1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
Geocoder
========
**A complete geocoding solution for Ruby.**
[](http://badge.fury.io/rb/geocoder)
[](https://codeclimate.com/github/alexreisner/geocoder)
[](https://travis-ci.org/alexreisner/geocoder)
[](https://github.com/alexreisner/geocoder/issues)
[](https://opensource.org/licenses/MIT)
Key features:
* Forward and reverse geocoding, and IP address geocoding.
* Connects to more than 40 APIs worldwide.
* Performance-enhancing features like caching.
* Advanced configuration allows different parameters and APIs to be used in different conditions.
* Integrates with ActiveRecord and Mongoid.
* Basic geospatial queries: search within radius (or rectangle, or ring).
Compatibility:
* Supports multiple Ruby versions: Ruby 2.x, and JRuby.
* Supports multiple databases: MySQL, PostgreSQL, SQLite, and MongoDB (1.7.0 and higher).
* Supports Rails 3, 4, and 5. If you need to use it with Rails 2 please see the `rails2` branch (no longer maintained, limited feature set).
* Works very well outside of Rails, you just need to install either the `json` (for MRI) or `json_pure` (for JRuby) gem.
Table of Contents
-----------------
Basic Features:
* [Basic Search](#basic-search)
* [Geocoding Objects](#geocoding-objects)
* [Geospatial Database Queries](#geospatial-database-queries)
* [Geocoding HTTP Requests](#geocoding-http-requests)
* [Geocoding Service ("Lookup") Configuration](#geocoding-service-lookup-configuration)
Advanced Features:
* [Performance and Optimization](#performance-and-optimization)
* [Advanced Model Configuration](#advanced-model-configuration)
* [Advanced Database Queries](#advanced-database-queries)
* [Geospatial Calculations](#geospatial-calculations)
* [Batch Geocoding](#batch-geocoding)
* [Testing](#testing)
* [Error Handling](#error-handling)
* [Command Line Interface](#command-line-interface)
The Rest:
* [Technical Discussions](#technical-discussions)
* [Troubleshooting](#troubleshooting)
* [Known Issues](#known-issues)
* [Reporting Issues](#reporting-issues)
* [Contributing](#contributing)
See Also:
* [Guide to Geocoding APIs](https://github.com/alexreisner/geocoder/blob/master/README_API_GUIDE.md) (formerly part of this README)
Basic Search
------------
In its simplest form, Geocoder takes an address and searches for its latitude/longitude coordinates:
results = Geocoder.search("Paris")
results.first.coordinates
=> [48.856614, 2.3522219] # latitude and longitude
The reverse is possible too. Given coordinates, it finds an address:
results = Geocoder.search([48.856614, 2.3522219])
results.first.address
=> "Hôtel de Ville, 75004 Paris, France"
You can also look up the location of an IP addresses:
results = Geocoder.search("172.56.21.89")
results.first.coordinates
=> [30.267153, -97.7430608]
results.first.country
=> "United States"
**The success and accuracy of geocoding depends entirely on the API being used to do these lookups.** Most queries work fairly well with the default configuration, but every application has different needs and every API has its particular strengths and weaknesses. If you need better coverage for your application you'll want to get familiar with the large number of supported APIs, listed in the [API Guide](https://github.com/alexreisner/geocoder/blob/master/README_API_GUIDE.md).
Geocoding Objects
-----------------
To automatically geocode your objects:
**1.** Your model must provide a method that returns an address to geocode. This can be a single attribute, but it can also be a method that returns a string assembled from different attributes (eg: `city`, `state`, and `country`). For example, if your model has `street`, `city`, `state`, and `country` attributes you might do something like this:
def address
[street, city, state, country].compact.join(', ')
end
**2.** Your model must have a way to store latitude/longitude coordinates. With ActiveRecord, add two attributes/columns (of type float or decimal) called `latitude` and `longitude`. For MongoDB, use a single field (of type Array) called `coordinates` (i.e., `field :coordinates, type: Array`). (See [Advanced Model Configuration](#advanced-model-configuration) for using different attribute names.)
**3.** In your model, tell geocoder where to find the object's address:
geocoded_by :address
This adds a `geocode` method which you can invoke via callback:
after_validation :geocode
Reverse geocoding (given lat/lon coordinates, find an address) is similar:
reverse_geocoded_by :latitude, :longitude
after_validation :reverse_geocode
With any geocoded objects, you can do the following:
obj.distance_to([43.9,-98.6]) # distance from obj to point
obj.bearing_to([43.9,-98.6]) # bearing from obj to point
obj.bearing_from(obj2) # bearing from obj2 to obj
The `bearing_from/to` methods take a single argument which can be: a `[lat,lon]` array, a geocoded object, or a geocodable address (string). The `distance_from/to` methods also take a units argument (`:mi`, `:km`, or `:nm` for nautical miles). See [Distance and Bearing](#distance-and-bearing) below for more info.
### One More Thing for MongoDB!
Before you can call `geocoded_by` you'll need to include the necessary module using one of the following:
include Geocoder::Model::Mongoid
include Geocoder::Model::MongoMapper
### Latitude/Longitude Order in MongoDB
Everywhere coordinates are passed to methods as two-element arrays, Geocoder expects them to be in the order: `[lat, lon]`. However, as per [the GeoJSON spec](http://geojson.org/geojson-spec.html#positions), MongoDB requires that coordinates be stored longitude-first (`[lon, lat]`), so internally they are stored "backwards." Geocoder's methods attempt to hide this, so calling `obj.to_coordinates` (a method added to the object by Geocoder via `geocoded_by`) returns coordinates in the conventional order:
obj.to_coordinates # => [37.7941013, -122.3951096] # [lat, lon]
whereas calling the object's coordinates attribute directly (`obj.coordinates` by default) returns the internal representation which is probably the reverse of what you want:
obj.coordinates # => [-122.3951096, 37.7941013] # [lon, lat]
So, be careful.
### Use Outside of Rails
To use Geocoder with ActiveRecord and a framework other than Rails (like Sinatra or Padrino), you will need to add this in your model before calling Geocoder methods:
extend Geocoder::Model::ActiveRecord
Geospatial Database Queries
---------------------------
### For ActiveRecord models:
To find objects by location, use the following scopes:
Venue.near('Omaha, NE, US') # venues within 20 miles of Omaha
Venue.near([40.71, -100.23], 50) # venues within 50 miles of a point
Venue.near([40.71, -100.23], 50, units: :km) # venues within 50 kilometres of a point
Venue.geocoded # venues with coordinates
Venue.not_geocoded # venues without coordinates
With geocoded objects you can do things like this:
if obj.geocoded?
obj.nearbys(30) # other objects within 30 miles
obj.distance_from([40.714,-100.234]) # distance from arbitrary point to object
obj.bearing_to("Paris, France") # direction from object to arbitrary point
end
### For MongoDB-backed models:
Please do not use Geocoder's `near` method. Instead use MongoDB's built-in [geospatial query language](https://docs.mongodb.org/manual/reference/command/geoNear/), which is faster. Mongoid also provides [a DSL](http://mongoid.github.io/en/mongoid/docs/querying.html#geo_near) for geospatial queries.
Geocoding HTTP Requests
-----------------------
Geocoder adds `location` and `safe_location` methods to the standard `Rack::Request` object so you can easily look up the location of any HTTP request by IP address. For example, in a Rails controller or a Sinatra app:
# returns Geocoder::Result object
result = request.location
**The `location` method is vulnerable to trivial IP address spoofing via HTTP headers.** If that's a problem for your application, use `safe_location` instead, but be aware that `safe_location` will *not* try to trace a request's originating IP through proxy headers; you will instead get the location of the last proxy the request passed through, if any (excepting any proxies you have explicitly whitelisted in your Rack config).
Note that these methods will usually return `nil` in test and development environments because things like "localhost" and "0.0.0.0" are not geocodable IP addresses.
Geocoding Service ("Lookup") Configuration
------------------------------------------
Geocoder supports a variety of street and IP address geocoding services. The default lookups are `:nominatim` for street addresses and `:ipinfo_io` for IP addresses. Please see the [API Guide](https://github.com/alexreisner/geocoder/blob/master/README_API_GUIDE.md) for details on specific geocoding services (not all settings are supported by all services).
To create a Rails initializer with sample configuration:
rails generate geocoder:config
Some common options are:
# config/initializers/geocoder.rb
Geocoder.configure(
# street address geocoding service (default :nominatim)
lookup: :yandex,
# IP address geocoding service (default :ipinfo_io)
ip_lookup: :maxmind,
# to use an API key:
api_key: "...",
# geocoding service request timeout, in seconds (default 3):
timeout: 5,
# set default units to kilometers:
units: :km,
# caching (see [below](#caching) for details):
cache: Redis.new,
cache_prefix: "..."
)
Please see [`lib/geocoder/configuration.rb`](https://github.com/alexreisner/geocoder/blob/master/lib/geocoder/configuration.rb) for a complete list of configuration options. Additionally, some lookups have their own special configuration options which are directly supported by Geocoder. For example, to specify a value for Google's `bounds` parameter:
# with Google:
Geocoder.search("Middletown", bounds: [[40.6,-77.9], [39.9,-75.9]])
Please see the [source code for each lookup](https://github.com/alexreisner/geocoder/tree/master/lib/geocoder/lookups) to learn about directly supported parameters. Parameters which are not directly supported can be specified using the `:params` option, which appends options to the query string of the geocoding request. For example:
# Nominatim's `countrycodes` parameter:
Geocoder.search("Rome", params: {countrycodes: "us,ca"})
# Google's `region` parameter:
Geocoder.search("Rome", params: {region: "..."})
### Configuring Multiple Services
You can configure multiple geocoding services at once by using the service's name as a key for a sub-configuration hash, like this:
Geocoder.configure(
timeout: 2,
cache: Redis.new,
yandex: {
api_key: "...",
timeout: 5
},
baidu: {
api_key: "..."
},
maxmind: {
api_key: "...",
service: :omni
}
)
Lookup-specific settings override global settings so, in this example, the timeout for all lookups is 2 seconds, except for Yandex which is 5.
Performance and Optimization
----------------------------
### Database Indices
In MySQL and Postgres, queries use a bounding box to limit the number of points over which a more precise distance calculation needs to be done. To take advantage of this optimisation, you need to add a composite index on latitude and longitude. In your Rails migration:
add_index :table, [:latitude, :longitude]
In MongoDB, by default, the methods `geocoded_by` and `reverse_geocoded_by` create a geospatial index. You can avoid index creation with the `:skip_index option`, for example:
include Geocoder::Model::Mongoid
geocoded_by :address, skip_index: true
### Avoiding Unnecessary API Requests
Geocoding only needs to be performed under certain conditions. To avoid unnecessary work (and quota usage) you will probably want to geocode an object only when:
* an address is present
* the address has been changed since last save (or it has never been saved)
The exact code will vary depending on the method you use for your geocodable string, but it would be something like this:
after_validation :geocode, if: ->(obj){ obj.address.present? and obj.address_changed? }
### Caching
When relying on any external service, it's always a good idea to cache retrieved data. When implemented correctly, it improves your app's response time and stability. It's easy to cache geocoding results with Geocoder -- just configure a cache store:
Geocoder.configure(cache: Redis.new)
This example uses Redis, but the cache store can be any object that supports these methods:
* `store#[](key)` or `#get` or `#read` - retrieves a value
* `store#[]=(key, value)` or `#set` or `#write` - stores a value
* `store#del(url)` - deletes a value
* `store#keys` - (Optional) Returns array of keys. Used if you wish to expire the entire cache (see below).
Even a plain Ruby hash will work, though it's not a great choice (cleared out when app is restarted, not shared between app instances, etc).
You can also set a custom prefix to be used for cache keys:
Geocoder.configure(cache_prefix: "...")
By default the prefix is `geocoder:`
If you need to expire cached content:
Geocoder::Lookup.get(Geocoder.config[:lookup]).cache.expire(:all) # expire cached results for current Lookup
Geocoder::Lookup.get(:nominatim).cache.expire("http://...") # expire cached result for a specific URL
Geocoder::Lookup.get(:nominatim).cache.expire(:all) # expire cached results for Google Lookup
# expire all cached results for all Lookups.
# Be aware that this methods spawns a new Lookup object for each Service
Geocoder::Lookup.all_services.each{|service| Geocoder::Lookup.get(service).cache.expire(:all)}
Do *not* include the prefix when passing a URL to be expired. Expiring `:all` will only expire keys with the configured prefix -- it will *not* expire every entry in your key/value store.
For an example of a cache store with URL expiry, please see examples/autoexpire_cache.rb
_Before you implement caching in your app please be sure that doing so does not violate the Terms of Service for your geocoding service._
Advanced Model Configuration
----------------------------
You are not stuck with the `latitude` and `longitude` database column names (with ActiveRecord) or the `coordinates` array (Mongo) for storing coordinates. For example:
geocoded_by :address, latitude: :lat, longitude: :lon # ActiveRecord
geocoded_by :address, coordinates: :coords # MongoDB
For reverse geocoding, you can specify the attribute where the address will be stored. For example:
reverse_geocoded_by :latitude, :longitude, address: :loc # ActiveRecord
reverse_geocoded_by :coordinates, address: :street_address # MongoDB
To specify geocoding parameters in your model:
geocoded_by :address, params: {region: "..."}
Supported parameters: `:lookup`, `:ip_lookup`, `:language`, and `:params`. You can specify an anonymous function if you want to set these on a per-request basis. For example, to use different lookups for objects in different regions:
geocoded_by :address, lookup: lambda{ |obj| obj.geocoder_lookup }
def geocoder_lookup
if country_code == "RU"
:yandex
elsif country_code == "CN"
:baidu
else
:nominatim
end
end
### Custom Result Handling
So far we have seen examples where geocoding results are assigned automatically to predefined object attributes. However, you can skip the auto-assignment by providing a block which handles the parsed geocoding results any way you like, for example:
reverse_geocoded_by :latitude, :longitude do |obj,results|
if geo = results.first
obj.city = geo.city
obj.zipcode = geo.postal_code
obj.country = geo.country_code
end
end
after_validation :reverse_geocode
Every `Geocoder::Result` object, `result`, provides the following data:
* `result.latitude` - float
* `result.longitude` - float
* `result.coordinates` - array of the above two in the form of `[lat,lon]`
* `result.address` - string
* `result.city` - string
* `result.state` - string
* `result.state_code` - string
* `result.postal_code` - string
* `result.country` - string
* `result.country_code` - string
Most APIs return other data in addition to these globally-supported attributes. To directly access the full response, call the `#data` method of any Geocoder::Result object. See the [API Guide](https://github.com/alexreisner/geocoder/blob/master/README_API_GUIDE.md) for links to documentation for all geocoding services.
### Forward and Reverse Geocoding in the Same Model
You can apply both forward and reverse geocoding to the same model (i.e. users can supply an address or coordinates and Geocoder fills in whatever's missing) but you'll need to provide two different address methods:
* one for storing the fetched address (when reverse geocoding)
* one for providing an address to use when fetching coordinates (forward geocoding)
For example:
class Venue
# build an address from street, city, and state attributes
geocoded_by :address_from_components
# store the fetched address in the full_address attribute
reverse_geocoded_by :latitude, :longitude, address: :full_address
end
The same goes for latitude/longitude. However, for purposes of querying the database, there can be only one authoritative set of latitude/longitude attributes for use in database queries. This is whichever you specify last. For example, here the attributes *without* the `fetched_` prefix will be authoritative:
class Venue
geocoded_by :address,
latitude: :fetched_latitude,
longitude: :fetched_longitude
reverse_geocoded_by :latitude, :longitude
end
Advanced Database Queries
-------------------------
*The following apply to ActiveRecord only. For MongoDB, please use the built-in geospatial features.*
The default `near` search looks for objects within a circle. To search within a doughnut or ring use the `:min_radius` option:
Venue.near("Austin, TX", 200, min_radius: 40)
To search within a rectangle (note that results will *not* include `distance` and `bearing` attributes):
sw_corner = [40.71, 100.23]
ne_corner = [36.12, 88.65]
Venue.within_bounding_box(sw_corner, ne_corner)
To search for objects near a certain point where each object has a different distance requirement (which is defined in the database), you can pass a column name for the radius:
Venue.near([40.71, 99.23], :effective_radius)
If you store multiple sets of coordinates for each object, you can specify latitude and longitude columns to use for a search:
Venue.near("Paris", 50, latitude: :secondary_latitude, longitude: :secondary_longitude)
### Distance and Bearing
When you run a geospatial query, the returned objects have two attributes added:
* `obj.distance` - number of miles from the search point to this object
* `obj.bearing` - direction from the search point to this object
Results are automatically sorted by distance from the search point, closest to farthest. Bearing is given as a number of degrees clockwise from due north, for example:
* `0` - due north
* `180` - due south
* `90` - due east
* `270` - due west
* `230.1` - southwest
* `359.9` - almost due north
You can convert these to compass point names via provided method:
Geocoder::Calculations.compass_point(355) # => "N"
Geocoder::Calculations.compass_point(45) # => "NE"
Geocoder::Calculations.compass_point(208) # => "SW"
_Note: when running queries on SQLite, `distance` and `bearing` are provided for consistency only. They are not very accurate._
For more advanced geospatial querying, please see the [rgeo gem](https://github.com/rgeo/rgeo).
Geospatial Calculations
-----------------------
The `Geocoder::Calculations` module contains some useful methods:
# find the distance between two arbitrary points
Geocoder::Calculations.distance_between([47.858205,2.294359], [40.748433,-73.985655])
=> 3619.77359999382 # in configured units (default miles)
# find the geographic center (aka center of gravity) of objects or points
Geocoder::Calculations.geographic_center([city1, city2, [40.22,-73.99], city4])
=> [35.14968, -90.048929]
See [the code](https://github.com/alexreisner/geocoder/blob/master/lib/geocoder/calculations.rb) for more!
Batch Geocoding
---------------
If you have just added geocoding to an existing application with a lot of objects, you can use this Rake task to geocode them all:
rake geocode:all CLASS=YourModel
If you need reverse geocoding instead, call the task with REVERSE=true:
rake geocode:all CLASS=YourModel REVERSE=true
In either case, it won't try to geocode objects that are already geocoded. The task will print warnings if you exceed the rate limit for your geocoding service. Some services enforce a per-second limit in addition to a per-day limit. To avoid exceeding the per-second limit, you can add a `SLEEP` option to pause between requests for a given amount of time. You can also load objects in batches to save memory, for example:
rake geocode:all CLASS=YourModel SLEEP=0.25 BATCH=100
To avoid exceeding per-day limits you can add a `LIMIT` option. However, this will ignore the `BATCH` value, if provided.
rake geocode:all CLASS=YourModel LIMIT=1000
Testing
-------
When writing tests for an app that uses Geocoder it may be useful to avoid network calls and have Geocoder return consistent, configurable results. To do this, configure the `:test` lookup and/or `:ip_lookup`
Geocoder.configure(lookup: :test, ip_lookup: :test)
Add stubs to define the results that will be returned:
Geocoder::Lookup::Test.add_stub(
"New York, NY", [
{
'coordinates' => [40.7143528, -74.0059731],
'address' => 'New York, NY, USA',
'state' => 'New York',
'state_code' => 'NY',
'country' => 'United States',
'country_code' => 'US'
}
]
)
With the above stub defined, any query for "New York, NY" will return the results array that follows. You can also set a default stub, to be returned when no other stub matches a given query:
Geocoder::Lookup::Test.set_default_stub(
[
{
'coordinates' => [40.7143528, -74.0059731],
'address' => 'New York, NY, USA',
'state' => 'New York',
'state_code' => 'NY',
'country' => 'United States',
'country_code' => 'US'
}
]
)
Notes:
- Keys must be strings (not symbols) when calling `add_stub` or `set_default_stub`. For example `'country' =>` not `:country =>`.
- To clear stubs (e.g. prior to another spec), use `Geocoder::Lookup::Test.reset`. This will clear all stubs _including the default stub_.
- The stubbed result objects returned by the Test lookup do not support all the methods real result objects do. If you need to test interaction with real results it may be better to use an external stubbing tool and something like WebMock or VCR to prevent network calls.
Error Handling
--------------
By default Geocoder will rescue any exceptions raised by calls to a geocoding service and return an empty array. You can override this on a per-exception basis, and also have Geocoder raise its own exceptions for certain events (eg: API quota exceeded) by using the `:always_raise` option:
Geocoder.configure(always_raise: [SocketError, Timeout::Error])
You can also do this to raise all exceptions:
Geocoder.configure(always_raise: :all)
The raise-able exceptions are:
SocketError
Timeout::Error
Geocoder::OverQueryLimitError
Geocoder::RequestDenied
Geocoder::InvalidRequest
Geocoder::InvalidApiKey
Geocoder::ServiceUnavailable
Note that only a few of the above exceptions are raised by any given lookup, so there's no guarantee if you configure Geocoder to raise `ServiceUnavailable` that it will actually be raised under those conditions (because most APIs don't return 503 when they should; you may get a `Timeout::Error` instead). Please see the source code for your particular lookup for details.
Command Line Interface
----------------------
When you install the Geocoder gem it adds a `geocode` command to your shell. You can search for a street address, IP address, postal code, coordinates, etc just like you can with the Geocoder.search method for example:
$ geocode 29.951,-90.081
Latitude: 29.952211
Longitude: -90.080563
Full address: 1500 Sugar Bowl Dr, New Orleans, LA 70112, USA
City: New Orleans
State/province: Louisiana
Postal code: 70112
Country: United States
Map: http://maps.google.com/maps?q=29.952211,-90.080563
There are also a number of options for setting the geocoding API, key, and language, viewing the raw JSON response, and more. Please run `geocode -h` for details.
Technical Discussions
---------------------
### Distance Queries in SQLite
SQLite's lack of trigonometric functions requires an alternate implementation of the `near` scope. When using SQLite, Geocoder will automatically use a less accurate algorithm for finding objects near a given point. Results of this algorithm should not be trusted too much as it will return objects that are outside the given radius, along with inaccurate distance and bearing calculations.
There are few options for finding objects near a given point in SQLite without installing extensions:
1. Use a square instead of a circle for finding nearby points. For example, if you want to find points near 40.71, 100.23, search for objects with latitude between 39.71 and 41.71 and longitude between 99.23 and 101.23. One degree of latitude or longitude is at most 69 miles so divide your radius (in miles) by 69.0 to get the amount to add and subtract from your center coordinates to get the upper and lower bounds. The results will not be very accurate (you'll get points outside the desired radius), but you will get all the points within the required radius.
2. Load all objects into memory and compute distances between them using the `Geocoder::Calculations.distance_between` method. This will produce accurate results but will be very slow (and use a lot of memory) if you have a lot of objects in your database.
3. If you have a large number of objects (so you can't use approach #2) and you need accurate results (better than approach #1 will give), you can use a combination of the two. Get all the objects within a square around your center point, and then eliminate the ones that are too far away using `Geocoder::Calculations.distance_between`.
Because Geocoder needs to provide this functionality as a scope, we must go with option #1, but feel free to implement #2 or #3 if you need more accuracy.
### Numeric Data Types and Precision
Geocoder works with any numeric data type (e.g. float, double, decimal) on which trig (and other mathematical) functions can be performed.
A summary of the relationship between geographic precision and the number of decimal places in latitude and longitude degree values is available on [Wikipedia](http://en.wikipedia.org/wiki/Decimal_degrees#Accuracy). As an example: at the equator, latitude/longitude values with 4 decimal places give about 11 metres precision, whereas 5 decimal places gives roughly 1 metre precision.
Troubleshooting
---------------
### Mongoid
If you get one of these errors:
uninitialized constant Geocoder::Model::Mongoid
uninitialized constant Geocoder::Model::Mongoid::Mongo
you should check your Gemfile to make sure the Mongoid gem is listed _before_ Geocoder. If Mongoid isn't loaded when Geocoder is initialized, Geocoder will not load support for Mongoid.
### ActiveRecord
A lot of debugging time can be saved by understanding how Geocoder works with ActiveRecord. When you use the `near` scope or the `nearbys` method of a geocoded object, Geocoder creates an ActiveModel::Relation object which adds some attributes (eg: distance, bearing) to the SELECT clause. It also adds a condition to the WHERE clause to check that distance is within the given radius. Because the SELECT clause is modified, anything else that modifies the SELECT clause may produce strange results, for example:
* using the `pluck` method (selects only a single column)
* specifying another model through `includes` (selects columns from other tables)
### Geocoding is Slow
With most lookups, addresses are translated into coordinates via an API that must be accessed through the Internet. These requests are subject to the same bandwidth constraints as every other HTTP request, and will vary in speed depending on network conditions. Furthermore, many of the services supported by Geocoder are free and thus very popular. Often they cannot keep up with demand and their response times become quite bad.
If your application requires quick geocoding responses you will probably need to pay for a non-free service, or--if you're doing IP address geocoding--use a lookup that doesn't require an external (network-accessed) service.
For IP address lookups in Rails applications, it is generally NOT a good idea to run `request.location` during a synchronous page load without understanding the speed/behavior of your configured lookup. If the lookup becomes slow, so will your website.
For the most part, the speed of geocoding requests has little to do with the Geocoder gem. Please take the time to learn about your configured lookup (links to documentation are provided above) before posting performance-related issues.
### Unexpected Responses from Geocoding Services
Take a look at the server's raw response. You can do this by getting the request URL in an app console:
Geocoder::Lookup.get(:nominatim).query_url(Geocoder::Query.new("..."))
Replace `:nominatim` with the lookup you are using and replace `...` with the address you are trying to geocode. Then visit the returned URL in your web browser. Often the API will return an error message that helps you resolve the problem. If, after reading the raw response, you believe there is a problem with Geocoder, please post an issue and include both the URL and raw response body.
You can also fetch the response in the console:
Geocoder::Lookup.get(:nominatim).send(:fetch_raw_data, Geocoder::Query.new("..."))
Known Issues
------------
### Using `count` with Rails 4.1+
Due to [a change in ActiveRecord's `count` method](https://github.com/rails/rails/pull/10710) you will need to use `count(:all)` to explicitly count all columns ("*") when using a `near` scope. Using `near` and calling `count` with no argument will cause exceptions in many cases.
### Using `near` with `includes`
You cannot use the `near` scope with another scope that provides an `includes` option because the `SELECT` clause generated by `near` will overwrite it (or vice versa).
Instead of using `includes` to reduce the number of database queries, try using `joins` with either the `:select` option or a call to `preload`. For example:
# Pass a :select option to the near scope to get the columns you want.
# Instead of City.near(...).includes(:venues), try:
City.near("Omaha, NE", 20, select: "cities.*, venues.*").joins(:venues)
# This preload call will normally trigger two queries regardless of the
# number of results; one query on hotels, and one query on administrators.
# Instead of Hotel.near(...).includes(:administrator), try:
Hotel.near("London, UK", 50).joins(:administrator).preload(:administrator)
If anyone has a more elegant solution to this problem I am very interested in seeing it.
### Using `near` with objects close to the 180th meridian
The `near` method will not look across the 180th meridian to find objects close to a given point. In practice this is rarely an issue outside of New Zealand and certain surrounding islands. This problem does not exist with the zero-meridian. The problem is due to a shortcoming of the Haversine formula which Geocoder uses to calculate distances.
Reporting Issues
----------------
When reporting an issue, please list the version of Geocoder you are using and any relevant information about your application (Rails version, database type and version, etc). Please describe as specifically as you can what behavior you are seeing (eg: an error message? a nil return value?).
Please DO NOT use GitHub issues to ask questions about how to use Geocoder. Sites like [StackOverflow](http://www.stackoverflow.com/) are a better forum for such discussions.
Contributing
------------
Contributions are welcome via Github pull requests. If you are new to the project and looking for a way to get involved, try picking up an issue with a "beginner-task" label. Hints about what needs to be done are usually provided.
For all contributions, please respect the following guidelines:
* Each pull request should implement ONE feature or bugfix. If you want to add or fix more than one thing, submit more than one pull request.
* Do not commit changes to files that are irrelevant to your feature or bugfix (eg: `.gitignore`).
* Do not add dependencies on other gems.
* Do not add unnecessary `require` statements which could cause LoadErrors on certain systems.
* Remember: Geocoder needs to run outside of Rails. Don't assume things like ActiveSupport are available.
* Be willing to accept criticism and work on improving your code; Geocoder is used by thousands of developers and care must be taken not to introduce bugs.
* Be aware that the pull request review process is not immediate, and is generally proportional to the size of the pull request.
* If your pull request is merged, please do not ask for an immediate release of the gem. There are many factors contributing to when releases occur (remember that they affect thousands of apps with Geocoder in their Gemfiles). If necessary, please install from the Github source until the next official release.
Copyright (c) 2009-18 Alex Reisner, released under the MIT license.
|