1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
|
# Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
require 'date'
require 'google/apis/core/base_service'
require 'google/apis/core/json_representation'
require 'google/apis/core/hashable'
require 'google/apis/errors'
module Google
module Apis
module SpannerV1
# A backup of a Cloud Spanner database.
class Backup
include Google::Apis::Core::Hashable
# Output only. The backup will contain an externally consistent copy of the
# database at the timestamp specified by `create_time`. `create_time` is
# approximately the time the CreateBackup request is received.
# Corresponds to the JSON property `createTime`
# @return [String]
attr_accessor :create_time
# Required for the CreateBackup operation. Name of the database from which this
# backup was created. This needs to be in the same instance as the backup.
# Values are of the form `projects//instances//databases/`.
# Corresponds to the JSON property `database`
# @return [String]
attr_accessor :database
# Required for the CreateBackup operation. The expiration time of the backup,
# with microseconds granularity that must be at least 6 hours and at most 366
# days from the time the CreateBackup request is processed. Once the `
# expire_time` has passed, the backup is eligible to be automatically deleted by
# Cloud Spanner to free the resources used by the backup.
# Corresponds to the JSON property `expireTime`
# @return [String]
attr_accessor :expire_time
# Output only for the CreateBackup operation. Required for the UpdateBackup
# operation. A globally unique identifier for the backup which cannot be changed.
# Values are of the form `projects//instances//backups/a-z*[a-z0-9]` The final
# segment of the name must be between 2 and 60 characters in length. The backup
# is stored in the location(s) specified in the instance configuration of the
# instance containing the backup, identified by the prefix of the backup name of
# the form `projects//instances/`.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# Output only. The names of the restored databases that reference the backup.
# The database names are of the form `projects//instances//databases/`.
# Referencing databases may exist in different instances. The existence of any
# referencing database prevents the backup from being deleted. When a restored
# database from the backup enters the `READY` state, the reference to the backup
# is removed.
# Corresponds to the JSON property `referencingDatabases`
# @return [Array<String>]
attr_accessor :referencing_databases
# Output only. Size of the backup in bytes.
# Corresponds to the JSON property `sizeBytes`
# @return [Fixnum]
attr_accessor :size_bytes
# Output only. The current state of the backup.
# Corresponds to the JSON property `state`
# @return [String]
attr_accessor :state
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@create_time = args[:create_time] if args.key?(:create_time)
@database = args[:database] if args.key?(:database)
@expire_time = args[:expire_time] if args.key?(:expire_time)
@name = args[:name] if args.key?(:name)
@referencing_databases = args[:referencing_databases] if args.key?(:referencing_databases)
@size_bytes = args[:size_bytes] if args.key?(:size_bytes)
@state = args[:state] if args.key?(:state)
end
end
# Information about a backup.
class BackupInfo
include Google::Apis::Core::Hashable
# Name of the backup.
# Corresponds to the JSON property `backup`
# @return [String]
attr_accessor :backup
# The backup contains an externally consistent copy of `source_database` at the
# timestamp specified by `create_time`.
# Corresponds to the JSON property `createTime`
# @return [String]
attr_accessor :create_time
# Name of the database the backup was created from.
# Corresponds to the JSON property `sourceDatabase`
# @return [String]
attr_accessor :source_database
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@backup = args[:backup] if args.key?(:backup)
@create_time = args[:create_time] if args.key?(:create_time)
@source_database = args[:source_database] if args.key?(:source_database)
end
end
# The request for BatchCreateSessions.
class BatchCreateSessionsRequest
include Google::Apis::Core::Hashable
# Required. The number of sessions to be created in this batch call. The API may
# return fewer than the requested number of sessions. If a specific number of
# sessions are desired, the client can make additional calls to
# BatchCreateSessions (adjusting session_count as necessary).
# Corresponds to the JSON property `sessionCount`
# @return [Fixnum]
attr_accessor :session_count
# A session in the Cloud Spanner API.
# Corresponds to the JSON property `sessionTemplate`
# @return [Google::Apis::SpannerV1::Session]
attr_accessor :session_template
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@session_count = args[:session_count] if args.key?(:session_count)
@session_template = args[:session_template] if args.key?(:session_template)
end
end
# The response for BatchCreateSessions.
class BatchCreateSessionsResponse
include Google::Apis::Core::Hashable
# The freshly created sessions.
# Corresponds to the JSON property `session`
# @return [Array<Google::Apis::SpannerV1::Session>]
attr_accessor :session
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@session = args[:session] if args.key?(:session)
end
end
# The request for BeginTransaction.
class BeginTransactionRequest
include Google::Apis::Core::Hashable
# # Transactions Each session can have at most one active transaction at a time (
# note that standalone reads and queries use a transaction internally and do
# count towards the one transaction limit). After the active transaction is
# completed, the session can immediately be re-used for the next transaction. It
# is not necessary to create a new session for each transaction. # Transaction
# Modes Cloud Spanner supports three transaction modes: 1. Locking read-write.
# This type of transaction is the only way to write data into Cloud Spanner.
# These transactions rely on pessimistic locking and, if necessary, two-phase
# commit. Locking read-write transactions may abort, requiring the application
# to retry. 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow writes. Snapshot read-
# only transactions can be configured to read at timestamps in the past.
# Snapshot read-only transactions do not need to be committed. 3. Partitioned
# DML. This type of transaction is used to execute a single Partitioned DML
# statement. Partitioned DML partitions the key space and runs the DML statement
# over each partition in parallel using separate, internal transactions that
# commit independently. Partitioned DML transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions provide
# simpler semantics and are almost always faster. In particular, read-only
# transactions do not take locks, so they do not conflict with read-write
# transactions. As a consequence of not taking locks, they also do not abort, so
# retry loops are not needed. Transactions may only read/write data in a single
# database. They may, however, read/write data in different tables within that
# database. ## Locking Read-Write Transactions Locking transactions may be used
# to atomically read-modify-write data anywhere in a database. This type of
# transaction is externally consistent. Clients should attempt to minimize the
# amount of time a transaction is active. Faster transactions commit with higher
# probability and cause less contention. Cloud Spanner attempts to keep read
# locks active as long as the transaction continues to do reads, and the
# transaction has not been terminated by Commit or Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a transaction's
# locks and abort it. Conceptually, a read-write transaction consists of zero or
# more reads or SQL statements followed by Commit. At any time before Commit,
# the client can send a Rollback request to abort the transaction. ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired are
# still valid at commit time, and it is able to acquire write locks for all
# writes. Cloud Spanner can abort the transaction for any reason. If a commit
# attempt returns `ABORTED`, Cloud Spanner guarantees that the transaction has
# not modified any user data in Cloud Spanner. Unless the transaction commits,
# Cloud Spanner makes no guarantees about how long the transaction's locks were
# held for. It is an error to use Cloud Spanner locks for any sort of mutual
# exclusion other than between Cloud Spanner transactions themselves. ###
# Retrying Aborted Transactions When a transaction aborts, the application can
# choose to retry the whole transaction again. To maximize the chances of
# successfully committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock priority
# increases with each consecutive abort, meaning that each attempt has a
# slightly better chance of success than the previous. Under some circumstances (
# e.g., many transactions attempting to modify the same row(s)), a transaction
# can abort many times in a short period before successfully committing. Thus,
# it is not a good idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent retrying. ##
# # Idle Transactions A transaction is considered idle if it has no outstanding
# reads or SQL queries and has not started a read or SQL query within the last
# 10 seconds. Idle transactions can be aborted by Cloud Spanner so that they don'
# t hold on to locks indefinitely. In that case, the commit will fail with error
# `ABORTED`. If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the transaction from
# becoming idle. ## Snapshot Read-Only Transactions Snapshot read-only
# transactions provides a simpler method than locking read-write transactions
# for doing several consistent reads. However, this type of transaction does not
# support writes. Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that timestamp.
# Since they do not acquire locks, they do not block concurrent read-write
# transactions. Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read timestamp is
# garbage collected; however, the default garbage collection policy is generous
# enough that most applications do not need to worry about this in practice.
# Snapshot read-only transactions do not need to call Commit or Rollback (and in
# fact are not permitted to do so). To execute a snapshot transaction, the
# client specifies a timestamp bound, which tells Cloud Spanner how to choose a
# read timestamp. The types of timestamp bound are: - Strong (the default). -
# Bounded staleness. - Exact staleness. If the Cloud Spanner database to be read
# is geographically distributed, stale read-only transactions can execute more
# quickly than strong or read-write transaction, because they are able to
# execute far from the leader replica. Each type of timestamp bound is discussed
# in detail below. ### Strong Strong reads are guaranteed to see the effects of
# all transactions that have committed before the start of the read. Furthermore,
# all rows yielded by a single read are consistent with each other -- if any
# part of the read observes a transaction, all parts of the read see the
# transaction. Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are concurrent writes.
# If consistency across reads is required, the reads should be executed within a
# transaction or at an exact read timestamp. See TransactionOptions.ReadOnly.
# strong. ### Exact Staleness These timestamp bounds execute reads at a user-
# specified timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe modifications done by
# all transactions with a commit timestamp <= the read timestamp, and observe
# none of the modifications done by transactions with a larger commit timestamp.
# They will block until all conflicting transactions that may be assigned commit
# timestamps <= the read timestamp have finished. The timestamp can either be
# expressed as an absolute Cloud Spanner commit timestamp or a staleness
# relative to the current time. These modes do not require a "negotiation phase"
# to pick a timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand, boundedly
# stale reads usually return fresher results. See TransactionOptions.ReadOnly.
# read_timestamp and TransactionOptions.ReadOnly.exact_staleness. ### Bounded
# Staleness Bounded staleness modes allow Cloud Spanner to pick the read
# timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
# the newest timestamp within the staleness bound that allows execution of the
# reads at the closest available replica without blocking. All rows yielded are
# consistent with each other -- if any part of the read observes a transaction,
# all parts of the read see the transaction. Boundedly stale reads are not
# repeatable: two stale reads, even if they use the same staleness bound, can
# execute at different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase negotiates a
# timestamp among all replicas needed to serve the read. In the second phase,
# reads are executed at the negotiated timestamp. As a result of the two phase
# execution, bounded staleness reads are usually a little slower than comparable
# exact staleness reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica. Because the
# timestamp negotiation requires up-front knowledge of which rows will be read,
# it can only be used with single-use read-only transactions. See
# TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
# min_read_timestamp. ### Old Read Timestamps and Garbage Collection Cloud
# Spanner continuously garbage collects deleted and overwritten data in the
# background to reclaim storage space. This process is known as "version GC". By
# default, version GC reclaims versions after they are one hour old. Because of
# this, Cloud Spanner cannot perform reads at read timestamps more than one hour
# in the past. This restriction also applies to in-progress reads and/or SQL
# queries whose timestamp become too old while executing. Reads and SQL queries
# with too-old read timestamps fail with the error `FAILED_PRECONDITION`. ##
# Partitioned DML Transactions Partitioned DML transactions are used to execute
# DML statements with a different execution strategy that provides different,
# and often better, scalability properties for large, table-wide operations than
# DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
# workload, should prefer using ReadWrite transactions. Partitioned DML
# partitions the keyspace and runs the DML statement on each partition in
# separate, internal transactions. These transactions commit automatically when
# complete, and run independently from one another. To reduce lock contention,
# this execution strategy only acquires read locks on rows that match the WHERE
# clause of the statement. Additionally, the smaller per-partition transactions
# hold locks for less time. That said, Partitioned DML is not a drop-in
# replacement for standard DML used in ReadWrite transactions. - The DML
# statement must be fully-partitionable. Specifically, the statement must be
# expressible as the union of many statements which each access only a single
# row of the table. - The statement is not applied atomically to all rows of the
# table. Rather, the statement is applied atomically to partitions of the table,
# in independent transactions. Secondary index rows are updated atomically with
# the base table rows. - Partitioned DML does not guarantee exactly-once
# execution semantics against a partition. The statement will be applied at
# least once to each partition. It is strongly recommended that the DML
# statement should be idempotent to avoid unexpected results. For instance, it
# is potentially dangerous to run a statement such as `UPDATE table SET column =
# column + 1` as it could be run multiple times against some rows. - The
# partitions are committed automatically - there is no support for Commit or
# Rollback. If the call returns an error, or if the client issuing the
# ExecuteSql call dies, it is possible that some rows had the statement executed
# on them successfully. It is also possible that statement was never executed
# against other rows. - Partitioned DML transactions may only contain the
# execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
# If any error is encountered during the execution of the partitioned DML
# operation (for instance, a UNIQUE INDEX violation, division by zero, or a
# value that cannot be stored due to schema constraints), then the operation is
# stopped at that point and an error is returned. It is possible that at this
# point, some partitions have been committed (or even committed multiple times),
# and other partitions have not been run at all. Given the above, Partitioned
# DML is good fit for large, database-wide, operations that are idempotent, such
# as deleting old rows from a very large table.
# Corresponds to the JSON property `options`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :options
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@options = args[:options] if args.key?(:options)
end
end
# Associates `members` with a `role`.
class Binding
include Google::Apis::Core::Hashable
# Represents a textual expression in the Common Expression Language (CEL) syntax.
# CEL is a C-like expression language. The syntax and semantics of CEL are
# documented at https://github.com/google/cel-spec. Example (Comparison): title:
# "Summary size limit" description: "Determines if a summary is less than 100
# chars" expression: "document.summary.size() < 100" Example (Equality): title: "
# Requestor is owner" description: "Determines if requestor is the document
# owner" expression: "document.owner == request.auth.claims.email" Example (
# Logic): title: "Public documents" description: "Determine whether the document
# should be publicly visible" expression: "document.type != 'private' &&
# document.type != 'internal'" Example (Data Manipulation): title: "Notification
# string" description: "Create a notification string with a timestamp."
# expression: "'New message received at ' + string(document.create_time)" The
# exact variables and functions that may be referenced within an expression are
# determined by the service that evaluates it. See the service documentation for
# additional information.
# Corresponds to the JSON property `condition`
# @return [Google::Apis::SpannerV1::Expr]
attr_accessor :condition
# Specifies the identities requesting access for a Cloud Platform resource. `
# members` can have the following values: * `allUsers`: A special identifier
# that represents anyone who is on the internet; with or without a Google
# account. * `allAuthenticatedUsers`: A special identifier that represents
# anyone who is authenticated with a Google account or a service account. * `
# user:`emailid``: An email address that represents a specific Google account.
# For example, `alice@example.com` . * `serviceAccount:`emailid``: An email
# address that represents a service account. For example, `my-other-app@appspot.
# gserviceaccount.com`. * `group:`emailid``: An email address that represents a
# Google group. For example, `admins@example.com`. * `deleted:user:`emailid`?uid=
# `uniqueid``: An email address (plus unique identifier) representing a user
# that has been recently deleted. For example, `alice@example.com?uid=
# 123456789012345678901`. If the user is recovered, this value reverts to `user:`
# emailid`` and the recovered user retains the role in the binding. * `deleted:
# serviceAccount:`emailid`?uid=`uniqueid``: An email address (plus unique
# identifier) representing a service account that has been recently deleted. For
# example, `my-other-app@appspot.gserviceaccount.com?uid=123456789012345678901`.
# If the service account is undeleted, this value reverts to `serviceAccount:`
# emailid`` and the undeleted service account retains the role in the binding. *
# `deleted:group:`emailid`?uid=`uniqueid``: An email address (plus unique
# identifier) representing a Google group that has been recently deleted. For
# example, `admins@example.com?uid=123456789012345678901`. If the group is
# recovered, this value reverts to `group:`emailid`` and the recovered group
# retains the role in the binding. * `domain:`domain``: The G Suite domain (
# primary) that represents all the users of that domain. For example, `google.
# com` or `example.com`.
# Corresponds to the JSON property `members`
# @return [Array<String>]
attr_accessor :members
# Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor`
# , or `roles/owner`.
# Corresponds to the JSON property `role`
# @return [String]
attr_accessor :role
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@condition = args[:condition] if args.key?(:condition)
@members = args[:members] if args.key?(:members)
@role = args[:role] if args.key?(:role)
end
end
# Metadata associated with a parent-child relationship appearing in a PlanNode.
class ChildLink
include Google::Apis::Core::Hashable
# The node to which the link points.
# Corresponds to the JSON property `childIndex`
# @return [Fixnum]
attr_accessor :child_index
# The type of the link. For example, in Hash Joins this could be used to
# distinguish between the build child and the probe child, or in the case of the
# child being an output variable, to represent the tag associated with the
# output variable.
# Corresponds to the JSON property `type`
# @return [String]
attr_accessor :type
# Only present if the child node is SCALAR and corresponds to an output variable
# of the parent node. The field carries the name of the output variable. For
# example, a `TableScan` operator that reads rows from a table will have child
# links to the `SCALAR` nodes representing the output variables created for each
# column that is read by the operator. The corresponding `variable` fields will
# be set to the variable names assigned to the columns.
# Corresponds to the JSON property `variable`
# @return [String]
attr_accessor :variable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@child_index = args[:child_index] if args.key?(:child_index)
@type = args[:type] if args.key?(:type)
@variable = args[:variable] if args.key?(:variable)
end
end
# The request for Commit.
class CommitRequest
include Google::Apis::Core::Hashable
# The mutations to be executed when this transaction commits. All mutations are
# applied atomically, in the order they appear in this list.
# Corresponds to the JSON property `mutations`
# @return [Array<Google::Apis::SpannerV1::Mutation>]
attr_accessor :mutations
# # Transactions Each session can have at most one active transaction at a time (
# note that standalone reads and queries use a transaction internally and do
# count towards the one transaction limit). After the active transaction is
# completed, the session can immediately be re-used for the next transaction. It
# is not necessary to create a new session for each transaction. # Transaction
# Modes Cloud Spanner supports three transaction modes: 1. Locking read-write.
# This type of transaction is the only way to write data into Cloud Spanner.
# These transactions rely on pessimistic locking and, if necessary, two-phase
# commit. Locking read-write transactions may abort, requiring the application
# to retry. 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow writes. Snapshot read-
# only transactions can be configured to read at timestamps in the past.
# Snapshot read-only transactions do not need to be committed. 3. Partitioned
# DML. This type of transaction is used to execute a single Partitioned DML
# statement. Partitioned DML partitions the key space and runs the DML statement
# over each partition in parallel using separate, internal transactions that
# commit independently. Partitioned DML transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions provide
# simpler semantics and are almost always faster. In particular, read-only
# transactions do not take locks, so they do not conflict with read-write
# transactions. As a consequence of not taking locks, they also do not abort, so
# retry loops are not needed. Transactions may only read/write data in a single
# database. They may, however, read/write data in different tables within that
# database. ## Locking Read-Write Transactions Locking transactions may be used
# to atomically read-modify-write data anywhere in a database. This type of
# transaction is externally consistent. Clients should attempt to minimize the
# amount of time a transaction is active. Faster transactions commit with higher
# probability and cause less contention. Cloud Spanner attempts to keep read
# locks active as long as the transaction continues to do reads, and the
# transaction has not been terminated by Commit or Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a transaction's
# locks and abort it. Conceptually, a read-write transaction consists of zero or
# more reads or SQL statements followed by Commit. At any time before Commit,
# the client can send a Rollback request to abort the transaction. ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired are
# still valid at commit time, and it is able to acquire write locks for all
# writes. Cloud Spanner can abort the transaction for any reason. If a commit
# attempt returns `ABORTED`, Cloud Spanner guarantees that the transaction has
# not modified any user data in Cloud Spanner. Unless the transaction commits,
# Cloud Spanner makes no guarantees about how long the transaction's locks were
# held for. It is an error to use Cloud Spanner locks for any sort of mutual
# exclusion other than between Cloud Spanner transactions themselves. ###
# Retrying Aborted Transactions When a transaction aborts, the application can
# choose to retry the whole transaction again. To maximize the chances of
# successfully committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock priority
# increases with each consecutive abort, meaning that each attempt has a
# slightly better chance of success than the previous. Under some circumstances (
# e.g., many transactions attempting to modify the same row(s)), a transaction
# can abort many times in a short period before successfully committing. Thus,
# it is not a good idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent retrying. ##
# # Idle Transactions A transaction is considered idle if it has no outstanding
# reads or SQL queries and has not started a read or SQL query within the last
# 10 seconds. Idle transactions can be aborted by Cloud Spanner so that they don'
# t hold on to locks indefinitely. In that case, the commit will fail with error
# `ABORTED`. If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the transaction from
# becoming idle. ## Snapshot Read-Only Transactions Snapshot read-only
# transactions provides a simpler method than locking read-write transactions
# for doing several consistent reads. However, this type of transaction does not
# support writes. Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that timestamp.
# Since they do not acquire locks, they do not block concurrent read-write
# transactions. Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read timestamp is
# garbage collected; however, the default garbage collection policy is generous
# enough that most applications do not need to worry about this in practice.
# Snapshot read-only transactions do not need to call Commit or Rollback (and in
# fact are not permitted to do so). To execute a snapshot transaction, the
# client specifies a timestamp bound, which tells Cloud Spanner how to choose a
# read timestamp. The types of timestamp bound are: - Strong (the default). -
# Bounded staleness. - Exact staleness. If the Cloud Spanner database to be read
# is geographically distributed, stale read-only transactions can execute more
# quickly than strong or read-write transaction, because they are able to
# execute far from the leader replica. Each type of timestamp bound is discussed
# in detail below. ### Strong Strong reads are guaranteed to see the effects of
# all transactions that have committed before the start of the read. Furthermore,
# all rows yielded by a single read are consistent with each other -- if any
# part of the read observes a transaction, all parts of the read see the
# transaction. Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are concurrent writes.
# If consistency across reads is required, the reads should be executed within a
# transaction or at an exact read timestamp. See TransactionOptions.ReadOnly.
# strong. ### Exact Staleness These timestamp bounds execute reads at a user-
# specified timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe modifications done by
# all transactions with a commit timestamp <= the read timestamp, and observe
# none of the modifications done by transactions with a larger commit timestamp.
# They will block until all conflicting transactions that may be assigned commit
# timestamps <= the read timestamp have finished. The timestamp can either be
# expressed as an absolute Cloud Spanner commit timestamp or a staleness
# relative to the current time. These modes do not require a "negotiation phase"
# to pick a timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand, boundedly
# stale reads usually return fresher results. See TransactionOptions.ReadOnly.
# read_timestamp and TransactionOptions.ReadOnly.exact_staleness. ### Bounded
# Staleness Bounded staleness modes allow Cloud Spanner to pick the read
# timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
# the newest timestamp within the staleness bound that allows execution of the
# reads at the closest available replica without blocking. All rows yielded are
# consistent with each other -- if any part of the read observes a transaction,
# all parts of the read see the transaction. Boundedly stale reads are not
# repeatable: two stale reads, even if they use the same staleness bound, can
# execute at different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase negotiates a
# timestamp among all replicas needed to serve the read. In the second phase,
# reads are executed at the negotiated timestamp. As a result of the two phase
# execution, bounded staleness reads are usually a little slower than comparable
# exact staleness reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica. Because the
# timestamp negotiation requires up-front knowledge of which rows will be read,
# it can only be used with single-use read-only transactions. See
# TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
# min_read_timestamp. ### Old Read Timestamps and Garbage Collection Cloud
# Spanner continuously garbage collects deleted and overwritten data in the
# background to reclaim storage space. This process is known as "version GC". By
# default, version GC reclaims versions after they are one hour old. Because of
# this, Cloud Spanner cannot perform reads at read timestamps more than one hour
# in the past. This restriction also applies to in-progress reads and/or SQL
# queries whose timestamp become too old while executing. Reads and SQL queries
# with too-old read timestamps fail with the error `FAILED_PRECONDITION`. ##
# Partitioned DML Transactions Partitioned DML transactions are used to execute
# DML statements with a different execution strategy that provides different,
# and often better, scalability properties for large, table-wide operations than
# DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
# workload, should prefer using ReadWrite transactions. Partitioned DML
# partitions the keyspace and runs the DML statement on each partition in
# separate, internal transactions. These transactions commit automatically when
# complete, and run independently from one another. To reduce lock contention,
# this execution strategy only acquires read locks on rows that match the WHERE
# clause of the statement. Additionally, the smaller per-partition transactions
# hold locks for less time. That said, Partitioned DML is not a drop-in
# replacement for standard DML used in ReadWrite transactions. - The DML
# statement must be fully-partitionable. Specifically, the statement must be
# expressible as the union of many statements which each access only a single
# row of the table. - The statement is not applied atomically to all rows of the
# table. Rather, the statement is applied atomically to partitions of the table,
# in independent transactions. Secondary index rows are updated atomically with
# the base table rows. - Partitioned DML does not guarantee exactly-once
# execution semantics against a partition. The statement will be applied at
# least once to each partition. It is strongly recommended that the DML
# statement should be idempotent to avoid unexpected results. For instance, it
# is potentially dangerous to run a statement such as `UPDATE table SET column =
# column + 1` as it could be run multiple times against some rows. - The
# partitions are committed automatically - there is no support for Commit or
# Rollback. If the call returns an error, or if the client issuing the
# ExecuteSql call dies, it is possible that some rows had the statement executed
# on them successfully. It is also possible that statement was never executed
# against other rows. - Partitioned DML transactions may only contain the
# execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
# If any error is encountered during the execution of the partitioned DML
# operation (for instance, a UNIQUE INDEX violation, division by zero, or a
# value that cannot be stored due to schema constraints), then the operation is
# stopped at that point and an error is returned. It is possible that at this
# point, some partitions have been committed (or even committed multiple times),
# and other partitions have not been run at all. Given the above, Partitioned
# DML is good fit for large, database-wide, operations that are idempotent, such
# as deleting old rows from a very large table.
# Corresponds to the JSON property `singleUseTransaction`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :single_use_transaction
# Commit a previously-started transaction.
# Corresponds to the JSON property `transactionId`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :transaction_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@mutations = args[:mutations] if args.key?(:mutations)
@single_use_transaction = args[:single_use_transaction] if args.key?(:single_use_transaction)
@transaction_id = args[:transaction_id] if args.key?(:transaction_id)
end
end
# The response for Commit.
class CommitResponse
include Google::Apis::Core::Hashable
# The Cloud Spanner timestamp at which the transaction committed.
# Corresponds to the JSON property `commitTimestamp`
# @return [String]
attr_accessor :commit_timestamp
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@commit_timestamp = args[:commit_timestamp] if args.key?(:commit_timestamp)
end
end
# Metadata type for the operation returned by CreateBackup.
class CreateBackupMetadata
include Google::Apis::Core::Hashable
# The time at which cancellation of this operation was received. Operations.
# CancelOperation starts asynchronous cancellation on a long-running operation.
# The server makes a best effort to cancel the operation, but success is not
# guaranteed. Clients can use Operations.GetOperation or other methods to check
# whether the cancellation succeeded or whether the operation completed despite
# cancellation. On successful cancellation, the operation is not deleted;
# instead, it becomes an operation with an Operation.error value with a google.
# rpc.Status.code of 1, corresponding to `Code.CANCELLED`.
# Corresponds to the JSON property `cancelTime`
# @return [String]
attr_accessor :cancel_time
# The name of the database the backup is created from.
# Corresponds to the JSON property `database`
# @return [String]
attr_accessor :database
# The name of the backup being created.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# Encapsulates progress related information for a Cloud Spanner long running
# operation.
# Corresponds to the JSON property `progress`
# @return [Google::Apis::SpannerV1::OperationProgress]
attr_accessor :progress
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@cancel_time = args[:cancel_time] if args.key?(:cancel_time)
@database = args[:database] if args.key?(:database)
@name = args[:name] if args.key?(:name)
@progress = args[:progress] if args.key?(:progress)
end
end
# Metadata type for the operation returned by CreateDatabase.
class CreateDatabaseMetadata
include Google::Apis::Core::Hashable
# The database being created.
# Corresponds to the JSON property `database`
# @return [String]
attr_accessor :database
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@database = args[:database] if args.key?(:database)
end
end
# The request for CreateDatabase.
class CreateDatabaseRequest
include Google::Apis::Core::Hashable
# Required. A `CREATE DATABASE` statement, which specifies the ID of the new
# database. The database ID must conform to the regular expression `a-z*[a-z0-9]`
# and be between 2 and 30 characters in length. If the database ID is a
# reserved word or if it contains a hyphen, the database ID must be enclosed in
# backticks (`` ` ``).
# Corresponds to the JSON property `createStatement`
# @return [String]
attr_accessor :create_statement
# Optional. A list of DDL statements to run inside the newly created database.
# Statements can create tables, indexes, etc. These statements execute
# atomically with the creation of the database: if there is an error in any
# statement, the database is not created.
# Corresponds to the JSON property `extraStatements`
# @return [Array<String>]
attr_accessor :extra_statements
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@create_statement = args[:create_statement] if args.key?(:create_statement)
@extra_statements = args[:extra_statements] if args.key?(:extra_statements)
end
end
# Metadata type for the operation returned by CreateInstance.
class CreateInstanceMetadata
include Google::Apis::Core::Hashable
# The time at which this operation was cancelled. If set, this operation is in
# the process of undoing itself (which is guaranteed to succeed) and cannot be
# cancelled again.
# Corresponds to the JSON property `cancelTime`
# @return [String]
attr_accessor :cancel_time
# The time at which this operation failed or was completed successfully.
# Corresponds to the JSON property `endTime`
# @return [String]
attr_accessor :end_time
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
# The time at which the CreateInstance request was received.
# Corresponds to the JSON property `startTime`
# @return [String]
attr_accessor :start_time
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@cancel_time = args[:cancel_time] if args.key?(:cancel_time)
@end_time = args[:end_time] if args.key?(:end_time)
@instance = args[:instance] if args.key?(:instance)
@start_time = args[:start_time] if args.key?(:start_time)
end
end
# The request for CreateInstance.
class CreateInstanceRequest
include Google::Apis::Core::Hashable
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
# Required. The ID of the instance to create. Valid identifiers are of the form `
# a-z*[a-z0-9]` and must be between 2 and 64 characters in length.
# Corresponds to the JSON property `instanceId`
# @return [String]
attr_accessor :instance_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@instance = args[:instance] if args.key?(:instance)
@instance_id = args[:instance_id] if args.key?(:instance_id)
end
end
# The request for CreateSession.
class CreateSessionRequest
include Google::Apis::Core::Hashable
# A session in the Cloud Spanner API.
# Corresponds to the JSON property `session`
# @return [Google::Apis::SpannerV1::Session]
attr_accessor :session
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@session = args[:session] if args.key?(:session)
end
end
# A Cloud Spanner database.
class Database
include Google::Apis::Core::Hashable
# Output only. If exists, the time at which the database creation started.
# Corresponds to the JSON property `createTime`
# @return [String]
attr_accessor :create_time
# Required. The name of the database. Values are of the form `projects//
# instances//databases/`, where `` is as specified in the `CREATE DATABASE`
# statement. This name can be passed to other API methods to identify the
# database.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# Information about the database restore.
# Corresponds to the JSON property `restoreInfo`
# @return [Google::Apis::SpannerV1::RestoreInfo]
attr_accessor :restore_info
# Output only. The current database state.
# Corresponds to the JSON property `state`
# @return [String]
attr_accessor :state
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@create_time = args[:create_time] if args.key?(:create_time)
@name = args[:name] if args.key?(:name)
@restore_info = args[:restore_info] if args.key?(:restore_info)
@state = args[:state] if args.key?(:state)
end
end
# Arguments to delete operations.
class Delete
include Google::Apis::Core::Hashable
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All the
# keys are expected to be in the same table or index. The keys need not be
# sorted in any particular way. If the same key is specified multiple times in
# the set (for example if two ranges, two keys, or a key and a range overlap),
# Cloud Spanner behaves as if the key were only specified once.
# Corresponds to the JSON property `keySet`
# @return [Google::Apis::SpannerV1::KeySet]
attr_accessor :key_set
# Required. The table whose rows will be deleted.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@key_set = args[:key_set] if args.key?(:key_set)
@table = args[:table] if args.key?(:table)
end
end
# A generic empty message that you can re-use to avoid defining duplicated empty
# messages in your APIs. A typical example is to use it as the request or the
# response type of an API method. For instance: service Foo ` rpc Bar(google.
# protobuf.Empty) returns (google.protobuf.Empty); ` The JSON representation for
# `Empty` is empty JSON object ````.
class Empty
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# The request for ExecuteBatchDml.
class ExecuteBatchDmlRequest
include Google::Apis::Core::Hashable
# Required. A per-transaction sequence number used to identify this request.
# This field makes each request idempotent such that if the request is received
# multiple times, at most one will succeed. The sequence number must be
# monotonically increasing within the transaction. If a request arrives for the
# first time with an out-of-order sequence number, the transaction may be
# aborted. Replays of previously handled requests will yield the same response
# as the first execution.
# Corresponds to the JSON property `seqno`
# @return [Fixnum]
attr_accessor :seqno
# Required. The list of statements to execute in this batch. Statements are
# executed serially, such that the effects of statement `i` are visible to
# statement `i+1`. Each statement must be a DML statement. Execution stops at
# the first failed statement; the remaining statements are not executed. Callers
# must provide at least one statement.
# Corresponds to the JSON property `statements`
# @return [Array<Google::Apis::SpannerV1::Statement>]
attr_accessor :statements
# This message is used to select the transaction in which a Read or ExecuteSql
# call runs. See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@seqno = args[:seqno] if args.key?(:seqno)
@statements = args[:statements] if args.key?(:statements)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# The response for ExecuteBatchDml. Contains a list of ResultSet messages, one
# for each DML statement that has successfully executed, in the same order as
# the statements in the request. If a statement fails, the status in the
# response body identifies the cause of the failure. To check for DML statements
# that failed, use the following approach: 1. Check the status in the response
# message. The google.rpc.Code enum value `OK` indicates that all statements
# were executed successfully. 2. If the status was not `OK`, check the number of
# result sets in the response. If the response contains `N` ResultSet messages,
# then statement `N+1` in the request failed. Example 1: * Request: 5 DML
# statements, all executed successfully. * Response: 5 ResultSet messages, with
# the status `OK`. Example 2: * Request: 5 DML statements. The third statement
# has a syntax error. * Response: 2 ResultSet messages, and a syntax error (`
# INVALID_ARGUMENT`) status. The number of ResultSet messages indicates that the
# third statement failed, and the fourth and fifth statements were not executed.
class ExecuteBatchDmlResponse
include Google::Apis::Core::Hashable
# One ResultSet for each statement in the request that ran successfully, in the
# same order as the statements in the request. Each ResultSet does not contain
# any rows. The ResultSetStats in each ResultSet contain the number of rows
# modified by the statement. Only the first ResultSet in the response contains
# valid ResultSetMetadata.
# Corresponds to the JSON property `resultSets`
# @return [Array<Google::Apis::SpannerV1::ResultSet>]
attr_accessor :result_sets
# The `Status` type defines a logical error model that is suitable for different
# programming environments, including REST APIs and RPC APIs. It is used by [
# gRPC](https://github.com/grpc). Each `Status` message contains three pieces of
# data: error code, error message, and error details. You can find out more
# about this error model and how to work with it in the [API Design Guide](https:
# //cloud.google.com/apis/design/errors).
# Corresponds to the JSON property `status`
# @return [Google::Apis::SpannerV1::Status]
attr_accessor :status
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@result_sets = args[:result_sets] if args.key?(:result_sets)
@status = args[:status] if args.key?(:status)
end
end
# The request for ExecuteSql and ExecuteStreamingSql.
class ExecuteSqlRequest
include Google::Apis::Core::Hashable
# It is not always possible for Cloud Spanner to infer the right SQL type from a
# JSON value. For example, values of type `BYTES` and values of type `STRING`
# both appear in params as JSON strings. In these cases, `param_types` can be
# used to specify the exact SQL type for some or all of the SQL statement
# parameters. See the definition of Type for more information about SQL types.
# Corresponds to the JSON property `paramTypes`
# @return [Hash<String,Google::Apis::SpannerV1::Type>]
attr_accessor :param_types
# Parameter names and values that bind to placeholders in the SQL string. A
# parameter placeholder consists of the `@` character followed by the parameter
# name (for example, `@firstName`). Parameter names must conform to the naming
# requirements of identifiers as specified at https://cloud.google.com/spanner/
# docs/lexical#identifiers. Parameters can appear anywhere that a literal value
# is expected. The same parameter name can be used more than once, for example: `
# "WHERE id > @msg_id AND id < @msg_id + 100"` It is an error to execute a SQL
# statement with unbound parameters.
# Corresponds to the JSON property `params`
# @return [Hash<String,Object>]
attr_accessor :params
# If present, results will be restricted to the specified partition previously
# created using PartitionQuery(). There must be an exact match for the values of
# fields common to this message and the PartitionQueryRequest message used to
# create this partition_token.
# Corresponds to the JSON property `partitionToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :partition_token
# Used to control the amount of debugging information returned in ResultSetStats.
# If partition_token is set, query_mode can only be set to QueryMode.NORMAL.
# Corresponds to the JSON property `queryMode`
# @return [String]
attr_accessor :query_mode
# Query optimizer configuration.
# Corresponds to the JSON property `queryOptions`
# @return [Google::Apis::SpannerV1::QueryOptions]
attr_accessor :query_options
# If this request is resuming a previously interrupted SQL statement execution, `
# resume_token` should be copied from the last PartialResultSet yielded before
# the interruption. Doing this enables the new SQL statement execution to resume
# where the last one left off. The rest of the request parameters must exactly
# match the request that yielded this token.
# Corresponds to the JSON property `resumeToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :resume_token
# A per-transaction sequence number used to identify this request. This field
# makes each request idempotent such that if the request is received multiple
# times, at most one will succeed. The sequence number must be monotonically
# increasing within the transaction. If a request arrives for the first time
# with an out-of-order sequence number, the transaction may be aborted. Replays
# of previously handled requests will yield the same response as the first
# execution. Required for DML statements. Ignored for queries.
# Corresponds to the JSON property `seqno`
# @return [Fixnum]
attr_accessor :seqno
# Required. The SQL string.
# Corresponds to the JSON property `sql`
# @return [String]
attr_accessor :sql
# This message is used to select the transaction in which a Read or ExecuteSql
# call runs. See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@param_types = args[:param_types] if args.key?(:param_types)
@params = args[:params] if args.key?(:params)
@partition_token = args[:partition_token] if args.key?(:partition_token)
@query_mode = args[:query_mode] if args.key?(:query_mode)
@query_options = args[:query_options] if args.key?(:query_options)
@resume_token = args[:resume_token] if args.key?(:resume_token)
@seqno = args[:seqno] if args.key?(:seqno)
@sql = args[:sql] if args.key?(:sql)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# Represents a textual expression in the Common Expression Language (CEL) syntax.
# CEL is a C-like expression language. The syntax and semantics of CEL are
# documented at https://github.com/google/cel-spec. Example (Comparison): title:
# "Summary size limit" description: "Determines if a summary is less than 100
# chars" expression: "document.summary.size() < 100" Example (Equality): title: "
# Requestor is owner" description: "Determines if requestor is the document
# owner" expression: "document.owner == request.auth.claims.email" Example (
# Logic): title: "Public documents" description: "Determine whether the document
# should be publicly visible" expression: "document.type != 'private' &&
# document.type != 'internal'" Example (Data Manipulation): title: "Notification
# string" description: "Create a notification string with a timestamp."
# expression: "'New message received at ' + string(document.create_time)" The
# exact variables and functions that may be referenced within an expression are
# determined by the service that evaluates it. See the service documentation for
# additional information.
class Expr
include Google::Apis::Core::Hashable
# Optional. Description of the expression. This is a longer text which describes
# the expression, e.g. when hovered over it in a UI.
# Corresponds to the JSON property `description`
# @return [String]
attr_accessor :description
# Textual representation of an expression in Common Expression Language syntax.
# Corresponds to the JSON property `expression`
# @return [String]
attr_accessor :expression
# Optional. String indicating the location of the expression for error reporting,
# e.g. a file name and a position in the file.
# Corresponds to the JSON property `location`
# @return [String]
attr_accessor :location
# Optional. Title for the expression, i.e. a short string describing its purpose.
# This can be used e.g. in UIs which allow to enter the expression.
# Corresponds to the JSON property `title`
# @return [String]
attr_accessor :title
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@description = args[:description] if args.key?(:description)
@expression = args[:expression] if args.key?(:expression)
@location = args[:location] if args.key?(:location)
@title = args[:title] if args.key?(:title)
end
end
# Message representing a single field of a struct.
class Field
include Google::Apis::Core::Hashable
# The name of the field. For reads, this is the column name. For SQL queries, it
# is the column alias (e.g., `"Word"` in the query `"SELECT 'hello' AS Word"`),
# or the column name (e.g., `"ColName"` in the query `"SELECT ColName FROM Table"
# `). Some columns might have an empty name (e.g., `"SELECT UPPER(ColName)"`).
# Note that a query result can contain multiple fields with the same name.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# `Type` indicates the type of a Cloud Spanner value, as might be stored in a
# table cell or returned from an SQL query.
# Corresponds to the JSON property `type`
# @return [Google::Apis::SpannerV1::Type]
attr_accessor :type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@name = args[:name] if args.key?(:name)
@type = args[:type] if args.key?(:type)
end
end
# The response for GetDatabaseDdl.
class GetDatabaseDdlResponse
include Google::Apis::Core::Hashable
# A list of formatted DDL statements defining the schema of the database
# specified in the request.
# Corresponds to the JSON property `statements`
# @return [Array<String>]
attr_accessor :statements
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@statements = args[:statements] if args.key?(:statements)
end
end
# Request message for `GetIamPolicy` method.
class GetIamPolicyRequest
include Google::Apis::Core::Hashable
# Encapsulates settings provided to GetIamPolicy.
# Corresponds to the JSON property `options`
# @return [Google::Apis::SpannerV1::GetPolicyOptions]
attr_accessor :options
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@options = args[:options] if args.key?(:options)
end
end
# Encapsulates settings provided to GetIamPolicy.
class GetPolicyOptions
include Google::Apis::Core::Hashable
# Optional. The policy format version to be returned. Valid values are 0, 1, and
# 3. Requests specifying an invalid value will be rejected. Requests for
# policies with any conditional bindings must specify version 3. Policies
# without any conditional bindings may specify any valid value or leave the
# field unset. To learn which resources support conditions in their IAM policies,
# see the [IAM documentation](https://cloud.google.com/iam/help/conditions/
# resource-policies).
# Corresponds to the JSON property `requestedPolicyVersion`
# @return [Fixnum]
attr_accessor :requested_policy_version
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@requested_policy_version = args[:requested_policy_version] if args.key?(:requested_policy_version)
end
end
# An isolated set of Cloud Spanner resources on which databases can be hosted.
class Instance
include Google::Apis::Core::Hashable
# Required. The name of the instance's configuration. Values are of the form `
# projects//instanceConfigs/`. See also InstanceConfig and ListInstanceConfigs.
# Corresponds to the JSON property `config`
# @return [String]
attr_accessor :config
# Required. The descriptive name for this instance as it appears in UIs. Must be
# unique per project and between 4 and 30 characters in length.
# Corresponds to the JSON property `displayName`
# @return [String]
attr_accessor :display_name
# Deprecated. This field is not populated.
# Corresponds to the JSON property `endpointUris`
# @return [Array<String>]
attr_accessor :endpoint_uris
# Cloud Labels are a flexible and lightweight mechanism for organizing cloud
# resources into groups that reflect a customer's organizational needs and
# deployment strategies. Cloud Labels can be used to filter collections of
# resources. They can be used to control how resource metrics are aggregated.
# And they can be used as arguments to policy management rules (e.g. route,
# firewall, load balancing, etc.). * Label keys must be between 1 and 63
# characters long and must conform to the following regular expression: `[a-z]([-
# a-z0-9]*[a-z0-9])?`. * Label values must be between 0 and 63 characters long
# and must conform to the regular expression `([a-z]([-a-z0-9]*[a-z0-9])?)?`. *
# No more than 64 labels can be associated with a given resource. See https://
# goo.gl/xmQnxf for more information on and examples of labels. If you plan to
# use labels in your own code, please note that additional characters may be
# allowed in the future. And so you are advised to use an internal label
# representation, such as JSON, which doesn't rely upon specific characters
# being disallowed. For example, representing labels as the string: name + "_" +
# value would prove problematic if we were to allow "_" in a future release.
# Corresponds to the JSON property `labels`
# @return [Hash<String,String>]
attr_accessor :labels
# Required. A unique identifier for the instance, which cannot be changed after
# the instance is created. Values are of the form `projects//instances/a-z*[a-z0-
# 9]`. The final segment of the name must be between 2 and 64 characters in
# length.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# The number of nodes allocated to this instance. This may be zero in API
# responses for instances that are not yet in state `READY`. See [the
# documentation](https://cloud.google.com/spanner/docs/instances#node_count) for
# more information about nodes.
# Corresponds to the JSON property `nodeCount`
# @return [Fixnum]
attr_accessor :node_count
# Output only. The current instance state. For CreateInstance, the state must be
# either omitted or set to `CREATING`. For UpdateInstance, the state must be
# either omitted or set to `READY`.
# Corresponds to the JSON property `state`
# @return [String]
attr_accessor :state
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@config = args[:config] if args.key?(:config)
@display_name = args[:display_name] if args.key?(:display_name)
@endpoint_uris = args[:endpoint_uris] if args.key?(:endpoint_uris)
@labels = args[:labels] if args.key?(:labels)
@name = args[:name] if args.key?(:name)
@node_count = args[:node_count] if args.key?(:node_count)
@state = args[:state] if args.key?(:state)
end
end
# A possible configuration for a Cloud Spanner instance. Configurations define
# the geographic placement of nodes and their replication.
class InstanceConfig
include Google::Apis::Core::Hashable
# The name of this instance configuration as it appears in UIs.
# Corresponds to the JSON property `displayName`
# @return [String]
attr_accessor :display_name
# A unique identifier for the instance configuration. Values are of the form `
# projects//instanceConfigs/a-z*`
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# The geographic placement of nodes in this instance configuration and their
# replication properties.
# Corresponds to the JSON property `replicas`
# @return [Array<Google::Apis::SpannerV1::ReplicaInfo>]
attr_accessor :replicas
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@display_name = args[:display_name] if args.key?(:display_name)
@name = args[:name] if args.key?(:name)
@replicas = args[:replicas] if args.key?(:replicas)
end
end
# KeyRange represents a range of rows in a table or index. A range has a start
# key and an end key. These keys can be open or closed, indicating if the range
# includes rows with that key. Keys are represented by lists, where the ith
# value in the list corresponds to the ith component of the table or index
# primary key. Individual values are encoded as described here. For example,
# consider the following table definition: CREATE TABLE UserEvents ( UserName
# STRING(MAX), EventDate STRING(10) ) PRIMARY KEY(UserName, EventDate); The
# following keys name rows in this table: "Bob", "2014-09-23" Since the `
# UserEvents` table's `PRIMARY KEY` clause names two columns, each `UserEvents`
# key has two elements; the first is the `UserName`, and the second is the `
# EventDate`. Key ranges with multiple components are interpreted
# lexicographically by component using the table or index key's declared sort
# order. For example, the following range returns all events for user `"Bob"`
# that occurred in the year 2015: "start_closed": ["Bob", "2015-01-01"] "
# end_closed": ["Bob", "2015-12-31"] Start and end keys can omit trailing key
# components. This affects the inclusion and exclusion of rows that exactly
# match the provided key components: if the key is closed, then rows that
# exactly match the provided components are included; if the key is open, then
# rows that exactly match are not included. For example, the following range
# includes all events for `"Bob"` that occurred during and after the year 2000: "
# start_closed": ["Bob", "2000-01-01"] "end_closed": ["Bob"] The next example
# retrieves all events for `"Bob"`: "start_closed": ["Bob"] "end_closed": ["Bob"]
# To retrieve events before the year 2000: "start_closed": ["Bob"] "end_open": [
# "Bob", "2000-01-01"] The following range includes all rows in the table: "
# start_closed": [] "end_closed": [] This range returns all users whose `
# UserName` begins with any character from A to C: "start_closed": ["A"] "
# end_open": ["D"] This range returns all users whose `UserName` begins with B: "
# start_closed": ["B"] "end_open": ["C"] Key ranges honor column sort order. For
# example, suppose a table is defined as follows: CREATE TABLE
# DescendingSortedTable ` Key INT64, ... ) PRIMARY KEY(Key DESC); The following
# range retrieves all rows with key values between 1 and 100 inclusive: "
# start_closed": ["100"] "end_closed": ["1"] Note that 100 is passed as the
# start, and 1 is passed as the end, because `Key` is a descending column in the
# schema.
class KeyRange
include Google::Apis::Core::Hashable
# If the end is closed, then the range includes all rows whose first `len(
# end_closed)` key columns exactly match `end_closed`.
# Corresponds to the JSON property `endClosed`
# @return [Array<Object>]
attr_accessor :end_closed
# If the end is open, then the range excludes rows whose first `len(end_open)`
# key columns exactly match `end_open`.
# Corresponds to the JSON property `endOpen`
# @return [Array<Object>]
attr_accessor :end_open
# If the start is closed, then the range includes all rows whose first `len(
# start_closed)` key columns exactly match `start_closed`.
# Corresponds to the JSON property `startClosed`
# @return [Array<Object>]
attr_accessor :start_closed
# If the start is open, then the range excludes rows whose first `len(start_open)
# ` key columns exactly match `start_open`.
# Corresponds to the JSON property `startOpen`
# @return [Array<Object>]
attr_accessor :start_open
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@end_closed = args[:end_closed] if args.key?(:end_closed)
@end_open = args[:end_open] if args.key?(:end_open)
@start_closed = args[:start_closed] if args.key?(:start_closed)
@start_open = args[:start_open] if args.key?(:start_open)
end
end
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All the
# keys are expected to be in the same table or index. The keys need not be
# sorted in any particular way. If the same key is specified multiple times in
# the set (for example if two ranges, two keys, or a key and a range overlap),
# Cloud Spanner behaves as if the key were only specified once.
class KeySet
include Google::Apis::Core::Hashable
# For convenience `all` can be set to `true` to indicate that this `KeySet`
# matches all keys in the table or index. Note that any keys specified in `keys`
# or `ranges` are only yielded once.
# Corresponds to the JSON property `all`
# @return [Boolean]
attr_accessor :all
alias_method :all?, :all
# A list of specific keys. Entries in `keys` should have exactly as many
# elements as there are columns in the primary or index key with which this `
# KeySet` is used. Individual key values are encoded as described here.
# Corresponds to the JSON property `keys`
# @return [Array<Array<Object>>]
attr_accessor :keys
# A list of key ranges. See KeyRange for more information about key range
# specifications.
# Corresponds to the JSON property `ranges`
# @return [Array<Google::Apis::SpannerV1::KeyRange>]
attr_accessor :ranges
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@all = args[:all] if args.key?(:all)
@keys = args[:keys] if args.key?(:keys)
@ranges = args[:ranges] if args.key?(:ranges)
end
end
# The response for ListBackupOperations.
class ListBackupOperationsResponse
include Google::Apis::Core::Hashable
# `next_page_token` can be sent in a subsequent ListBackupOperations call to
# fetch more of the matching metadata.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# The list of matching backup long-running operations. Each operation's name
# will be prefixed by the backup's name and the operation's metadata will be of
# type CreateBackupMetadata. Operations returned include those that are pending
# or have completed/failed/canceled within the last 7 days. Operations returned
# are ordered by `operation.metadata.value.progress.start_time` in descending
# order starting from the most recently started operation.
# Corresponds to the JSON property `operations`
# @return [Array<Google::Apis::SpannerV1::Operation>]
attr_accessor :operations
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@operations = args[:operations] if args.key?(:operations)
end
end
# The response for ListBackups.
class ListBackupsResponse
include Google::Apis::Core::Hashable
# The list of matching backups. Backups returned are ordered by `create_time` in
# descending order, starting from the most recent `create_time`.
# Corresponds to the JSON property `backups`
# @return [Array<Google::Apis::SpannerV1::Backup>]
attr_accessor :backups
# `next_page_token` can be sent in a subsequent ListBackups call to fetch more
# of the matching backups.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@backups = args[:backups] if args.key?(:backups)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
end
end
# The response for ListDatabaseOperations.
class ListDatabaseOperationsResponse
include Google::Apis::Core::Hashable
# `next_page_token` can be sent in a subsequent ListDatabaseOperations call to
# fetch more of the matching metadata.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# The list of matching database long-running operations. Each operation's name
# will be prefixed by the database's name. The operation's metadata field type `
# metadata.type_url` describes the type of the metadata.
# Corresponds to the JSON property `operations`
# @return [Array<Google::Apis::SpannerV1::Operation>]
attr_accessor :operations
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@operations = args[:operations] if args.key?(:operations)
end
end
# The response for ListDatabases.
class ListDatabasesResponse
include Google::Apis::Core::Hashable
# Databases that matched the request.
# Corresponds to the JSON property `databases`
# @return [Array<Google::Apis::SpannerV1::Database>]
attr_accessor :databases
# `next_page_token` can be sent in a subsequent ListDatabases call to fetch more
# of the matching databases.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@databases = args[:databases] if args.key?(:databases)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
end
end
# The response for ListInstanceConfigs.
class ListInstanceConfigsResponse
include Google::Apis::Core::Hashable
# The list of requested instance configurations.
# Corresponds to the JSON property `instanceConfigs`
# @return [Array<Google::Apis::SpannerV1::InstanceConfig>]
attr_accessor :instance_configs
# `next_page_token` can be sent in a subsequent ListInstanceConfigs call to
# fetch more of the matching instance configurations.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@instance_configs = args[:instance_configs] if args.key?(:instance_configs)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
end
end
# The response for ListInstances.
class ListInstancesResponse
include Google::Apis::Core::Hashable
# The list of requested instances.
# Corresponds to the JSON property `instances`
# @return [Array<Google::Apis::SpannerV1::Instance>]
attr_accessor :instances
# `next_page_token` can be sent in a subsequent ListInstances call to fetch more
# of the matching instances.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@instances = args[:instances] if args.key?(:instances)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
end
end
# The response message for Operations.ListOperations.
class ListOperationsResponse
include Google::Apis::Core::Hashable
# The standard List next-page token.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# A list of operations that matches the specified filter in the request.
# Corresponds to the JSON property `operations`
# @return [Array<Google::Apis::SpannerV1::Operation>]
attr_accessor :operations
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@operations = args[:operations] if args.key?(:operations)
end
end
# The response for ListSessions.
class ListSessionsResponse
include Google::Apis::Core::Hashable
# `next_page_token` can be sent in a subsequent ListSessions call to fetch more
# of the matching sessions.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# The list of requested sessions.
# Corresponds to the JSON property `sessions`
# @return [Array<Google::Apis::SpannerV1::Session>]
attr_accessor :sessions
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@sessions = args[:sessions] if args.key?(:sessions)
end
end
# A modification to one or more Cloud Spanner rows. Mutations can be applied to
# a Cloud Spanner database by sending them in a Commit call.
class Mutation
include Google::Apis::Core::Hashable
# Arguments to delete operations.
# Corresponds to the JSON property `delete`
# @return [Google::Apis::SpannerV1::Delete]
attr_accessor :delete
# Arguments to insert, update, insert_or_update, and replace operations.
# Corresponds to the JSON property `insert`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :insert
# Arguments to insert, update, insert_or_update, and replace operations.
# Corresponds to the JSON property `insertOrUpdate`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :insert_or_update
# Arguments to insert, update, insert_or_update, and replace operations.
# Corresponds to the JSON property `replace`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :replace
# Arguments to insert, update, insert_or_update, and replace operations.
# Corresponds to the JSON property `update`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :update
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@delete = args[:delete] if args.key?(:delete)
@insert = args[:insert] if args.key?(:insert)
@insert_or_update = args[:insert_or_update] if args.key?(:insert_or_update)
@replace = args[:replace] if args.key?(:replace)
@update = args[:update] if args.key?(:update)
end
end
# This resource represents a long-running operation that is the result of a
# network API call.
class Operation
include Google::Apis::Core::Hashable
# If the value is `false`, it means the operation is still in progress. If `true`
# , the operation is completed, and either `error` or `response` is available.
# Corresponds to the JSON property `done`
# @return [Boolean]
attr_accessor :done
alias_method :done?, :done
# The `Status` type defines a logical error model that is suitable for different
# programming environments, including REST APIs and RPC APIs. It is used by [
# gRPC](https://github.com/grpc). Each `Status` message contains three pieces of
# data: error code, error message, and error details. You can find out more
# about this error model and how to work with it in the [API Design Guide](https:
# //cloud.google.com/apis/design/errors).
# Corresponds to the JSON property `error`
# @return [Google::Apis::SpannerV1::Status]
attr_accessor :error
# Service-specific metadata associated with the operation. It typically contains
# progress information and common metadata such as create time. Some services
# might not provide such metadata. Any method that returns a long-running
# operation should document the metadata type, if any.
# Corresponds to the JSON property `metadata`
# @return [Hash<String,Object>]
attr_accessor :metadata
# The server-assigned name, which is only unique within the same service that
# originally returns it. If you use the default HTTP mapping, the `name` should
# be a resource name ending with `operations/`unique_id``.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# The normal response of the operation in case of success. If the original
# method returns no data on success, such as `Delete`, the response is `google.
# protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`,
# the response should be the resource. For other methods, the response should
# have the type `XxxResponse`, where `Xxx` is the original method name. For
# example, if the original method name is `TakeSnapshot()`, the inferred
# response type is `TakeSnapshotResponse`.
# Corresponds to the JSON property `response`
# @return [Hash<String,Object>]
attr_accessor :response
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@done = args[:done] if args.key?(:done)
@error = args[:error] if args.key?(:error)
@metadata = args[:metadata] if args.key?(:metadata)
@name = args[:name] if args.key?(:name)
@response = args[:response] if args.key?(:response)
end
end
# Encapsulates progress related information for a Cloud Spanner long running
# operation.
class OperationProgress
include Google::Apis::Core::Hashable
# If set, the time at which this operation failed or was completed successfully.
# Corresponds to the JSON property `endTime`
# @return [String]
attr_accessor :end_time
# Percent completion of the operation. Values are between 0 and 100 inclusive.
# Corresponds to the JSON property `progressPercent`
# @return [Fixnum]
attr_accessor :progress_percent
# Time the request was received.
# Corresponds to the JSON property `startTime`
# @return [String]
attr_accessor :start_time
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@end_time = args[:end_time] if args.key?(:end_time)
@progress_percent = args[:progress_percent] if args.key?(:progress_percent)
@start_time = args[:start_time] if args.key?(:start_time)
end
end
# Metadata type for the long-running operation used to track the progress of
# optimizations performed on a newly restored database. This long-running
# operation is automatically created by the system after the successful
# completion of a database restore, and cannot be cancelled.
class OptimizeRestoredDatabaseMetadata
include Google::Apis::Core::Hashable
# Name of the restored database being optimized.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# Encapsulates progress related information for a Cloud Spanner long running
# operation.
# Corresponds to the JSON property `progress`
# @return [Google::Apis::SpannerV1::OperationProgress]
attr_accessor :progress
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@name = args[:name] if args.key?(:name)
@progress = args[:progress] if args.key?(:progress)
end
end
# Partial results from a streaming read or SQL query. Streaming reads and SQL
# queries better tolerate large result sets, large rows, and large values, but
# are a little trickier to consume.
class PartialResultSet
include Google::Apis::Core::Hashable
# If true, then the final value in values is chunked, and must be combined with
# more values from subsequent `PartialResultSet`s to obtain a complete field
# value.
# Corresponds to the JSON property `chunkedValue`
# @return [Boolean]
attr_accessor :chunked_value
alias_method :chunked_value?, :chunked_value
# Metadata about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `metadata`
# @return [Google::Apis::SpannerV1::ResultSetMetadata]
attr_accessor :metadata
# Streaming calls might be interrupted for a variety of reasons, such as TCP
# connection loss. If this occurs, the stream of results can be resumed by re-
# sending the original request and including `resume_token`. Note that executing
# any other transaction in the same session invalidates the token.
# Corresponds to the JSON property `resumeToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :resume_token
# Additional statistics about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `stats`
# @return [Google::Apis::SpannerV1::ResultSetStats]
attr_accessor :stats
# A streamed result set consists of a stream of values, which might be split
# into many `PartialResultSet` messages to accommodate large rows and/or large
# values. Every N complete values defines a row, where N is equal to the number
# of entries in metadata.row_type.fields. Most values are encoded based on type
# as described here. It is possible that the last value in values is "chunked",
# meaning that the rest of the value is sent in subsequent `PartialResultSet`(s).
# This is denoted by the chunked_value field. Two or more chunked values can be
# merged to form a complete value as follows: * `bool/number/null`: cannot be
# chunked * `string`: concatenate the strings * `list`: concatenate the lists.
# If the last element in a list is a `string`, `list`, or `object`, merge it
# with the first element in the next list by applying these rules recursively. *
# `object`: concatenate the (field name, field value) pairs. If a field name is
# duplicated, then apply these rules recursively to merge the field values. Some
# examples of merging: # Strings are concatenated. "foo", "bar" => "foobar" #
# Lists of non-strings are concatenated. [2, 3], [4] => [2, 3, 4] # Lists are
# concatenated, but the last and first elements are merged # because they are
# strings. ["a", "b"], ["c", "d"] => ["a", "bc", "d"] # Lists are concatenated,
# but the last and first elements are merged # because they are lists.
# Recursively, the last and first elements # of the inner lists are merged
# because they are strings. ["a", ["b", "c"]], [["d"], "e"] => ["a", ["b", "cd"],
# "e"] # Non-overlapping object fields are combined. `"a": "1"`, `"b": "2"` => `
# "a": "1", "b": 2"` # Overlapping object fields are merged. `"a": "1"`, `"a": "
# 2"` => `"a": "12"` # Examples of merging objects containing lists of strings. `
# "a": ["1"]`, `"a": ["2"]` => `"a": ["12"]` For a more complete example,
# suppose a streaming SQL query is yielding a result set whose rows contain a
# single string field. The following `PartialResultSet`s might be yielded: ` "
# metadata": ` ... ` "values": ["Hello", "W"] "chunked_value": true "
# resume_token": "Af65..." ` ` "values": ["orl"] "chunked_value": true "
# resume_token": "Bqp2..." ` ` "values": ["d"] "resume_token": "Zx1B..." ` This
# sequence of `PartialResultSet`s encodes two rows, one containing the field
# value `"Hello"`, and a second containing the field value `"World" = "W" + "orl"
# + "d"`.
# Corresponds to the JSON property `values`
# @return [Array<Object>]
attr_accessor :values
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@chunked_value = args[:chunked_value] if args.key?(:chunked_value)
@metadata = args[:metadata] if args.key?(:metadata)
@resume_token = args[:resume_token] if args.key?(:resume_token)
@stats = args[:stats] if args.key?(:stats)
@values = args[:values] if args.key?(:values)
end
end
# Information returned for each partition returned in a PartitionResponse.
class Partition
include Google::Apis::Core::Hashable
# This token can be passed to Read, StreamingRead, ExecuteSql, or
# ExecuteStreamingSql requests to restrict the results to those identified by
# this partition token.
# Corresponds to the JSON property `partitionToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :partition_token
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@partition_token = args[:partition_token] if args.key?(:partition_token)
end
end
# Options for a PartitionQueryRequest and PartitionReadRequest.
class PartitionOptions
include Google::Apis::Core::Hashable
# **Note:** This hint is currently ignored by PartitionQuery and PartitionRead
# requests. The desired maximum number of partitions to return. For example,
# this may be set to the number of workers available. The default for this
# option is currently 10,000. The maximum value is currently 200,000. This is
# only a hint. The actual number of partitions returned may be smaller or larger
# than this maximum count request.
# Corresponds to the JSON property `maxPartitions`
# @return [Fixnum]
attr_accessor :max_partitions
# **Note:** This hint is currently ignored by PartitionQuery and PartitionRead
# requests. The desired data size for each partition generated. The default for
# this option is currently 1 GiB. This is only a hint. The actual size of each
# partition may be smaller or larger than this size request.
# Corresponds to the JSON property `partitionSizeBytes`
# @return [Fixnum]
attr_accessor :partition_size_bytes
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@max_partitions = args[:max_partitions] if args.key?(:max_partitions)
@partition_size_bytes = args[:partition_size_bytes] if args.key?(:partition_size_bytes)
end
end
# The request for PartitionQuery
class PartitionQueryRequest
include Google::Apis::Core::Hashable
# It is not always possible for Cloud Spanner to infer the right SQL type from a
# JSON value. For example, values of type `BYTES` and values of type `STRING`
# both appear in params as JSON strings. In these cases, `param_types` can be
# used to specify the exact SQL type for some or all of the SQL query parameters.
# See the definition of Type for more information about SQL types.
# Corresponds to the JSON property `paramTypes`
# @return [Hash<String,Google::Apis::SpannerV1::Type>]
attr_accessor :param_types
# Parameter names and values that bind to placeholders in the SQL string. A
# parameter placeholder consists of the `@` character followed by the parameter
# name (for example, `@firstName`). Parameter names can contain letters, numbers,
# and underscores. Parameters can appear anywhere that a literal value is
# expected. The same parameter name can be used more than once, for example: `"
# WHERE id > @msg_id AND id < @msg_id + 100"` It is an error to execute a SQL
# statement with unbound parameters.
# Corresponds to the JSON property `params`
# @return [Hash<String,Object>]
attr_accessor :params
# Options for a PartitionQueryRequest and PartitionReadRequest.
# Corresponds to the JSON property `partitionOptions`
# @return [Google::Apis::SpannerV1::PartitionOptions]
attr_accessor :partition_options
# Required. The query request to generate partitions for. The request will fail
# if the query is not root partitionable. The query plan of a root partitionable
# query has a single distributed union operator. A distributed union operator
# conceptually divides one or more tables into multiple splits, remotely
# evaluates a subquery independently on each split, and then unions all results.
# This must not contain DML commands, such as INSERT, UPDATE, or DELETE. Use
# ExecuteStreamingSql with a PartitionedDml transaction for large, partition-
# friendly DML operations.
# Corresponds to the JSON property `sql`
# @return [String]
attr_accessor :sql
# This message is used to select the transaction in which a Read or ExecuteSql
# call runs. See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@param_types = args[:param_types] if args.key?(:param_types)
@params = args[:params] if args.key?(:params)
@partition_options = args[:partition_options] if args.key?(:partition_options)
@sql = args[:sql] if args.key?(:sql)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# The request for PartitionRead
class PartitionReadRequest
include Google::Apis::Core::Hashable
# The columns of table to be returned for each row matching this request.
# Corresponds to the JSON property `columns`
# @return [Array<String>]
attr_accessor :columns
# If non-empty, the name of an index on table. This index is used instead of the
# table primary key when interpreting key_set and sorting result rows. See
# key_set for further information.
# Corresponds to the JSON property `index`
# @return [String]
attr_accessor :index
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All the
# keys are expected to be in the same table or index. The keys need not be
# sorted in any particular way. If the same key is specified multiple times in
# the set (for example if two ranges, two keys, or a key and a range overlap),
# Cloud Spanner behaves as if the key were only specified once.
# Corresponds to the JSON property `keySet`
# @return [Google::Apis::SpannerV1::KeySet]
attr_accessor :key_set
# Options for a PartitionQueryRequest and PartitionReadRequest.
# Corresponds to the JSON property `partitionOptions`
# @return [Google::Apis::SpannerV1::PartitionOptions]
attr_accessor :partition_options
# Required. The name of the table in the database to be read.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
# This message is used to select the transaction in which a Read or ExecuteSql
# call runs. See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@columns = args[:columns] if args.key?(:columns)
@index = args[:index] if args.key?(:index)
@key_set = args[:key_set] if args.key?(:key_set)
@partition_options = args[:partition_options] if args.key?(:partition_options)
@table = args[:table] if args.key?(:table)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# The response for PartitionQuery or PartitionRead
class PartitionResponse
include Google::Apis::Core::Hashable
# Partitions created by this request.
# Corresponds to the JSON property `partitions`
# @return [Array<Google::Apis::SpannerV1::Partition>]
attr_accessor :partitions
# A transaction.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::Transaction]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@partitions = args[:partitions] if args.key?(:partitions)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# Message type to initiate a Partitioned DML transaction.
class PartitionedDml
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# Node information for nodes appearing in a QueryPlan.plan_nodes.
class PlanNode
include Google::Apis::Core::Hashable
# List of child node `index`es and their relationship to this parent.
# Corresponds to the JSON property `childLinks`
# @return [Array<Google::Apis::SpannerV1::ChildLink>]
attr_accessor :child_links
# The display name for the node.
# Corresponds to the JSON property `displayName`
# @return [String]
attr_accessor :display_name
# The execution statistics associated with the node, contained in a group of key-
# value pairs. Only present if the plan was returned as a result of a profile
# query. For example, number of executions, number of rows/time per execution
# etc.
# Corresponds to the JSON property `executionStats`
# @return [Hash<String,Object>]
attr_accessor :execution_stats
# The `PlanNode`'s index in node list.
# Corresponds to the JSON property `index`
# @return [Fixnum]
attr_accessor :index
# Used to determine the type of node. May be needed for visualizing different
# kinds of nodes differently. For example, If the node is a SCALAR node, it will
# have a condensed representation which can be used to directly embed a
# description of the node in its parent.
# Corresponds to the JSON property `kind`
# @return [String]
attr_accessor :kind
# Attributes relevant to the node contained in a group of key-value pairs. For
# example, a Parameter Reference node could have the following information in
# its metadata: ` "parameter_reference": "param1", "parameter_type": "array" `
# Corresponds to the JSON property `metadata`
# @return [Hash<String,Object>]
attr_accessor :metadata
# Condensed representation of a node and its subtree. Only present for `SCALAR`
# PlanNode(s).
# Corresponds to the JSON property `shortRepresentation`
# @return [Google::Apis::SpannerV1::ShortRepresentation]
attr_accessor :short_representation
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@child_links = args[:child_links] if args.key?(:child_links)
@display_name = args[:display_name] if args.key?(:display_name)
@execution_stats = args[:execution_stats] if args.key?(:execution_stats)
@index = args[:index] if args.key?(:index)
@kind = args[:kind] if args.key?(:kind)
@metadata = args[:metadata] if args.key?(:metadata)
@short_representation = args[:short_representation] if args.key?(:short_representation)
end
end
# An Identity and Access Management (IAM) policy, which specifies access
# controls for Google Cloud resources. A `Policy` is a collection of `bindings`.
# A `binding` binds one or more `members` to a single `role`. Members can be
# user accounts, service accounts, Google groups, and domains (such as G Suite).
# A `role` is a named list of permissions; each `role` can be an IAM predefined
# role or a user-created custom role. For some types of Google Cloud resources,
# a `binding` can also specify a `condition`, which is a logical expression that
# allows access to a resource only if the expression evaluates to `true`. A
# condition can add constraints based on attributes of the request, the resource,
# or both. To learn which resources support conditions in their IAM policies,
# see the [IAM documentation](https://cloud.google.com/iam/help/conditions/
# resource-policies). **JSON example:** ` "bindings": [ ` "role": "roles/
# resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "
# group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@
# appspot.gserviceaccount.com" ] `, ` "role": "roles/resourcemanager.
# organizationViewer", "members": [ "user:eve@example.com" ], "condition": ` "
# title": "expirable access", "description": "Does not grant access after Sep
# 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", `
# ` ], "etag": "BwWWja0YfJA=", "version": 3 ` **YAML example:** bindings: -
# members: - user:mike@example.com - group:admins@example.com - domain:google.
# com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/
# resourcemanager.organizationAdmin - members: - user:eve@example.com role:
# roles/resourcemanager.organizationViewer condition: title: expirable access
# description: Does not grant access after Sep 2020 expression: request.time <
# timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a
# description of IAM and its features, see the [IAM documentation](https://cloud.
# google.com/iam/docs/).
class Policy
include Google::Apis::Core::Hashable
# Associates a list of `members` to a `role`. Optionally, may specify a `
# condition` that determines how and when the `bindings` are applied. Each of
# the `bindings` must contain at least one member.
# Corresponds to the JSON property `bindings`
# @return [Array<Google::Apis::SpannerV1::Binding>]
attr_accessor :bindings
# `etag` is used for optimistic concurrency control as a way to help prevent
# simultaneous updates of a policy from overwriting each other. It is strongly
# suggested that systems make use of the `etag` in the read-modify-write cycle
# to perform policy updates in order to avoid race conditions: An `etag` is
# returned in the response to `getIamPolicy`, and systems are expected to put
# that etag in the request to `setIamPolicy` to ensure that their change will be
# applied to the same version of the policy. **Important:** If you use IAM
# Conditions, you must include the `etag` field whenever you call `setIamPolicy`.
# If you omit this field, then IAM allows you to overwrite a version `3` policy
# with a version `1` policy, and all of the conditions in the version `3` policy
# are lost.
# Corresponds to the JSON property `etag`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :etag
# Specifies the format of the policy. Valid values are `0`, `1`, and `3`.
# Requests that specify an invalid value are rejected. Any operation that
# affects conditional role bindings must specify version `3`. This requirement
# applies to the following operations: * Getting a policy that includes a
# conditional role binding * Adding a conditional role binding to a policy *
# Changing a conditional role binding in a policy * Removing any role binding,
# with or without a condition, from a policy that includes conditions **
# Important:** If you use IAM Conditions, you must include the `etag` field
# whenever you call `setIamPolicy`. If you omit this field, then IAM allows you
# to overwrite a version `3` policy with a version `1` policy, and all of the
# conditions in the version `3` policy are lost. If a policy does not include
# any conditions, operations on that policy may specify any valid version or
# leave the field unset. To learn which resources support conditions in their
# IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/
# conditions/resource-policies).
# Corresponds to the JSON property `version`
# @return [Fixnum]
attr_accessor :version
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@bindings = args[:bindings] if args.key?(:bindings)
@etag = args[:etag] if args.key?(:etag)
@version = args[:version] if args.key?(:version)
end
end
# Query optimizer configuration.
class QueryOptions
include Google::Apis::Core::Hashable
# An option to control the selection of optimizer version. This parameter allows
# individual queries to pick different query optimizer versions. Specifying "
# latest" as a value instructs Cloud Spanner to use the latest supported query
# optimizer version. If not specified, Cloud Spanner uses optimizer version set
# at the database level options. Any other positive integer (from the list of
# supported optimizer versions) overrides the default optimizer version for
# query execution. The list of supported optimizer versions can be queried from
# SPANNER_SYS.SUPPORTED_OPTIMIZER_VERSIONS. Executing a SQL statement with an
# invalid optimizer version will fail with a syntax error (`INVALID_ARGUMENT`)
# status. See https://cloud.google.com/spanner/docs/query-optimizer/manage-query-
# optimizer for more information on managing the query optimizer. The `
# optimizer_version` statement hint has precedence over this setting.
# Corresponds to the JSON property `optimizerVersion`
# @return [String]
attr_accessor :optimizer_version
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@optimizer_version = args[:optimizer_version] if args.key?(:optimizer_version)
end
end
# Contains an ordered list of nodes appearing in the query plan.
class QueryPlan
include Google::Apis::Core::Hashable
# The nodes in the query plan. Plan nodes are returned in pre-order starting
# with the plan root. Each PlanNode's `id` corresponds to its index in `
# plan_nodes`.
# Corresponds to the JSON property `planNodes`
# @return [Array<Google::Apis::SpannerV1::PlanNode>]
attr_accessor :plan_nodes
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@plan_nodes = args[:plan_nodes] if args.key?(:plan_nodes)
end
end
# Message type to initiate a read-only transaction.
class ReadOnly
include Google::Apis::Core::Hashable
# Executes all reads at a timestamp that is `exact_staleness` old. The timestamp
# is chosen soon after the read is started. Guarantees that all writes that have
# committed more than the specified number of seconds ago are visible. Because
# Cloud Spanner chooses the exact timestamp, this mode works even if the client'
# s local clock is substantially skewed from Cloud Spanner commit timestamps.
# Useful for reading at nearby replicas without the distributed timestamp
# negotiation overhead of `max_staleness`.
# Corresponds to the JSON property `exactStaleness`
# @return [String]
attr_accessor :exact_staleness
# Read data at a timestamp >= `NOW - max_staleness` seconds. Guarantees that all
# writes that have committed more than the specified number of seconds ago are
# visible. Because Cloud Spanner chooses the exact timestamp, this mode works
# even if the client's local clock is substantially skewed from Cloud Spanner
# commit timestamps. Useful for reading the freshest data available at a nearby
# replica, while bounding the possible staleness if the local replica has fallen
# behind. Note that this option can only be used in single-use transactions.
# Corresponds to the JSON property `maxStaleness`
# @return [String]
attr_accessor :max_staleness
# Executes all reads at a timestamp >= `min_read_timestamp`. This is useful for
# requesting fresher data than some previous read, or data that is fresh enough
# to observe the effects of some previously committed transaction whose
# timestamp is known. Note that this option can only be used in single-use
# transactions. A timestamp in RFC3339 UTC \"Zulu\" format, accurate to
# nanoseconds. Example: `"2014-10-02T15:01:23.045123456Z"`.
# Corresponds to the JSON property `minReadTimestamp`
# @return [String]
attr_accessor :min_read_timestamp
# Executes all reads at the given timestamp. Unlike other modes, reads at a
# specific timestamp are repeatable; the same read at the same timestamp always
# returns the same data. If the timestamp is in the future, the read will block
# until the specified timestamp, modulo the read's deadline. Useful for large
# scale consistent reads such as mapreduces, or for coordinating many reads
# against a consistent snapshot of the data. A timestamp in RFC3339 UTC \"Zulu\"
# format, accurate to nanoseconds. Example: `"2014-10-02T15:01:23.045123456Z"`.
# Corresponds to the JSON property `readTimestamp`
# @return [String]
attr_accessor :read_timestamp
# If true, the Cloud Spanner-selected read timestamp is included in the
# Transaction message that describes the transaction.
# Corresponds to the JSON property `returnReadTimestamp`
# @return [Boolean]
attr_accessor :return_read_timestamp
alias_method :return_read_timestamp?, :return_read_timestamp
# Read at a timestamp where all previously committed transactions are visible.
# Corresponds to the JSON property `strong`
# @return [Boolean]
attr_accessor :strong
alias_method :strong?, :strong
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@exact_staleness = args[:exact_staleness] if args.key?(:exact_staleness)
@max_staleness = args[:max_staleness] if args.key?(:max_staleness)
@min_read_timestamp = args[:min_read_timestamp] if args.key?(:min_read_timestamp)
@read_timestamp = args[:read_timestamp] if args.key?(:read_timestamp)
@return_read_timestamp = args[:return_read_timestamp] if args.key?(:return_read_timestamp)
@strong = args[:strong] if args.key?(:strong)
end
end
# The request for Read and StreamingRead.
class ReadRequest
include Google::Apis::Core::Hashable
# Required. The columns of table to be returned for each row matching this
# request.
# Corresponds to the JSON property `columns`
# @return [Array<String>]
attr_accessor :columns
# If non-empty, the name of an index on table. This index is used instead of the
# table primary key when interpreting key_set and sorting result rows. See
# key_set for further information.
# Corresponds to the JSON property `index`
# @return [String]
attr_accessor :index
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All the
# keys are expected to be in the same table or index. The keys need not be
# sorted in any particular way. If the same key is specified multiple times in
# the set (for example if two ranges, two keys, or a key and a range overlap),
# Cloud Spanner behaves as if the key were only specified once.
# Corresponds to the JSON property `keySet`
# @return [Google::Apis::SpannerV1::KeySet]
attr_accessor :key_set
# If greater than zero, only the first `limit` rows are yielded. If `limit` is
# zero, the default is no limit. A limit cannot be specified if `partition_token`
# is set.
# Corresponds to the JSON property `limit`
# @return [Fixnum]
attr_accessor :limit
# If present, results will be restricted to the specified partition previously
# created using PartitionRead(). There must be an exact match for the values of
# fields common to this message and the PartitionReadRequest message used to
# create this partition_token.
# Corresponds to the JSON property `partitionToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :partition_token
# If this request is resuming a previously interrupted read, `resume_token`
# should be copied from the last PartialResultSet yielded before the
# interruption. Doing this enables the new read to resume where the last read
# left off. The rest of the request parameters must exactly match the request
# that yielded this token.
# Corresponds to the JSON property `resumeToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :resume_token
# Required. The name of the table in the database to be read.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
# This message is used to select the transaction in which a Read or ExecuteSql
# call runs. See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@columns = args[:columns] if args.key?(:columns)
@index = args[:index] if args.key?(:index)
@key_set = args[:key_set] if args.key?(:key_set)
@limit = args[:limit] if args.key?(:limit)
@partition_token = args[:partition_token] if args.key?(:partition_token)
@resume_token = args[:resume_token] if args.key?(:resume_token)
@table = args[:table] if args.key?(:table)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# Message type to initiate a read-write transaction. Currently this transaction
# type has no options.
class ReadWrite
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
#
class ReplicaInfo
include Google::Apis::Core::Hashable
# If true, this location is designated as the default leader location where
# leader replicas are placed. See the [region types documentation](https://cloud.
# google.com/spanner/docs/instances#region_types) for more details.
# Corresponds to the JSON property `defaultLeaderLocation`
# @return [Boolean]
attr_accessor :default_leader_location
alias_method :default_leader_location?, :default_leader_location
# The location of the serving resources, e.g. "us-central1".
# Corresponds to the JSON property `location`
# @return [String]
attr_accessor :location
# The type of replica.
# Corresponds to the JSON property `type`
# @return [String]
attr_accessor :type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@default_leader_location = args[:default_leader_location] if args.key?(:default_leader_location)
@location = args[:location] if args.key?(:location)
@type = args[:type] if args.key?(:type)
end
end
# Metadata type for the long-running operation returned by RestoreDatabase.
class RestoreDatabaseMetadata
include Google::Apis::Core::Hashable
# Information about a backup.
# Corresponds to the JSON property `backupInfo`
# @return [Google::Apis::SpannerV1::BackupInfo]
attr_accessor :backup_info
# The time at which cancellation of this operation was received. Operations.
# CancelOperation starts asynchronous cancellation on a long-running operation.
# The server makes a best effort to cancel the operation, but success is not
# guaranteed. Clients can use Operations.GetOperation or other methods to check
# whether the cancellation succeeded or whether the operation completed despite
# cancellation. On successful cancellation, the operation is not deleted;
# instead, it becomes an operation with an Operation.error value with a google.
# rpc.Status.code of 1, corresponding to `Code.CANCELLED`.
# Corresponds to the JSON property `cancelTime`
# @return [String]
attr_accessor :cancel_time
# Name of the database being created and restored to.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# If exists, the name of the long-running operation that will be used to track
# the post-restore optimization process to optimize the performance of the
# restored database, and remove the dependency on the restore source. The name
# is of the form `projects//instances//databases//operations/` where the is the
# name of database being created and restored to. The metadata type of the long-
# running operation is OptimizeRestoredDatabaseMetadata. This long-running
# operation will be automatically created by the system after the
# RestoreDatabase long-running operation completes successfully. This operation
# will not be created if the restore was not successful.
# Corresponds to the JSON property `optimizeDatabaseOperationName`
# @return [String]
attr_accessor :optimize_database_operation_name
# Encapsulates progress related information for a Cloud Spanner long running
# operation.
# Corresponds to the JSON property `progress`
# @return [Google::Apis::SpannerV1::OperationProgress]
attr_accessor :progress
# The type of the restore source.
# Corresponds to the JSON property `sourceType`
# @return [String]
attr_accessor :source_type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@backup_info = args[:backup_info] if args.key?(:backup_info)
@cancel_time = args[:cancel_time] if args.key?(:cancel_time)
@name = args[:name] if args.key?(:name)
@optimize_database_operation_name = args[:optimize_database_operation_name] if args.key?(:optimize_database_operation_name)
@progress = args[:progress] if args.key?(:progress)
@source_type = args[:source_type] if args.key?(:source_type)
end
end
# The request for RestoreDatabase.
class RestoreDatabaseRequest
include Google::Apis::Core::Hashable
# Name of the backup from which to restore. Values are of the form `projects//
# instances//backups/`.
# Corresponds to the JSON property `backup`
# @return [String]
attr_accessor :backup
# Required. The id of the database to create and restore to. This database must
# not already exist. The `database_id` appended to `parent` forms the full
# database name of the form `projects//instances//databases/`.
# Corresponds to the JSON property `databaseId`
# @return [String]
attr_accessor :database_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@backup = args[:backup] if args.key?(:backup)
@database_id = args[:database_id] if args.key?(:database_id)
end
end
# Information about the database restore.
class RestoreInfo
include Google::Apis::Core::Hashable
# Information about a backup.
# Corresponds to the JSON property `backupInfo`
# @return [Google::Apis::SpannerV1::BackupInfo]
attr_accessor :backup_info
# The type of the restore source.
# Corresponds to the JSON property `sourceType`
# @return [String]
attr_accessor :source_type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@backup_info = args[:backup_info] if args.key?(:backup_info)
@source_type = args[:source_type] if args.key?(:source_type)
end
end
# Results from Read or ExecuteSql.
class ResultSet
include Google::Apis::Core::Hashable
# Metadata about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `metadata`
# @return [Google::Apis::SpannerV1::ResultSetMetadata]
attr_accessor :metadata
# Each element in `rows` is a row whose format is defined by metadata.row_type.
# The ith element in each row matches the ith field in metadata.row_type.
# Elements are encoded based on type as described here.
# Corresponds to the JSON property `rows`
# @return [Array<Array<Object>>]
attr_accessor :rows
# Additional statistics about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `stats`
# @return [Google::Apis::SpannerV1::ResultSetStats]
attr_accessor :stats
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@metadata = args[:metadata] if args.key?(:metadata)
@rows = args[:rows] if args.key?(:rows)
@stats = args[:stats] if args.key?(:stats)
end
end
# Metadata about a ResultSet or PartialResultSet.
class ResultSetMetadata
include Google::Apis::Core::Hashable
# `StructType` defines the fields of a STRUCT type.
# Corresponds to the JSON property `rowType`
# @return [Google::Apis::SpannerV1::StructType]
attr_accessor :row_type
# A transaction.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::Transaction]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@row_type = args[:row_type] if args.key?(:row_type)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# Additional statistics about a ResultSet or PartialResultSet.
class ResultSetStats
include Google::Apis::Core::Hashable
# Contains an ordered list of nodes appearing in the query plan.
# Corresponds to the JSON property `queryPlan`
# @return [Google::Apis::SpannerV1::QueryPlan]
attr_accessor :query_plan
# Aggregated statistics from the execution of the query. Only present when the
# query is profiled. For example, a query could return the statistics as follows:
# ` "rows_returned": "3", "elapsed_time": "1.22 secs", "cpu_time": "1.19 secs" `
# Corresponds to the JSON property `queryStats`
# @return [Hash<String,Object>]
attr_accessor :query_stats
# Standard DML returns an exact count of rows that were modified.
# Corresponds to the JSON property `rowCountExact`
# @return [Fixnum]
attr_accessor :row_count_exact
# Partitioned DML does not offer exactly-once semantics, so it returns a lower
# bound of the rows modified.
# Corresponds to the JSON property `rowCountLowerBound`
# @return [Fixnum]
attr_accessor :row_count_lower_bound
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@query_plan = args[:query_plan] if args.key?(:query_plan)
@query_stats = args[:query_stats] if args.key?(:query_stats)
@row_count_exact = args[:row_count_exact] if args.key?(:row_count_exact)
@row_count_lower_bound = args[:row_count_lower_bound] if args.key?(:row_count_lower_bound)
end
end
# The request for Rollback.
class RollbackRequest
include Google::Apis::Core::Hashable
# Required. The transaction to roll back.
# Corresponds to the JSON property `transactionId`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :transaction_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@transaction_id = args[:transaction_id] if args.key?(:transaction_id)
end
end
# A session in the Cloud Spanner API.
class Session
include Google::Apis::Core::Hashable
# Output only. The approximate timestamp when the session is last used. It is
# typically earlier than the actual last use time.
# Corresponds to the JSON property `approximateLastUseTime`
# @return [String]
attr_accessor :approximate_last_use_time
# Output only. The timestamp when the session is created.
# Corresponds to the JSON property `createTime`
# @return [String]
attr_accessor :create_time
# The labels for the session. * Label keys must be between 1 and 63 characters
# long and must conform to the following regular expression: `[a-z]([-a-z0-9]*[a-
# z0-9])?`. * Label values must be between 0 and 63 characters long and must
# conform to the regular expression `([a-z]([-a-z0-9]*[a-z0-9])?)?`. * No more
# than 64 labels can be associated with a given session. See https://goo.gl/
# xmQnxf for more information on and examples of labels.
# Corresponds to the JSON property `labels`
# @return [Hash<String,String>]
attr_accessor :labels
# Output only. The name of the session. This is always system-assigned.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@approximate_last_use_time = args[:approximate_last_use_time] if args.key?(:approximate_last_use_time)
@create_time = args[:create_time] if args.key?(:create_time)
@labels = args[:labels] if args.key?(:labels)
@name = args[:name] if args.key?(:name)
end
end
# Request message for `SetIamPolicy` method.
class SetIamPolicyRequest
include Google::Apis::Core::Hashable
# An Identity and Access Management (IAM) policy, which specifies access
# controls for Google Cloud resources. A `Policy` is a collection of `bindings`.
# A `binding` binds one or more `members` to a single `role`. Members can be
# user accounts, service accounts, Google groups, and domains (such as G Suite).
# A `role` is a named list of permissions; each `role` can be an IAM predefined
# role or a user-created custom role. For some types of Google Cloud resources,
# a `binding` can also specify a `condition`, which is a logical expression that
# allows access to a resource only if the expression evaluates to `true`. A
# condition can add constraints based on attributes of the request, the resource,
# or both. To learn which resources support conditions in their IAM policies,
# see the [IAM documentation](https://cloud.google.com/iam/help/conditions/
# resource-policies). **JSON example:** ` "bindings": [ ` "role": "roles/
# resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "
# group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@
# appspot.gserviceaccount.com" ] `, ` "role": "roles/resourcemanager.
# organizationViewer", "members": [ "user:eve@example.com" ], "condition": ` "
# title": "expirable access", "description": "Does not grant access after Sep
# 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", `
# ` ], "etag": "BwWWja0YfJA=", "version": 3 ` **YAML example:** bindings: -
# members: - user:mike@example.com - group:admins@example.com - domain:google.
# com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/
# resourcemanager.organizationAdmin - members: - user:eve@example.com role:
# roles/resourcemanager.organizationViewer condition: title: expirable access
# description: Does not grant access after Sep 2020 expression: request.time <
# timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a
# description of IAM and its features, see the [IAM documentation](https://cloud.
# google.com/iam/docs/).
# Corresponds to the JSON property `policy`
# @return [Google::Apis::SpannerV1::Policy]
attr_accessor :policy
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@policy = args[:policy] if args.key?(:policy)
end
end
# Condensed representation of a node and its subtree. Only present for `SCALAR`
# PlanNode(s).
class ShortRepresentation
include Google::Apis::Core::Hashable
# A string representation of the expression subtree rooted at this node.
# Corresponds to the JSON property `description`
# @return [String]
attr_accessor :description
# A mapping of (subquery variable name) -> (subquery node id) for cases where
# the `description` string of this node references a `SCALAR` subquery contained
# in the expression subtree rooted at this node. The referenced `SCALAR`
# subquery may not necessarily be a direct child of this node.
# Corresponds to the JSON property `subqueries`
# @return [Hash<String,Fixnum>]
attr_accessor :subqueries
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@description = args[:description] if args.key?(:description)
@subqueries = args[:subqueries] if args.key?(:subqueries)
end
end
# A single DML statement.
class Statement
include Google::Apis::Core::Hashable
# It is not always possible for Cloud Spanner to infer the right SQL type from a
# JSON value. For example, values of type `BYTES` and values of type `STRING`
# both appear in params as JSON strings. In these cases, `param_types` can be
# used to specify the exact SQL type for some or all of the SQL statement
# parameters. See the definition of Type for more information about SQL types.
# Corresponds to the JSON property `paramTypes`
# @return [Hash<String,Google::Apis::SpannerV1::Type>]
attr_accessor :param_types
# Parameter names and values that bind to placeholders in the DML string. A
# parameter placeholder consists of the `@` character followed by the parameter
# name (for example, `@firstName`). Parameter names can contain letters, numbers,
# and underscores. Parameters can appear anywhere that a literal value is
# expected. The same parameter name can be used more than once, for example: `"
# WHERE id > @msg_id AND id < @msg_id + 100"` It is an error to execute a SQL
# statement with unbound parameters.
# Corresponds to the JSON property `params`
# @return [Hash<String,Object>]
attr_accessor :params
# Required. The DML string.
# Corresponds to the JSON property `sql`
# @return [String]
attr_accessor :sql
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@param_types = args[:param_types] if args.key?(:param_types)
@params = args[:params] if args.key?(:params)
@sql = args[:sql] if args.key?(:sql)
end
end
# The `Status` type defines a logical error model that is suitable for different
# programming environments, including REST APIs and RPC APIs. It is used by [
# gRPC](https://github.com/grpc). Each `Status` message contains three pieces of
# data: error code, error message, and error details. You can find out more
# about this error model and how to work with it in the [API Design Guide](https:
# //cloud.google.com/apis/design/errors).
class Status
include Google::Apis::Core::Hashable
# The status code, which should be an enum value of google.rpc.Code.
# Corresponds to the JSON property `code`
# @return [Fixnum]
attr_accessor :code
# A list of messages that carry the error details. There is a common set of
# message types for APIs to use.
# Corresponds to the JSON property `details`
# @return [Array<Hash<String,Object>>]
attr_accessor :details
# A developer-facing error message, which should be in English. Any user-facing
# error message should be localized and sent in the google.rpc.Status.details
# field, or localized by the client.
# Corresponds to the JSON property `message`
# @return [String]
attr_accessor :message
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@code = args[:code] if args.key?(:code)
@details = args[:details] if args.key?(:details)
@message = args[:message] if args.key?(:message)
end
end
# `StructType` defines the fields of a STRUCT type.
class StructType
include Google::Apis::Core::Hashable
# The list of fields that make up this struct. Order is significant, because
# values of this struct type are represented as lists, where the order of field
# values matches the order of fields in the StructType. In turn, the order of
# fields matches the order of columns in a read request, or the order of fields
# in the `SELECT` clause of a query.
# Corresponds to the JSON property `fields`
# @return [Array<Google::Apis::SpannerV1::Field>]
attr_accessor :fields
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@fields = args[:fields] if args.key?(:fields)
end
end
# Request message for `TestIamPermissions` method.
class TestIamPermissionsRequest
include Google::Apis::Core::Hashable
# REQUIRED: The set of permissions to check for 'resource'. Permissions with
# wildcards (such as '*', 'spanner.*', 'spanner.instances.*') are not allowed.
# Corresponds to the JSON property `permissions`
# @return [Array<String>]
attr_accessor :permissions
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@permissions = args[:permissions] if args.key?(:permissions)
end
end
# Response message for `TestIamPermissions` method.
class TestIamPermissionsResponse
include Google::Apis::Core::Hashable
# A subset of `TestPermissionsRequest.permissions` that the caller is allowed.
# Corresponds to the JSON property `permissions`
# @return [Array<String>]
attr_accessor :permissions
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@permissions = args[:permissions] if args.key?(:permissions)
end
end
# A transaction.
class Transaction
include Google::Apis::Core::Hashable
# `id` may be used to identify the transaction in subsequent Read, ExecuteSql,
# Commit, or Rollback calls. Single-use read-only transactions do not have IDs,
# because single-use transactions do not support multiple requests.
# Corresponds to the JSON property `id`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :id
# For snapshot read-only transactions, the read timestamp chosen for the
# transaction. Not returned by default: see TransactionOptions.ReadOnly.
# return_read_timestamp. A timestamp in RFC3339 UTC \"Zulu\" format, accurate to
# nanoseconds. Example: `"2014-10-02T15:01:23.045123456Z"`.
# Corresponds to the JSON property `readTimestamp`
# @return [String]
attr_accessor :read_timestamp
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@id = args[:id] if args.key?(:id)
@read_timestamp = args[:read_timestamp] if args.key?(:read_timestamp)
end
end
# # Transactions Each session can have at most one active transaction at a time (
# note that standalone reads and queries use a transaction internally and do
# count towards the one transaction limit). After the active transaction is
# completed, the session can immediately be re-used for the next transaction. It
# is not necessary to create a new session for each transaction. # Transaction
# Modes Cloud Spanner supports three transaction modes: 1. Locking read-write.
# This type of transaction is the only way to write data into Cloud Spanner.
# These transactions rely on pessimistic locking and, if necessary, two-phase
# commit. Locking read-write transactions may abort, requiring the application
# to retry. 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow writes. Snapshot read-
# only transactions can be configured to read at timestamps in the past.
# Snapshot read-only transactions do not need to be committed. 3. Partitioned
# DML. This type of transaction is used to execute a single Partitioned DML
# statement. Partitioned DML partitions the key space and runs the DML statement
# over each partition in parallel using separate, internal transactions that
# commit independently. Partitioned DML transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions provide
# simpler semantics and are almost always faster. In particular, read-only
# transactions do not take locks, so they do not conflict with read-write
# transactions. As a consequence of not taking locks, they also do not abort, so
# retry loops are not needed. Transactions may only read/write data in a single
# database. They may, however, read/write data in different tables within that
# database. ## Locking Read-Write Transactions Locking transactions may be used
# to atomically read-modify-write data anywhere in a database. This type of
# transaction is externally consistent. Clients should attempt to minimize the
# amount of time a transaction is active. Faster transactions commit with higher
# probability and cause less contention. Cloud Spanner attempts to keep read
# locks active as long as the transaction continues to do reads, and the
# transaction has not been terminated by Commit or Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a transaction's
# locks and abort it. Conceptually, a read-write transaction consists of zero or
# more reads or SQL statements followed by Commit. At any time before Commit,
# the client can send a Rollback request to abort the transaction. ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired are
# still valid at commit time, and it is able to acquire write locks for all
# writes. Cloud Spanner can abort the transaction for any reason. If a commit
# attempt returns `ABORTED`, Cloud Spanner guarantees that the transaction has
# not modified any user data in Cloud Spanner. Unless the transaction commits,
# Cloud Spanner makes no guarantees about how long the transaction's locks were
# held for. It is an error to use Cloud Spanner locks for any sort of mutual
# exclusion other than between Cloud Spanner transactions themselves. ###
# Retrying Aborted Transactions When a transaction aborts, the application can
# choose to retry the whole transaction again. To maximize the chances of
# successfully committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock priority
# increases with each consecutive abort, meaning that each attempt has a
# slightly better chance of success than the previous. Under some circumstances (
# e.g., many transactions attempting to modify the same row(s)), a transaction
# can abort many times in a short period before successfully committing. Thus,
# it is not a good idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent retrying. ##
# # Idle Transactions A transaction is considered idle if it has no outstanding
# reads or SQL queries and has not started a read or SQL query within the last
# 10 seconds. Idle transactions can be aborted by Cloud Spanner so that they don'
# t hold on to locks indefinitely. In that case, the commit will fail with error
# `ABORTED`. If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the transaction from
# becoming idle. ## Snapshot Read-Only Transactions Snapshot read-only
# transactions provides a simpler method than locking read-write transactions
# for doing several consistent reads. However, this type of transaction does not
# support writes. Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that timestamp.
# Since they do not acquire locks, they do not block concurrent read-write
# transactions. Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read timestamp is
# garbage collected; however, the default garbage collection policy is generous
# enough that most applications do not need to worry about this in practice.
# Snapshot read-only transactions do not need to call Commit or Rollback (and in
# fact are not permitted to do so). To execute a snapshot transaction, the
# client specifies a timestamp bound, which tells Cloud Spanner how to choose a
# read timestamp. The types of timestamp bound are: - Strong (the default). -
# Bounded staleness. - Exact staleness. If the Cloud Spanner database to be read
# is geographically distributed, stale read-only transactions can execute more
# quickly than strong or read-write transaction, because they are able to
# execute far from the leader replica. Each type of timestamp bound is discussed
# in detail below. ### Strong Strong reads are guaranteed to see the effects of
# all transactions that have committed before the start of the read. Furthermore,
# all rows yielded by a single read are consistent with each other -- if any
# part of the read observes a transaction, all parts of the read see the
# transaction. Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are concurrent writes.
# If consistency across reads is required, the reads should be executed within a
# transaction or at an exact read timestamp. See TransactionOptions.ReadOnly.
# strong. ### Exact Staleness These timestamp bounds execute reads at a user-
# specified timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe modifications done by
# all transactions with a commit timestamp <= the read timestamp, and observe
# none of the modifications done by transactions with a larger commit timestamp.
# They will block until all conflicting transactions that may be assigned commit
# timestamps <= the read timestamp have finished. The timestamp can either be
# expressed as an absolute Cloud Spanner commit timestamp or a staleness
# relative to the current time. These modes do not require a "negotiation phase"
# to pick a timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand, boundedly
# stale reads usually return fresher results. See TransactionOptions.ReadOnly.
# read_timestamp and TransactionOptions.ReadOnly.exact_staleness. ### Bounded
# Staleness Bounded staleness modes allow Cloud Spanner to pick the read
# timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
# the newest timestamp within the staleness bound that allows execution of the
# reads at the closest available replica without blocking. All rows yielded are
# consistent with each other -- if any part of the read observes a transaction,
# all parts of the read see the transaction. Boundedly stale reads are not
# repeatable: two stale reads, even if they use the same staleness bound, can
# execute at different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase negotiates a
# timestamp among all replicas needed to serve the read. In the second phase,
# reads are executed at the negotiated timestamp. As a result of the two phase
# execution, bounded staleness reads are usually a little slower than comparable
# exact staleness reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica. Because the
# timestamp negotiation requires up-front knowledge of which rows will be read,
# it can only be used with single-use read-only transactions. See
# TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
# min_read_timestamp. ### Old Read Timestamps and Garbage Collection Cloud
# Spanner continuously garbage collects deleted and overwritten data in the
# background to reclaim storage space. This process is known as "version GC". By
# default, version GC reclaims versions after they are one hour old. Because of
# this, Cloud Spanner cannot perform reads at read timestamps more than one hour
# in the past. This restriction also applies to in-progress reads and/or SQL
# queries whose timestamp become too old while executing. Reads and SQL queries
# with too-old read timestamps fail with the error `FAILED_PRECONDITION`. ##
# Partitioned DML Transactions Partitioned DML transactions are used to execute
# DML statements with a different execution strategy that provides different,
# and often better, scalability properties for large, table-wide operations than
# DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
# workload, should prefer using ReadWrite transactions. Partitioned DML
# partitions the keyspace and runs the DML statement on each partition in
# separate, internal transactions. These transactions commit automatically when
# complete, and run independently from one another. To reduce lock contention,
# this execution strategy only acquires read locks on rows that match the WHERE
# clause of the statement. Additionally, the smaller per-partition transactions
# hold locks for less time. That said, Partitioned DML is not a drop-in
# replacement for standard DML used in ReadWrite transactions. - The DML
# statement must be fully-partitionable. Specifically, the statement must be
# expressible as the union of many statements which each access only a single
# row of the table. - The statement is not applied atomically to all rows of the
# table. Rather, the statement is applied atomically to partitions of the table,
# in independent transactions. Secondary index rows are updated atomically with
# the base table rows. - Partitioned DML does not guarantee exactly-once
# execution semantics against a partition. The statement will be applied at
# least once to each partition. It is strongly recommended that the DML
# statement should be idempotent to avoid unexpected results. For instance, it
# is potentially dangerous to run a statement such as `UPDATE table SET column =
# column + 1` as it could be run multiple times against some rows. - The
# partitions are committed automatically - there is no support for Commit or
# Rollback. If the call returns an error, or if the client issuing the
# ExecuteSql call dies, it is possible that some rows had the statement executed
# on them successfully. It is also possible that statement was never executed
# against other rows. - Partitioned DML transactions may only contain the
# execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
# If any error is encountered during the execution of the partitioned DML
# operation (for instance, a UNIQUE INDEX violation, division by zero, or a
# value that cannot be stored due to schema constraints), then the operation is
# stopped at that point and an error is returned. It is possible that at this
# point, some partitions have been committed (or even committed multiple times),
# and other partitions have not been run at all. Given the above, Partitioned
# DML is good fit for large, database-wide, operations that are idempotent, such
# as deleting old rows from a very large table.
class TransactionOptions
include Google::Apis::Core::Hashable
# Message type to initiate a Partitioned DML transaction.
# Corresponds to the JSON property `partitionedDml`
# @return [Google::Apis::SpannerV1::PartitionedDml]
attr_accessor :partitioned_dml
# Message type to initiate a read-only transaction.
# Corresponds to the JSON property `readOnly`
# @return [Google::Apis::SpannerV1::ReadOnly]
attr_accessor :read_only
# Message type to initiate a read-write transaction. Currently this transaction
# type has no options.
# Corresponds to the JSON property `readWrite`
# @return [Google::Apis::SpannerV1::ReadWrite]
attr_accessor :read_write
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@partitioned_dml = args[:partitioned_dml] if args.key?(:partitioned_dml)
@read_only = args[:read_only] if args.key?(:read_only)
@read_write = args[:read_write] if args.key?(:read_write)
end
end
# This message is used to select the transaction in which a Read or ExecuteSql
# call runs. See TransactionOptions for more information about transactions.
class TransactionSelector
include Google::Apis::Core::Hashable
# # Transactions Each session can have at most one active transaction at a time (
# note that standalone reads and queries use a transaction internally and do
# count towards the one transaction limit). After the active transaction is
# completed, the session can immediately be re-used for the next transaction. It
# is not necessary to create a new session for each transaction. # Transaction
# Modes Cloud Spanner supports three transaction modes: 1. Locking read-write.
# This type of transaction is the only way to write data into Cloud Spanner.
# These transactions rely on pessimistic locking and, if necessary, two-phase
# commit. Locking read-write transactions may abort, requiring the application
# to retry. 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow writes. Snapshot read-
# only transactions can be configured to read at timestamps in the past.
# Snapshot read-only transactions do not need to be committed. 3. Partitioned
# DML. This type of transaction is used to execute a single Partitioned DML
# statement. Partitioned DML partitions the key space and runs the DML statement
# over each partition in parallel using separate, internal transactions that
# commit independently. Partitioned DML transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions provide
# simpler semantics and are almost always faster. In particular, read-only
# transactions do not take locks, so they do not conflict with read-write
# transactions. As a consequence of not taking locks, they also do not abort, so
# retry loops are not needed. Transactions may only read/write data in a single
# database. They may, however, read/write data in different tables within that
# database. ## Locking Read-Write Transactions Locking transactions may be used
# to atomically read-modify-write data anywhere in a database. This type of
# transaction is externally consistent. Clients should attempt to minimize the
# amount of time a transaction is active. Faster transactions commit with higher
# probability and cause less contention. Cloud Spanner attempts to keep read
# locks active as long as the transaction continues to do reads, and the
# transaction has not been terminated by Commit or Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a transaction's
# locks and abort it. Conceptually, a read-write transaction consists of zero or
# more reads or SQL statements followed by Commit. At any time before Commit,
# the client can send a Rollback request to abort the transaction. ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired are
# still valid at commit time, and it is able to acquire write locks for all
# writes. Cloud Spanner can abort the transaction for any reason. If a commit
# attempt returns `ABORTED`, Cloud Spanner guarantees that the transaction has
# not modified any user data in Cloud Spanner. Unless the transaction commits,
# Cloud Spanner makes no guarantees about how long the transaction's locks were
# held for. It is an error to use Cloud Spanner locks for any sort of mutual
# exclusion other than between Cloud Spanner transactions themselves. ###
# Retrying Aborted Transactions When a transaction aborts, the application can
# choose to retry the whole transaction again. To maximize the chances of
# successfully committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock priority
# increases with each consecutive abort, meaning that each attempt has a
# slightly better chance of success than the previous. Under some circumstances (
# e.g., many transactions attempting to modify the same row(s)), a transaction
# can abort many times in a short period before successfully committing. Thus,
# it is not a good idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent retrying. ##
# # Idle Transactions A transaction is considered idle if it has no outstanding
# reads or SQL queries and has not started a read or SQL query within the last
# 10 seconds. Idle transactions can be aborted by Cloud Spanner so that they don'
# t hold on to locks indefinitely. In that case, the commit will fail with error
# `ABORTED`. If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the transaction from
# becoming idle. ## Snapshot Read-Only Transactions Snapshot read-only
# transactions provides a simpler method than locking read-write transactions
# for doing several consistent reads. However, this type of transaction does not
# support writes. Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that timestamp.
# Since they do not acquire locks, they do not block concurrent read-write
# transactions. Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read timestamp is
# garbage collected; however, the default garbage collection policy is generous
# enough that most applications do not need to worry about this in practice.
# Snapshot read-only transactions do not need to call Commit or Rollback (and in
# fact are not permitted to do so). To execute a snapshot transaction, the
# client specifies a timestamp bound, which tells Cloud Spanner how to choose a
# read timestamp. The types of timestamp bound are: - Strong (the default). -
# Bounded staleness. - Exact staleness. If the Cloud Spanner database to be read
# is geographically distributed, stale read-only transactions can execute more
# quickly than strong or read-write transaction, because they are able to
# execute far from the leader replica. Each type of timestamp bound is discussed
# in detail below. ### Strong Strong reads are guaranteed to see the effects of
# all transactions that have committed before the start of the read. Furthermore,
# all rows yielded by a single read are consistent with each other -- if any
# part of the read observes a transaction, all parts of the read see the
# transaction. Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are concurrent writes.
# If consistency across reads is required, the reads should be executed within a
# transaction or at an exact read timestamp. See TransactionOptions.ReadOnly.
# strong. ### Exact Staleness These timestamp bounds execute reads at a user-
# specified timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe modifications done by
# all transactions with a commit timestamp <= the read timestamp, and observe
# none of the modifications done by transactions with a larger commit timestamp.
# They will block until all conflicting transactions that may be assigned commit
# timestamps <= the read timestamp have finished. The timestamp can either be
# expressed as an absolute Cloud Spanner commit timestamp or a staleness
# relative to the current time. These modes do not require a "negotiation phase"
# to pick a timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand, boundedly
# stale reads usually return fresher results. See TransactionOptions.ReadOnly.
# read_timestamp and TransactionOptions.ReadOnly.exact_staleness. ### Bounded
# Staleness Bounded staleness modes allow Cloud Spanner to pick the read
# timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
# the newest timestamp within the staleness bound that allows execution of the
# reads at the closest available replica without blocking. All rows yielded are
# consistent with each other -- if any part of the read observes a transaction,
# all parts of the read see the transaction. Boundedly stale reads are not
# repeatable: two stale reads, even if they use the same staleness bound, can
# execute at different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase negotiates a
# timestamp among all replicas needed to serve the read. In the second phase,
# reads are executed at the negotiated timestamp. As a result of the two phase
# execution, bounded staleness reads are usually a little slower than comparable
# exact staleness reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica. Because the
# timestamp negotiation requires up-front knowledge of which rows will be read,
# it can only be used with single-use read-only transactions. See
# TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
# min_read_timestamp. ### Old Read Timestamps and Garbage Collection Cloud
# Spanner continuously garbage collects deleted and overwritten data in the
# background to reclaim storage space. This process is known as "version GC". By
# default, version GC reclaims versions after they are one hour old. Because of
# this, Cloud Spanner cannot perform reads at read timestamps more than one hour
# in the past. This restriction also applies to in-progress reads and/or SQL
# queries whose timestamp become too old while executing. Reads and SQL queries
# with too-old read timestamps fail with the error `FAILED_PRECONDITION`. ##
# Partitioned DML Transactions Partitioned DML transactions are used to execute
# DML statements with a different execution strategy that provides different,
# and often better, scalability properties for large, table-wide operations than
# DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
# workload, should prefer using ReadWrite transactions. Partitioned DML
# partitions the keyspace and runs the DML statement on each partition in
# separate, internal transactions. These transactions commit automatically when
# complete, and run independently from one another. To reduce lock contention,
# this execution strategy only acquires read locks on rows that match the WHERE
# clause of the statement. Additionally, the smaller per-partition transactions
# hold locks for less time. That said, Partitioned DML is not a drop-in
# replacement for standard DML used in ReadWrite transactions. - The DML
# statement must be fully-partitionable. Specifically, the statement must be
# expressible as the union of many statements which each access only a single
# row of the table. - The statement is not applied atomically to all rows of the
# table. Rather, the statement is applied atomically to partitions of the table,
# in independent transactions. Secondary index rows are updated atomically with
# the base table rows. - Partitioned DML does not guarantee exactly-once
# execution semantics against a partition. The statement will be applied at
# least once to each partition. It is strongly recommended that the DML
# statement should be idempotent to avoid unexpected results. For instance, it
# is potentially dangerous to run a statement such as `UPDATE table SET column =
# column + 1` as it could be run multiple times against some rows. - The
# partitions are committed automatically - there is no support for Commit or
# Rollback. If the call returns an error, or if the client issuing the
# ExecuteSql call dies, it is possible that some rows had the statement executed
# on them successfully. It is also possible that statement was never executed
# against other rows. - Partitioned DML transactions may only contain the
# execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
# If any error is encountered during the execution of the partitioned DML
# operation (for instance, a UNIQUE INDEX violation, division by zero, or a
# value that cannot be stored due to schema constraints), then the operation is
# stopped at that point and an error is returned. It is possible that at this
# point, some partitions have been committed (or even committed multiple times),
# and other partitions have not been run at all. Given the above, Partitioned
# DML is good fit for large, database-wide, operations that are idempotent, such
# as deleting old rows from a very large table.
# Corresponds to the JSON property `begin`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :begin
# Execute the read or SQL query in a previously-started transaction.
# Corresponds to the JSON property `id`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :id
# # Transactions Each session can have at most one active transaction at a time (
# note that standalone reads and queries use a transaction internally and do
# count towards the one transaction limit). After the active transaction is
# completed, the session can immediately be re-used for the next transaction. It
# is not necessary to create a new session for each transaction. # Transaction
# Modes Cloud Spanner supports three transaction modes: 1. Locking read-write.
# This type of transaction is the only way to write data into Cloud Spanner.
# These transactions rely on pessimistic locking and, if necessary, two-phase
# commit. Locking read-write transactions may abort, requiring the application
# to retry. 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow writes. Snapshot read-
# only transactions can be configured to read at timestamps in the past.
# Snapshot read-only transactions do not need to be committed. 3. Partitioned
# DML. This type of transaction is used to execute a single Partitioned DML
# statement. Partitioned DML partitions the key space and runs the DML statement
# over each partition in parallel using separate, internal transactions that
# commit independently. Partitioned DML transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions provide
# simpler semantics and are almost always faster. In particular, read-only
# transactions do not take locks, so they do not conflict with read-write
# transactions. As a consequence of not taking locks, they also do not abort, so
# retry loops are not needed. Transactions may only read/write data in a single
# database. They may, however, read/write data in different tables within that
# database. ## Locking Read-Write Transactions Locking transactions may be used
# to atomically read-modify-write data anywhere in a database. This type of
# transaction is externally consistent. Clients should attempt to minimize the
# amount of time a transaction is active. Faster transactions commit with higher
# probability and cause less contention. Cloud Spanner attempts to keep read
# locks active as long as the transaction continues to do reads, and the
# transaction has not been terminated by Commit or Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a transaction's
# locks and abort it. Conceptually, a read-write transaction consists of zero or
# more reads or SQL statements followed by Commit. At any time before Commit,
# the client can send a Rollback request to abort the transaction. ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired are
# still valid at commit time, and it is able to acquire write locks for all
# writes. Cloud Spanner can abort the transaction for any reason. If a commit
# attempt returns `ABORTED`, Cloud Spanner guarantees that the transaction has
# not modified any user data in Cloud Spanner. Unless the transaction commits,
# Cloud Spanner makes no guarantees about how long the transaction's locks were
# held for. It is an error to use Cloud Spanner locks for any sort of mutual
# exclusion other than between Cloud Spanner transactions themselves. ###
# Retrying Aborted Transactions When a transaction aborts, the application can
# choose to retry the whole transaction again. To maximize the chances of
# successfully committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock priority
# increases with each consecutive abort, meaning that each attempt has a
# slightly better chance of success than the previous. Under some circumstances (
# e.g., many transactions attempting to modify the same row(s)), a transaction
# can abort many times in a short period before successfully committing. Thus,
# it is not a good idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent retrying. ##
# # Idle Transactions A transaction is considered idle if it has no outstanding
# reads or SQL queries and has not started a read or SQL query within the last
# 10 seconds. Idle transactions can be aborted by Cloud Spanner so that they don'
# t hold on to locks indefinitely. In that case, the commit will fail with error
# `ABORTED`. If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the transaction from
# becoming idle. ## Snapshot Read-Only Transactions Snapshot read-only
# transactions provides a simpler method than locking read-write transactions
# for doing several consistent reads. However, this type of transaction does not
# support writes. Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that timestamp.
# Since they do not acquire locks, they do not block concurrent read-write
# transactions. Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read timestamp is
# garbage collected; however, the default garbage collection policy is generous
# enough that most applications do not need to worry about this in practice.
# Snapshot read-only transactions do not need to call Commit or Rollback (and in
# fact are not permitted to do so). To execute a snapshot transaction, the
# client specifies a timestamp bound, which tells Cloud Spanner how to choose a
# read timestamp. The types of timestamp bound are: - Strong (the default). -
# Bounded staleness. - Exact staleness. If the Cloud Spanner database to be read
# is geographically distributed, stale read-only transactions can execute more
# quickly than strong or read-write transaction, because they are able to
# execute far from the leader replica. Each type of timestamp bound is discussed
# in detail below. ### Strong Strong reads are guaranteed to see the effects of
# all transactions that have committed before the start of the read. Furthermore,
# all rows yielded by a single read are consistent with each other -- if any
# part of the read observes a transaction, all parts of the read see the
# transaction. Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are concurrent writes.
# If consistency across reads is required, the reads should be executed within a
# transaction or at an exact read timestamp. See TransactionOptions.ReadOnly.
# strong. ### Exact Staleness These timestamp bounds execute reads at a user-
# specified timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe modifications done by
# all transactions with a commit timestamp <= the read timestamp, and observe
# none of the modifications done by transactions with a larger commit timestamp.
# They will block until all conflicting transactions that may be assigned commit
# timestamps <= the read timestamp have finished. The timestamp can either be
# expressed as an absolute Cloud Spanner commit timestamp or a staleness
# relative to the current time. These modes do not require a "negotiation phase"
# to pick a timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand, boundedly
# stale reads usually return fresher results. See TransactionOptions.ReadOnly.
# read_timestamp and TransactionOptions.ReadOnly.exact_staleness. ### Bounded
# Staleness Bounded staleness modes allow Cloud Spanner to pick the read
# timestamp, subject to a user-provided staleness bound. Cloud Spanner chooses
# the newest timestamp within the staleness bound that allows execution of the
# reads at the closest available replica without blocking. All rows yielded are
# consistent with each other -- if any part of the read observes a transaction,
# all parts of the read see the transaction. Boundedly stale reads are not
# repeatable: two stale reads, even if they use the same staleness bound, can
# execute at different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase negotiates a
# timestamp among all replicas needed to serve the read. In the second phase,
# reads are executed at the negotiated timestamp. As a result of the two phase
# execution, bounded staleness reads are usually a little slower than comparable
# exact staleness reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica. Because the
# timestamp negotiation requires up-front knowledge of which rows will be read,
# it can only be used with single-use read-only transactions. See
# TransactionOptions.ReadOnly.max_staleness and TransactionOptions.ReadOnly.
# min_read_timestamp. ### Old Read Timestamps and Garbage Collection Cloud
# Spanner continuously garbage collects deleted and overwritten data in the
# background to reclaim storage space. This process is known as "version GC". By
# default, version GC reclaims versions after they are one hour old. Because of
# this, Cloud Spanner cannot perform reads at read timestamps more than one hour
# in the past. This restriction also applies to in-progress reads and/or SQL
# queries whose timestamp become too old while executing. Reads and SQL queries
# with too-old read timestamps fail with the error `FAILED_PRECONDITION`. ##
# Partitioned DML Transactions Partitioned DML transactions are used to execute
# DML statements with a different execution strategy that provides different,
# and often better, scalability properties for large, table-wide operations than
# DML in a ReadWrite transaction. Smaller scoped statements, such as an OLTP
# workload, should prefer using ReadWrite transactions. Partitioned DML
# partitions the keyspace and runs the DML statement on each partition in
# separate, internal transactions. These transactions commit automatically when
# complete, and run independently from one another. To reduce lock contention,
# this execution strategy only acquires read locks on rows that match the WHERE
# clause of the statement. Additionally, the smaller per-partition transactions
# hold locks for less time. That said, Partitioned DML is not a drop-in
# replacement for standard DML used in ReadWrite transactions. - The DML
# statement must be fully-partitionable. Specifically, the statement must be
# expressible as the union of many statements which each access only a single
# row of the table. - The statement is not applied atomically to all rows of the
# table. Rather, the statement is applied atomically to partitions of the table,
# in independent transactions. Secondary index rows are updated atomically with
# the base table rows. - Partitioned DML does not guarantee exactly-once
# execution semantics against a partition. The statement will be applied at
# least once to each partition. It is strongly recommended that the DML
# statement should be idempotent to avoid unexpected results. For instance, it
# is potentially dangerous to run a statement such as `UPDATE table SET column =
# column + 1` as it could be run multiple times against some rows. - The
# partitions are committed automatically - there is no support for Commit or
# Rollback. If the call returns an error, or if the client issuing the
# ExecuteSql call dies, it is possible that some rows had the statement executed
# on them successfully. It is also possible that statement was never executed
# against other rows. - Partitioned DML transactions may only contain the
# execution of a single DML statement via ExecuteSql or ExecuteStreamingSql. -
# If any error is encountered during the execution of the partitioned DML
# operation (for instance, a UNIQUE INDEX violation, division by zero, or a
# value that cannot be stored due to schema constraints), then the operation is
# stopped at that point and an error is returned. It is possible that at this
# point, some partitions have been committed (or even committed multiple times),
# and other partitions have not been run at all. Given the above, Partitioned
# DML is good fit for large, database-wide, operations that are idempotent, such
# as deleting old rows from a very large table.
# Corresponds to the JSON property `singleUse`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :single_use
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@begin = args[:begin] if args.key?(:begin)
@id = args[:id] if args.key?(:id)
@single_use = args[:single_use] if args.key?(:single_use)
end
end
# `Type` indicates the type of a Cloud Spanner value, as might be stored in a
# table cell or returned from an SQL query.
class Type
include Google::Apis::Core::Hashable
# `Type` indicates the type of a Cloud Spanner value, as might be stored in a
# table cell or returned from an SQL query.
# Corresponds to the JSON property `arrayElementType`
# @return [Google::Apis::SpannerV1::Type]
attr_accessor :array_element_type
# Required. The TypeCode for this type.
# Corresponds to the JSON property `code`
# @return [String]
attr_accessor :code
# `StructType` defines the fields of a STRUCT type.
# Corresponds to the JSON property `structType`
# @return [Google::Apis::SpannerV1::StructType]
attr_accessor :struct_type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@array_element_type = args[:array_element_type] if args.key?(:array_element_type)
@code = args[:code] if args.key?(:code)
@struct_type = args[:struct_type] if args.key?(:struct_type)
end
end
# Metadata type for the operation returned by UpdateDatabaseDdl.
class UpdateDatabaseDdlMetadata
include Google::Apis::Core::Hashable
# Reports the commit timestamps of all statements that have succeeded so far,
# where `commit_timestamps[i]` is the commit timestamp for the statement `
# statements[i]`.
# Corresponds to the JSON property `commitTimestamps`
# @return [Array<String>]
attr_accessor :commit_timestamps
# The database being modified.
# Corresponds to the JSON property `database`
# @return [String]
attr_accessor :database
# For an update this list contains all the statements. For an individual
# statement, this list contains only that statement.
# Corresponds to the JSON property `statements`
# @return [Array<String>]
attr_accessor :statements
# Output only. When true, indicates that the operation is throttled e.g due to
# resource constraints. When resources become available the operation will
# resume and this field will be false again.
# Corresponds to the JSON property `throttled`
# @return [Boolean]
attr_accessor :throttled
alias_method :throttled?, :throttled
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@commit_timestamps = args[:commit_timestamps] if args.key?(:commit_timestamps)
@database = args[:database] if args.key?(:database)
@statements = args[:statements] if args.key?(:statements)
@throttled = args[:throttled] if args.key?(:throttled)
end
end
# Enqueues the given DDL statements to be applied, in order but not necessarily
# all at once, to the database schema at some point (or points) in the future.
# The server checks that the statements are executable (syntactically valid,
# name tables that exist, etc.) before enqueueing them, but they may still fail
# upon later execution (e.g., if a statement from another batch of statements is
# applied first and it conflicts in some way, or if there is some data-related
# problem like a `NULL` value in a column to which `NOT NULL` would be added).
# If a statement fails, all subsequent statements in the batch are automatically
# cancelled. Each batch of statements is assigned a name which can be used with
# the Operations API to monitor progress. See the operation_id field for more
# details.
class UpdateDatabaseDdlRequest
include Google::Apis::Core::Hashable
# If empty, the new update request is assigned an automatically-generated
# operation ID. Otherwise, `operation_id` is used to construct the name of the
# resulting Operation. Specifying an explicit operation ID simplifies
# determining whether the statements were executed in the event that the
# UpdateDatabaseDdl call is replayed, or the return value is otherwise lost: the
# database and `operation_id` fields can be combined to form the name of the
# resulting longrunning.Operation: `/operations/`. `operation_id` should be
# unique within the database, and must be a valid identifier: `a-z*`. Note that
# automatically-generated operation IDs always begin with an underscore. If the
# named operation already exists, UpdateDatabaseDdl returns `ALREADY_EXISTS`.
# Corresponds to the JSON property `operationId`
# @return [String]
attr_accessor :operation_id
# Required. DDL statements to be applied to the database.
# Corresponds to the JSON property `statements`
# @return [Array<String>]
attr_accessor :statements
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@operation_id = args[:operation_id] if args.key?(:operation_id)
@statements = args[:statements] if args.key?(:statements)
end
end
# Metadata type for the operation returned by UpdateInstance.
class UpdateInstanceMetadata
include Google::Apis::Core::Hashable
# The time at which this operation was cancelled. If set, this operation is in
# the process of undoing itself (which is guaranteed to succeed) and cannot be
# cancelled again.
# Corresponds to the JSON property `cancelTime`
# @return [String]
attr_accessor :cancel_time
# The time at which this operation failed or was completed successfully.
# Corresponds to the JSON property `endTime`
# @return [String]
attr_accessor :end_time
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
# The time at which UpdateInstance request was received.
# Corresponds to the JSON property `startTime`
# @return [String]
attr_accessor :start_time
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@cancel_time = args[:cancel_time] if args.key?(:cancel_time)
@end_time = args[:end_time] if args.key?(:end_time)
@instance = args[:instance] if args.key?(:instance)
@start_time = args[:start_time] if args.key?(:start_time)
end
end
# The request for UpdateInstance.
class UpdateInstanceRequest
include Google::Apis::Core::Hashable
# Required. A mask specifying which fields in Instance should be updated. The
# field mask must always be specified; this prevents any future fields in
# Instance from being erased accidentally by clients that do not know about them.
# Corresponds to the JSON property `fieldMask`
# @return [String]
attr_accessor :field_mask
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@field_mask = args[:field_mask] if args.key?(:field_mask)
@instance = args[:instance] if args.key?(:instance)
end
end
# Arguments to insert, update, insert_or_update, and replace operations.
class Write
include Google::Apis::Core::Hashable
# The names of the columns in table to be written. The list of columns must
# contain enough columns to allow Cloud Spanner to derive values for all primary
# key columns in the row(s) to be modified.
# Corresponds to the JSON property `columns`
# @return [Array<String>]
attr_accessor :columns
# Required. The table whose rows will be written.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
# The values to be written. `values` can contain more than one list of values.
# If it does, then multiple rows are written, one for each entry in `values`.
# Each list in `values` must have exactly as many entries as there are entries
# in columns above. Sending multiple lists is equivalent to sending multiple `
# Mutation`s, each containing one `values` entry and repeating table and columns.
# Individual values in each list are encoded as described here.
# Corresponds to the JSON property `values`
# @return [Array<Array<Object>>]
attr_accessor :values
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@columns = args[:columns] if args.key?(:columns)
@table = args[:table] if args.key?(:table)
@values = args[:values] if args.key?(:values)
end
end
end
end
end
|