, v| v & val != 0 }.keys
end
end
# Get the native value of a bitmask
# @overload to_native(query, ctx)
# @param [Symbol, Integer, #to_int] query
# @param ctx unused
# @return [Integer] value of a bitmask
# @overload to_native(query, ctx)
# @param [Array<Symbol, Integer, #to_int>] query
# @param ctx unused
# @return [Integer] value of a bitmask
def to_native(query, ctx)
return 0 if query.nil?
flat_query = [query].flatten
res = flat_query.inject(0) do |val, o|
case o
when Symbol
v = @kv_map[o]
raise ArgumentError, "invalid bitmask value, #{o.inspect}" unless v
val | v
when Integer
val | o
when ->(obj) { obj.respond_to?(:to_int) }
val | o.to_int
else
raise ArgumentError, "invalid bitmask value, #{o.inspect}"
end
end
# Take two's complement of positive values bigger than the max value
# for the type when native type is signed.
if @signed && res >= (1 << (@native_type.size * 8 - 1))
res = -(-res & ((1 << (@native_type.size * 8)) - 1))
end
res
end
# @param [Integer] val
# @param ctx unused
# @return [Array<Symbol, Integer>] list of symbol names corresponding to val, plus an optional remainder if some bits don't match any constant
def from_native(val, ctx)
flags = @kv_map.select { |_, v| v & val != 0 }
list = flags.keys
# force an unsigned value of the correct size
val &= (1 << (@native_type.size * 8)) - 1 if @signed
# If there are unmatch flags,
# return them in an integer,
# else information can be lost.
# Similar to Enum behavior.
remainder = val ^ flags.values.reduce(0, :|)
list.push remainder unless remainder == 0
return list
end
end
end
|