1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/****************************************************************************
* fresnel.c -
* Calculation of Fresnel integrals by expansion to Chebyshev series
* Expansions are taken from the book
* Y.L. Luke. Mathematical functions and their approximations.
* Moscow, "Mir", 1980. PP. 145-149 (Russian edition)
****************************************************************************
*/
/*
Modified for Ruby bindings
2006/Dec/24 Y. TSUNESADA
*/
#include <math.h>
#include "rb_gsl.h"
#include "rb_gsl_sf.h"
static const double sqrt_pi_2 = 1.2533141373155002512078826424; /* sqrt(pi/2) */
static const double sqrt_2_pi = 0.7978845608028653558798921199; /* sqrt(2/pi) */
static const double _1_sqrt_2pi = 0.3989422804014326779399460599; /* 1/sqrt(2*pi) */
static const double pi_2 = 1.5707963267948966192313216916; /* pi/2 */
static double f_data_a[18] =
{
0.76435138664186000189,
-0.43135547547660179313,
0.43288199979726653054,
-0.26973310338387111029,
0.08416045320876935378,
-0.01546524484461381958,
0.00187855423439822018,
-0.00016264977618887547,
0.00001057397656383260,
-0.00000053609339889243,
0.00000002181658454933,
-0.00000000072901621186,
0.00000000002037332546,
-0.00000000000048344033,
0.00000000000000986533,
-0.00000000000000017502,
0.00000000000000000272,
-0.00000000000000000004
};
static double f_data_b[17] =
{
0.63041404314570539241,
-0.42344511405705333544,
0.37617172643343656625,
-0.16249489154509567415,
0.03822255778633008694,
-0.00564563477132190899,
0.00057454951976897367,
-0.00004287071532102004,
0.00000245120749923299,
-0.00000011098841840868,
0.00000000408249731696,
-0.00000000012449830219,
0.00000000000320048425,
-0.00000000000007032416,
0.00000000000000133638,
-0.00000000000000002219,
0.00000000000000000032
};
static double fresnel_cos_0_8(double x)
{
double x_8 = x/8.0;
double xx = 2.0*x_8*x_8 - 1.0;
double t0 = 1.0;
double t1 = xx;
double sumC = f_data_a[0] + f_data_a[1]*t1;
double t2;
int n;
for (n=2; n < 18; n++)
{
t2 = 2.0*xx*t1 - t0;
sumC += f_data_a[n]*t2;
t0 = t1; t1 = t2;
}
return _1_sqrt_2pi*sqrt(x)*sumC;
}
static double fresnel_sin_0_8(double x)
{
double x_8 = x/8.0;
double xx = 2.0*x_8*x_8 - 1.0;
double t0 = 1.;
double t1 = xx;
double ot1 = x_8;
double ot2 = 2.0*x_8*t1 - ot1;
double sumS = f_data_b[0]*ot1 + f_data_b[1]*ot2;
int n;
double t2;
for (n=2; n < 17; n++)
{
t2 = 2.0*xx*t1 - t0;
ot1 = ot2;
ot2 = 2.0*x_8*t2 - ot1;
sumS += f_data_b[n]*ot2;
t0 = t1; t1 = t2;
}
return _1_sqrt_2pi*sqrt(x)*sumS;
}
static double f_data_e[41] =
{
0.97462779093296822410,
-0.02424701873969321371,
0.00103400906842977317,
-0.00008052450246908016,
0.00000905962481966582,
-0.00000131016996757743,
0.00000022770820391497,
-0.00000004558623552026,
0.00000001021567537083,
-0.00000000251114508133,
0.00000000066704761275,
-0.00000000018931512852,
0.00000000005689898935,
-0.00000000001798219359,
0.00000000000594162963,
-0.00000000000204285065,
0.00000000000072797580,
-0.00000000000026797428,
0.00000000000010160694,
-0.00000000000003958559,
0.00000000000001581262,
-0.00000000000000646411,
0.00000000000000269981,
-0.00000000000000115038,
0.00000000000000049942,
-0.00000000000000022064,
0.00000000000000009910,
-0.00000000000000004520,
0.00000000000000002092,
-0.00000000000000000982,
0.00000000000000000467,
-0.00000000000000000225,
0.00000000000000000110,
-0.00000000000000000054,
0.00000000000000000027,
-0.00000000000000000014,
0.00000000000000000007,
-0.00000000000000000004,
0.00000000000000000002,
-0.00000000000000000001,
0.00000000000000000001
};
static double f_data_f[35] =
{
0.99461545179407928910,
-0.00524276766084297210,
0.00013325864229883909,
-0.00000770856452642713,
0.00000070848077032045,
-0.00000008812517411602,
0.00000001359784717148,
-0.00000000246858295747,
0.00000000050925789921,
-0.00000000011653400634,
0.00000000002906578309,
-0.00000000000779847361,
0.00000000000222802542,
-0.00000000000067239338,
0.00000000000021296411,
-0.00000000000007041482,
0.00000000000002419805,
-0.00000000000000861080,
0.00000000000000316287,
-0.00000000000000119596,
0.00000000000000046444,
-0.00000000000000018485,
0.00000000000000007527,
-0.00000000000000003131,
0.00000000000000001328,
-0.00000000000000000574,
0.00000000000000000252,
-0.00000000000000000113,
0.00000000000000000051,
-0.00000000000000000024,
0.00000000000000000011,
-0.00000000000000000005,
0.00000000000000000002,
-0.00000000000000000001,
0.00000000000000000001
};
static double fresnel_cos_8_inf(double x)
{
double xx = 128.0/(x*x) - 1.0; /* 2.0*(8/x)^2 - 1 */
double t0 = 1.0;
double t1 = xx;
double sumP = f_data_e[0] + f_data_e[1]*t1;
double sumQ = f_data_f[0] + f_data_f[1]*t1;
double t2;
int n;
for(n = 2; n < 35; n++)
{
t2 = 2.0*xx*t1 - t0;
sumP += f_data_e[n]*t2; /* sumP += f_data_e[n]*ChebyshevT(n,xx) */
sumQ += f_data_f[n]*t2; /* sumQ += f_data_f[n]*ChebyshevT(n,xx) */
t0 = t1; t1 = t2;
}
for(n = 35; n < 41; n++)
{
t2 = 2.0*xx*t1 - t0;
sumP += f_data_e[n]*t2; /* sumP += f_data_e[n]*ChebyshevT(n,xx) */
t0 = t1; t1 = t2;
}
return 0.5 - _1_sqrt_2pi*(0.5*sumP*cos(x)/x - sumQ*sin(x))/sqrt(x);
}
static double fresnel_sin_8_inf(double x)
{
double xx = 128.0/(x*x) - 1.0; /* 2.0*(8/x)^2 - 1 */
double t0 = 1.0;
double t1 = xx;
double sumP = f_data_e[0] + f_data_e[1]*t1;
double sumQ = f_data_f[0] + f_data_f[1]*t1;
double t2;
int n;
for(n = 2; n < 35; n++)
{
t2 = 2.0*xx*t1 - t0;
sumP += f_data_e[n]*t2; /* sumP += f_data_e[n]*ChebyshevT(n,xx) */
sumQ += f_data_f[n]*t2; /* sumQ += f_data_f[n]*ChebyshevT(n,xx) */
t0 = t1; t1 = t2;
}
for(n = 35; n < 41; n++)
{
t2 = 2.0*xx*t1 - t0;
sumP += f_data_e[n]*t2; /* sumQ += f_data_f[n]*ChebyshevT(n,xx) */
t0 = t1; t1 = t2;
}
return 0.5 - _1_sqrt_2pi*(0.5*sumP*sin(x)/x + sumQ*cos(x))/sqrt(x);
}
double fresnel_c(double x)
{
double xx = x*x*pi_2;
double ret_val;
if(xx<=8.0)
ret_val = fresnel_cos_0_8(xx);
else
ret_val = fresnel_cos_8_inf(xx);
return (x<0.0) ? -ret_val : ret_val;
}
double fresnel_s(double x)
{
double xx = x*x*pi_2;
double ret_val;
if(xx<=8.0)
ret_val = fresnel_sin_0_8(xx);
else
ret_val = fresnel_sin_8_inf(xx);
return (x<0.0) ? -ret_val : ret_val;
}
double fresnel_c1(double x)
{
return fresnel_c(x*sqrt_2_pi);
}
double fresnel_s1(double x)
{
return fresnel_s(x*sqrt_2_pi);
}
static VALUE rb_fresnel_c(VALUE obj, VALUE x)
{
return rb_gsl_sf_eval1(fresnel_c, x);
}
static VALUE rb_fresnel_s(VALUE obj, VALUE x)
{
return rb_gsl_sf_eval1(fresnel_s, x);
}
static VALUE rb_fresnel_c1(VALUE obj, VALUE x)
{
return rb_gsl_sf_eval1(fresnel_c1, x);
}
static VALUE rb_fresnel_s1(VALUE obj, VALUE x)
{
return rb_gsl_sf_eval1(fresnel_s1, x);
}
void Init_fresnel(VALUE module)
{
VALUE mfresnel;
mfresnel = rb_define_module_under(module, "Fresnel");
rb_define_module_function(module, "fresnel_c", rb_fresnel_c, 1);
rb_define_module_function(module, "fresnel_s", rb_fresnel_s, 1);
rb_define_module_function(module, "fresnel_c1", rb_fresnel_c1, 1);
rb_define_module_function(module, "fresnel_s1", rb_fresnel_s1, 1);
rb_define_module_function(mfresnel, "c", rb_fresnel_c, 1);
rb_define_module_function(mfresnel, "s", rb_fresnel_s, 1);
rb_define_module_function(mfresnel, "c1", rb_fresnel_c1, 1);
rb_define_module_function(mfresnel, "s1", rb_fresnel_s1, 1);
}
|