1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
# frozen_string_literal: true
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: google/type/quaternion.proto
require 'google/protobuf'
descriptor_data = "\n\x1cgoogle/type/quaternion.proto\x12\x0bgoogle.type\"8\n\nQuaternion\x12\t\n\x01x\x18\x01 \x01(\x01\x12\t\n\x01y\x18\x02 \x01(\x01\x12\t\n\x01z\x18\x03 \x01(\x01\x12\t\n\x01w\x18\x04 \x01(\x01\x42o\n\x0f\x63om.google.typeB\x0fQuaternionProtoP\x01Z@google.golang.org/genproto/googleapis/type/quaternion;quaternion\xf8\x01\x01\xa2\x02\x03GTPb\x06proto3"
pool = Google::Protobuf::DescriptorPool.generated_pool
begin
pool.add_serialized_file(descriptor_data)
rescue TypeError
# Compatibility code: will be removed in the next major version.
require 'google/protobuf/descriptor_pb'
parsed = Google::Protobuf::FileDescriptorProto.decode(descriptor_data)
parsed.clear_dependency
serialized = parsed.class.encode(parsed)
file = pool.add_serialized_file(serialized)
warn "Warning: Protobuf detected an import path issue while loading generated file #{__FILE__}"
imports = [
]
imports.each do |type_name, expected_filename|
import_file = pool.lookup(type_name).file_descriptor
if import_file.name != expected_filename
warn "- #{file.name} imports #{expected_filename}, but that import was loaded as #{import_file.name}"
end
end
warn "Each proto file must use a consistent fully-qualified name."
warn "This will become an error in the next major version."
end
module Google
module Type
Quaternion = ::Google::Protobuf::DescriptorPool.generated_pool.lookup("google.type.Quaternion").msgclass
end
end
#### Source proto file: google/type/quaternion.proto ####
#
# // Copyright 2021 Google LLC
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
#
# syntax = "proto3";
#
# package google.type;
#
# option cc_enable_arenas = true;
# option go_package = "google.golang.org/genproto/googleapis/type/quaternion;quaternion";
# option java_multiple_files = true;
# option java_outer_classname = "QuaternionProto";
# option java_package = "com.google.type";
# option objc_class_prefix = "GTP";
#
# // A quaternion is defined as the quotient of two directed lines in a
# // three-dimensional space or equivalently as the quotient of two Euclidean
# // vectors (https://en.wikipedia.org/wiki/Quaternion).
# //
# // Quaternions are often used in calculations involving three-dimensional
# // rotations (https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation),
# // as they provide greater mathematical robustness by avoiding the gimbal lock
# // problems that can be encountered when using Euler angles
# // (https://en.wikipedia.org/wiki/Gimbal_lock).
# //
# // Quaternions are generally represented in this form:
# //
# // w + xi + yj + zk
# //
# // where x, y, z, and w are real numbers, and i, j, and k are three imaginary
# // numbers.
# //
# // Our naming choice `(x, y, z, w)` comes from the desire to avoid confusion for
# // those interested in the geometric properties of the quaternion in the 3D
# // Cartesian space. Other texts often use alternative names or subscripts, such
# // as `(a, b, c, d)`, `(1, i, j, k)`, or `(0, 1, 2, 3)`, which are perhaps
# // better suited for mathematical interpretations.
# //
# // To avoid any confusion, as well as to maintain compatibility with a large
# // number of software libraries, the quaternions represented using the protocol
# // buffer below *must* follow the Hamilton convention, which defines `ij = k`
# // (i.e. a right-handed algebra), and therefore:
# //
# // i^2 = j^2 = k^2 = ijk = −1
# // ij = −ji = k
# // jk = −kj = i
# // ki = −ik = j
# //
# // Please DO NOT use this to represent quaternions that follow the JPL
# // convention, or any of the other quaternion flavors out there.
# //
# // Definitions:
# //
# // - Quaternion norm (or magnitude): `sqrt(x^2 + y^2 + z^2 + w^2)`.
# // - Unit (or normalized) quaternion: a quaternion whose norm is 1.
# // - Pure quaternion: a quaternion whose scalar component (`w`) is 0.
# // - Rotation quaternion: a unit quaternion used to represent rotation.
# // - Orientation quaternion: a unit quaternion used to represent orientation.
# //
# // A quaternion can be normalized by dividing it by its norm. The resulting
# // quaternion maintains the same direction, but has a norm of 1, i.e. it moves
# // on the unit sphere. This is generally necessary for rotation and orientation
# // quaternions, to avoid rounding errors:
# // https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
# //
# // Note that `(x, y, z, w)` and `(-x, -y, -z, -w)` represent the same rotation,
# // but normalization would be even more useful, e.g. for comparison purposes, if
# // it would produce a unique representation. It is thus recommended that `w` be
# // kept positive, which can be achieved by changing all the signs when `w` is
# // negative.
# //
# message Quaternion {
# // The x component.
# double x = 1;
#
# // The y component.
# double y = 2;
#
# // The z component.
# double z = 3;
#
# // The scalar component.
# double w = 4;
# }
|