1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
#include "rb_gsl.h"
#ifdef HAVE_NDLINEAR_GSL_MULTIFIT_NDLINEAR_H
#include <gsl/gsl_math.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multifit.h>
#include <ndlinear/gsl_multifit_ndlinear.h>
static VALUE cWorkspace;
enum Index_Ndlinear {
INDEX_NDIM = 0,
INDEX_N = 1,
INDEX_PROCS = 2,
INDEX_PARAMS = 3,
INDEX_FUNCS = 4,
INDEX_NDIM_I = 5,
NDLINEAR_ARY_SIZE = 6,
};
static void multifit_ndlinear_mark(gsl_multifit_ndlinear_workspace *w)
{
rb_gc_mark((VALUE) w->params);
}
typedef int (*UFUNC)(double, double[], void*);
typedef struct ufunc_struct
{
UFUNC *fptr;
} ufunc_struct;
static VALUE cUFunc;
static ufunc_struct* ufunc_struct_alloc(size_t n_dim) {
ufunc_struct *p;
p = (ufunc_struct*) malloc(sizeof(ufunc_struct));
p->fptr = malloc(sizeof(UFUNC)*n_dim);
return p;
}
static void ufunc_struct_free(ufunc_struct *p)
{
free(p->fptr);
free(p);
}
static int func_u(double x, double y[], void *data);
static VALUE rb_gsl_multifit_ndlinear_alloc(int argc, VALUE *argv, VALUE klass)
{
gsl_multifit_ndlinear_workspace *w;
int istart = 0;
size_t n_dim = 0, *N, i;
struct ufunc_struct *p;
VALUE params, wspace, pp;
switch (argc) {
case 4:
istart = 1;
CHECK_FIXNUM(argv[0]);
n_dim = FIX2INT(argv[0]);
/* no break */
case 3:
if (TYPE(argv[istart]) != T_ARRAY) {
rb_raise(rb_eTypeError, "Wrong argument type %s (Array expected)",
rb_class2name(CLASS_OF(argv[istart])));
}
if (TYPE(argv[istart+1]) != T_ARRAY) {
rb_raise(rb_eTypeError, "Wrong argument type %s (Array expected)",
rb_class2name(CLASS_OF(argv[istart+1])));
}
// n_dim = RARRAY(argv[istart])->len;
n_dim = RARRAY_LEN(argv[istart]);
N = (size_t*) malloc(sizeof(size_t)*n_dim);
break;
default:
rb_raise(rb_eArgError, "Wrong number of arguments (%d for 3 or 4)", argc);
}
for (i = 0; i < n_dim; i++) {
N[i] = FIX2INT(rb_ary_entry(argv[istart], i));
}
params = rb_ary_new2(NDLINEAR_ARY_SIZE);
rb_ary_store(params, INDEX_NDIM, INT2FIX((int) n_dim));
rb_ary_store(params, INDEX_N, argv[istart]); /* N */
rb_ary_store(params, INDEX_PROCS, argv[istart+1]); /* procs */
rb_ary_store(params, INDEX_PARAMS, argv[istart+2]); /* params */
rb_ary_store(params, INDEX_NDIM_I, INT2FIX(0)); /* for the first parameter */
p = ufunc_struct_alloc(n_dim);
for (i = 0; i < n_dim; i++) p->fptr[i] = func_u;
pp = Data_Wrap_Struct(cUFunc, 0, ufunc_struct_free, p);
rb_ary_store(params, INDEX_FUNCS, pp);
w = gsl_multifit_ndlinear_alloc(n_dim, N, p->fptr, (void*) params);
free((size_t*) N);
wspace = Data_Wrap_Struct(cWorkspace, multifit_ndlinear_mark, gsl_multifit_ndlinear_free, w);
return wspace;
}
static int func_u(double x, double y[], void *data)
{
VALUE ary, vN, procs, proc, vy, params;
gsl_vector_view ytmp;
size_t i, n_dim;
int rslt;
ary = (VALUE) data;
n_dim = FIX2INT(rb_ary_entry(ary, INDEX_NDIM));
vN = rb_ary_entry(ary, INDEX_N);
procs = rb_ary_entry(ary, INDEX_PROCS);
params = rb_ary_entry(ary, INDEX_PARAMS);
i = FIX2INT(rb_ary_entry(ary, INDEX_NDIM_I));
proc = rb_ary_entry(procs, i);
ytmp.vector.data = (double*) y;
ytmp.vector.stride = 1;
ytmp.vector.size = FIX2INT(rb_ary_entry(vN, i));
vy = Data_Wrap_Struct(cgsl_vector_view, 0, NULL, &ytmp);
rslt = rb_funcall((VALUE) proc, RBGSL_ID_call, 3, rb_float_new(x), vy, params);
/* for the next parameter */
i += 1;
if (i == n_dim) i = 0;
rb_ary_store(ary, INDEX_NDIM_I, INT2FIX(i));
return GSL_SUCCESS;
}
static VALUE rb_gsl_multifit_ndlinear_design(int argc, VALUE *argv, VALUE obj)
{
gsl_multifit_ndlinear_workspace *w;
gsl_matrix *vars = NULL, *X = NULL;
int argc2, flag = 0, ret;
switch (TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_OBJECT:
if (!rb_obj_is_kind_of(argv[argc-1], cWorkspace)) {
rb_raise(rb_eTypeError, "Wrong argument type %s (GSL::MultiFit::Ndlinear::Workspace expected)",
rb_class2name(CLASS_OF(argv[argc-1])));
}
Data_Get_Struct(argv[argc-1], gsl_multifit_ndlinear_workspace, w);
argc2 = argc-1;
break;
default:
Data_Get_Struct(obj, gsl_multifit_ndlinear_workspace, w);
argc2 = argc;
}
switch (argc2) {
case 1:
CHECK_MATRIX(argv[0]);
Data_Get_Struct(argv[0], gsl_matrix, vars);
X = gsl_matrix_alloc(vars->size1, w->n_coeffs);
flag = 1;
break;
case 2:
CHECK_MATRIX(argv[0]);
CHECK_MATRIX(argv[1]);
Data_Get_Struct(argv[0], gsl_matrix, vars);
Data_Get_Struct(argv[1], gsl_matrix, X);
break;
default:
rb_raise(rb_eArgError, "Wrong number of arguments.");
}
ret = gsl_multifit_ndlinear_design(vars, X, w);
if (flag == 1) {
return Data_Wrap_Struct(cgsl_matrix, 0, gsl_matrix_free, X);
} else {
return INT2FIX(ret);
}
}
static VALUE rb_gsl_multifit_ndlinear_est(int argc, VALUE *argv, VALUE obj)
{
gsl_multifit_ndlinear_workspace *w;
gsl_vector *x = NULL, *c = NULL;
gsl_matrix *cov = NULL;
double y, yerr;
int argc2;
switch (TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_OBJECT:
if (!rb_obj_is_kind_of(argv[argc-1], cWorkspace)) {
rb_raise(rb_eTypeError, "Wrong argument type %s (GSL::MultiFit::Ndlinear::Workspace expected)",
rb_class2name(CLASS_OF(argv[argc-1])));
}
Data_Get_Struct(argv[argc-1], gsl_multifit_ndlinear_workspace, w);
argc2 = argc-1;
break;
default:
Data_Get_Struct(obj, gsl_multifit_ndlinear_workspace, w);
argc2 = argc;
}
switch (argc2) {
case 3:
CHECK_VECTOR(argv[0]);
CHECK_VECTOR(argv[1]);
CHECK_MATRIX(argv[2]);
Data_Get_Struct(argv[0], gsl_vector, x);
Data_Get_Struct(argv[1], gsl_vector, c);
Data_Get_Struct(argv[2], gsl_matrix, cov);
break;
default:
rb_raise(rb_eArgError, "Wrong number of arguments.");
}
gsl_multifit_ndlinear_est(x, c, cov, &y, &yerr, w);
return rb_ary_new3(2, rb_float_new(y), rb_float_new(yerr));
}
static VALUE rb_gsl_multifit_ndlinear_calc(int argc, VALUE *argv, VALUE obj)
{
gsl_multifit_ndlinear_workspace *w;
gsl_vector *x = NULL, *c = NULL;
double val;
int argc2;
switch (TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_OBJECT:
if (!rb_obj_is_kind_of(argv[argc-1], cWorkspace)) {
rb_raise(rb_eTypeError,
"Wrong argument type %s (GSL::MultiFit::Ndlinear::Workspace expected)",
rb_class2name(CLASS_OF(argv[argc-1])));
}
Data_Get_Struct(argv[argc-1], gsl_multifit_ndlinear_workspace, w);
argc2 = argc-1;
break;
default:
Data_Get_Struct(obj, gsl_multifit_ndlinear_workspace, w);
argc2 = argc;
}
switch (argc2) {
case 2:
CHECK_VECTOR(argv[0]);
CHECK_VECTOR(argv[1]);
Data_Get_Struct(argv[0], gsl_vector, x);
Data_Get_Struct(argv[1], gsl_vector, c);
break;
default:
rb_raise(rb_eArgError, "Wrong number of arguments.");
}
val = gsl_multifit_ndlinear_calc(x, c, w);
return rb_float_new(val);
}
static VALUE rb_gsl_multifit_ndlinear_n_coeffs(VALUE obj)
{
gsl_multifit_ndlinear_workspace *w;
Data_Get_Struct(obj, gsl_multifit_ndlinear_workspace, w);
return INT2FIX(w->n_coeffs);
}
static VALUE rb_gsl_multifit_ndlinear_n_dim(VALUE obj)
{
gsl_multifit_ndlinear_workspace *w;
Data_Get_Struct(obj, gsl_multifit_ndlinear_workspace, w);
return INT2FIX(w->n_dim);
}
static VALUE rb_gsl_multifit_ndlinear_N(VALUE obj)
{
gsl_multifit_ndlinear_workspace *w;
VALUE ary;
Data_Get_Struct(obj, gsl_multifit_ndlinear_workspace, w);
ary = (VALUE) w->params;
return rb_ary_entry(ary, INDEX_N);
}
/*
static VALUE rb_gsl_multifit_linear_Rsq(VALUE module, VALUE vy, VALUE vchisq)
{
gsl_vector *y;
double chisq, Rsq;
CHECK_VECTOR(vy);
Data_Get_Struct(vy, gsl_vector, y);
chisq = NUM2DBL(vchisq);
gsl_multifit_linear_Rsq(y, chisq, &Rsq);
return rb_float_new(Rsq);
}
*/
void Init_ndlinear(VALUE module)
{
VALUE mNdlinear;
mNdlinear = rb_define_module_under(module, "Ndlinear");
cUFunc = rb_define_class_under(mNdlinear, "UFunc", rb_cObject);
cWorkspace = rb_define_class_under(mNdlinear, "Workspace", cGSL_Object);
rb_define_singleton_method(mNdlinear, "alloc",
rb_gsl_multifit_ndlinear_alloc, -1);
rb_define_singleton_method(cWorkspace, "alloc",
rb_gsl_multifit_ndlinear_alloc, -1);
rb_define_singleton_method(mNdlinear, "design",
rb_gsl_multifit_ndlinear_design, -1);
rb_define_singleton_method(cWorkspace, "design",
rb_gsl_multifit_ndlinear_design, -1);
rb_define_method(cWorkspace, "design",rb_gsl_multifit_ndlinear_est, -1);
rb_define_singleton_method(mNdlinear, "est",
rb_gsl_multifit_ndlinear_est, -1);
rb_define_singleton_method(cWorkspace, "est",
rb_gsl_multifit_ndlinear_est, -1);
rb_define_method(cWorkspace, "est",rb_gsl_multifit_ndlinear_est, -1);
rb_define_singleton_method(mNdlinear, "calc",
rb_gsl_multifit_ndlinear_calc, -1);
rb_define_singleton_method(cWorkspace, "calc",
rb_gsl_multifit_ndlinear_calc, -1);
rb_define_method(cWorkspace, "calc",rb_gsl_multifit_ndlinear_calc, -1);
rb_define_method(cWorkspace, "n_coeffs",rb_gsl_multifit_ndlinear_n_coeffs, 0);
rb_define_method(cWorkspace, "n_dim",rb_gsl_multifit_ndlinear_n_dim, 0);
rb_define_method(cWorkspace, "N",rb_gsl_multifit_ndlinear_N, 0);
// rb_define_module_function(module, "linear_Rsq", rb_gsl_multifit_linear_Rsq, 2);
}
#endif
|