File: line.rb

package info (click to toggle)
ruby-gruff 0.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 25,788 kB
  • ctags: 523
  • sloc: ruby: 4,797; makefile: 2
file content (242 lines) | stat: -rw-r--r-- 8,333 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
require File.dirname(__FILE__) + '/base'

##
# Here's how to make a Line graph:
#
#   g = Gruff::Line.new
#   g.title = "A Line Graph"
#   g.data 'Fries', [20, 23, 19, 8]
#   g.data 'Hamburgers', [50, 19, 99, 29]
#   g.write("test/output/line.png")
#
# There are also other options described below, such as #baseline_value, #baseline_color, #hide_dots, and #hide_lines.

class Gruff::Line < Gruff::Base

  # Draw a dashed line at the given value
  attr_accessor :baseline_value

  # Color of the baseline
  attr_accessor :baseline_color

  # Dimensions of lines and dots; calculated based on dataset size if left unspecified
  attr_accessor :line_width
  attr_accessor :dot_radius

  # Hide parts of the graph to fit more datapoints, or for a different appearance.
  attr_accessor :hide_dots, :hide_lines

  #accessors for support of xy data
  attr_accessor :minimum_x_value
  attr_accessor :maximum_x_value

  # Call with target pixel width of graph (800, 400, 300), and/or 'false' to omit lines (points only).
  #
  #  g = Gruff::Line.new(400) # 400px wide with lines
  #
  #  g = Gruff::Line.new(400, false) # 400px wide, no lines (for backwards compatibility)
  #
  #  g = Gruff::Line.new(false) # Defaults to 800px wide, no lines (for backwards compatibility)
  # 
  # The preferred way is to call hide_dots or hide_lines instead.
  def initialize(*args)
    raise ArgumentError, 'Wrong number of arguments' if args.length > 2
    if args.empty? || ((not Numeric === args.first) && (not String === args.first))
      super()
    else
      super args.shift
    end

    @hide_dots = @hide_lines = false
    @baseline_color = 'red'
    @baseline_value = nil
    @maximum_x_value = nil
    @minimum_x_value = nil
  end

  # This method allows one to plot a dataset with both X and Y data.
  #
  # Parameters are as follows:
  #   name: string, the title of the dataset
  #   x_data_points: an array containing the x data points for the graph
  #   y_data_points: an array containing the y data points for the graph
  #   color: hex number indicating the line color as an RGB triplet
  #
  #   or
  #
  #   name: string, the title of the dataset
  #   xy_data_points: an array containing both x and y data points for the graph
  #   color: hex number indicating the line color as an RGB triplet
  #
  #  Notes:
  #   -if (x_data_points.length != y_data_points.length) an error is 
  #     returned.
  #   -if the color argument is nil, the next color from the default theme will
  #     be used.
  #   -if you want to use a preset theme, you must set it before calling
  #     dataxy().
  #
  # Example:
  #   g = Gruff::Line.new
  #   g.title = "X/Y Dataset"
  #   g.dataxy("Apples", [1,3,4,5,6,10], [1, 2, 3, 4, 4, 3])
  #   g.dataxy("Bapples", [1,3,4,5,7,9], [1, 1, 2, 2, 3, 3])
  #   g.dataxy("Capples", [[1,1],[2,3],[3,4],[4,5],[5,7],[6,9])
  #   #you can still use the old data method too if you want:
  #   g.data("Capples", [1, 1, 2, 2, 3, 3])  
  #   #labels will be drawn at the x locations of the keys passed in.
  #   In this example the lables are drawn at x positions 2, 4, and 6:
  #   g.labels = {0 => '2003', 2 => '2004', 4 => '2005', 6 => '2006'}
  #   The 0 => '2003' label will be ignored since it is outside the chart range.
  def dataxy(name, x_data_points=[], y_data_points=[], color=nil)
    raise ArgumentError, 'x_data_points is nil!' if x_data_points.length == 0

    if x_data_points.all? { |p| p.is_a?(Array) && p.size == 2 }
      x_data_points, y_data_points = x_data_points.map { |p| p[0] }, x_data_points.map { |p| p[1] }
    end

    raise ArgumentError, 'x_data_points.length != y_data_points.length!' if x_data_points.length != y_data_points.length

    # call the existing data routine for the y data.
    self.data(name, y_data_points, color)

    x_data_points = Array(x_data_points) # make sure it's an array
    # append the x data to the last entry that was just added in the @data member
    @data.last[DATA_VALUES_X_INDEX] = x_data_points

    # Update the global min/max values for the x data
    x_data_points.each do |x_data_point|
      next if x_data_point.nil?

      # Setup max/min so spread starts at the low end of the data points
      if @maximum_x_value.nil? && @minimum_x_value.nil?
        @maximum_x_value = @minimum_x_value = x_data_point
      end

      @maximum_x_value = (x_data_point > @maximum_x_value) ?
          x_data_point : @maximum_x_value
      @minimum_x_value = (x_data_point < @minimum_x_value) ?
          x_data_point : @minimum_x_value
    end

  end

  def draw
    super

    return unless @has_data

    # Check to see if more than one datapoint was given. NaN can result otherwise.  
    @x_increment = (@column_count > 1) ? (@graph_width / (@column_count - 1).to_f) : @graph_width

    if defined?(@norm_baseline)
      level = @graph_top + (@graph_height - @norm_baseline * @graph_height)
      @d = @d.push
      @d.stroke_color @baseline_color
      @d.fill_opacity 0.0
      @d.stroke_dasharray(10, 20)
      @d.stroke_width 5
      @d.line(@graph_left, level, @graph_left + @graph_width, level)
      @d = @d.pop
    end

    @norm_data.each do |data_row|
      prev_x = prev_y = nil

      @one_point = contains_one_point_only?(data_row)

      data_row[DATA_VALUES_INDEX].each_with_index do |data_point, index|
        unless data_point
          prev_x = prev_y = nil
          next
        end
        x_data = data_row[DATA_VALUES_X_INDEX]
        if x_data == nil
          #use the old method: equally spaced points along the x-axis
          new_x = @graph_left + (@x_increment * index)
          draw_label(new_x, index)
        else
          new_x = get_x_coord(x_data[index], @graph_width, @graph_left)
          @labels.each do |label_pos, _|
            draw_label(@graph_left + ((label_pos - @minimum_x_value) * @graph_width) / (@maximum_x_value - @minimum_x_value), label_pos)
          end
        end

        new_y = @graph_top + (@graph_height - data_point * @graph_height)

        # Reset each time to avoid thin-line errors
        @d = @d.stroke data_row[DATA_COLOR_INDEX]
        @d = @d.fill data_row[DATA_COLOR_INDEX]
        @d = @d.stroke_opacity 1.0
        @d = @d.stroke_width line_width ||
                                 clip_value_if_greater_than(@columns / (@norm_data.first[DATA_VALUES_INDEX].size * 4), 5.0)

        circle_radius = dot_radius ||
            clip_value_if_greater_than(@columns / (@norm_data.first[DATA_VALUES_INDEX].size * 2.5), 5.0)

        if !@hide_lines && !prev_x.nil? && !prev_y.nil?
          @d = @d.line(prev_x, prev_y, new_x, new_y)
        elsif @one_point
          # Show a circle if there's just one_point
          @d = @d.circle(new_x, new_y, new_x - circle_radius, new_y)
        end
        @d = @d.circle(new_x, new_y, new_x - circle_radius, new_y) unless @hide_dots

        prev_x, prev_y = new_x, new_y
      end
    end

    @d.draw(@base_image)
  end

  def setup_data
    if @baseline_value
      @maximum_value = [@maximum_value.to_f, @baseline_value.to_f].max
      @minimum_value = [@minimum_value.to_f, @baseline_value.to_f].min
    end
    super
  end

  def normalize(force=false)
    super(force)
    @norm_baseline = ((@baseline_value.to_f - @minimum_value) / @spread.to_f) if @baseline_value

    #normalize the x data if it is specified
    @data.each_with_index do |data_row, index|
      norm_x_data_points = []
      if data_row[DATA_VALUES_X_INDEX] != nil
        data_row[DATA_VALUES_X_INDEX].each do |x_data_point|
          norm_x_data_points << ((x_data_point.to_f - @minimum_x_value.to_f) /
              (@maximum_x_value.to_f - @minimum_x_value.to_f))
        end
        @norm_data[index] << norm_x_data_points
      end
    end

  end

  def sort_norm_data
    super unless @data.any? { |d| d[DATA_VALUES_X_INDEX] }
  end

  def get_x_coord(x_data_point, width, offset)
    x_data_point * width + offset
  end

  def contains_one_point_only?(data_row)
    # Spin through data to determine if there is just one_value present.
    one_point = false
    data_row[DATA_VALUES_INDEX].each do |data_point|
      unless data_point.nil?
        if one_point
          # more than one point, bail
          return false
        end
        # there is at least one data point
        one_point = true
      end
    end
    one_point
  end

end