File: gsl2_multifit.patch

package info (click to toggle)
ruby-gsl 2.1.0.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,892 kB
  • ctags: 5,459
  • sloc: ansic: 61,660; ruby: 15,656; sh: 19; makefile: 10
file content (172 lines) | stat: -rw-r--r-- 6,060 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
Description: expicitly compute Jacobians of fdfsolver structs
 as it is no more available as a J member in GSL 2.x
Author: Cédric Boutillier <boutil@debian.org>
Origin: vendor
Bug-Debian: https://bugs.debian.org/804499
Bug: https://github.com/SciRuby/rb-gsl/issues/24
Forwarded: https://github.com/SciRuby/rb-gsl/pull/31
Last-Update: 2016-02-29

--- a/ext/gsl_native/histogram.c
+++ b/ext/gsl_native/histogram.c
@@ -1169,6 +1169,7 @@
   size_t n, dof;      /* # of data points */
   size_t p = 3;  /* # of fitting parameters */
   gsl_multifit_function_fdf f;
+  gsl_matrix *J = NULL;
   gsl_matrix *covar = NULL;
   gsl_vector *x = NULL;
   double sigma, mean, height, errs, errm, errh, chi2;
@@ -1197,6 +1198,7 @@
   hh.binend = binend;
   n = binend - binstart + 1;
 
+  J = gsl_matrix_alloc(n, p);
   covar = gsl_matrix_alloc(p, p);
 
   f.f = Gaussian_f;
@@ -1219,7 +1221,8 @@
   sigma = sqrt(gsl_vector_get(s->x, 0));
   mean = gsl_vector_get(s->x, 1);
   height = gsl_vector_get(s->x, 2)*sigma*sqrt(2*M_PI);
-  gsl_multifit_covar(s->J, 0.0, covar);
+  gsl_multifit_fdfsolver_jac(s, J);
+  gsl_multifit_covar(J, 0.0, covar);
   chi2 = gsl_pow_2(gsl_blas_dnrm2(s->f));   /* not reduced chi-square */
   dof = n - p;
   errs = sqrt(chi2/dof*gsl_matrix_get(covar, 0, 0))/sigma/2;
@@ -1305,6 +1308,7 @@
   size_t n, dof;      /* # of data points */
   size_t p = 2;  /* # of fitting parameters */
   gsl_multifit_function_fdf f;
+  gsl_matrix *J = NULL;
   gsl_matrix *covar = NULL;
   gsl_vector *x = NULL;
   double sigma, height, errs, errh, chi2;
@@ -1332,6 +1336,7 @@
   hh.binend = binend;
   n = binend - binstart + 1;
 
+  J = gsl_matrix_alloc(n, p);
   covar = gsl_matrix_alloc(p, p);
 
   f.f = Rayleigh_f;
@@ -1353,7 +1358,8 @@
   } while (status == GSL_CONTINUE);
   sigma = sqrt(gsl_vector_get(s->x, 0));
   height = gsl_vector_get(s->x, 1)*sigma*sigma;
-  gsl_multifit_covar(s->J, 0.0, covar);
+  gsl_multifit_fdfsolver_jac(s, J);
+  gsl_multifit_covar(J, 0.0, covar);
   chi2 = gsl_pow_2(gsl_blas_dnrm2(s->f));   /* not reduced chi-square */
   dof = n - p;
   errs = sqrt(chi2/dof*gsl_matrix_get(covar, 0, 0))/sigma/2;
@@ -1441,6 +1447,7 @@
   size_t n, dof;      /* # of data points */
   size_t p = 2;  /* # of fitting parameters */
   gsl_multifit_function_fdf f;
+  gsl_matrix *J = NULL;
   gsl_matrix *covar = NULL;
   gsl_vector *x = NULL;
   double b, height, errs, errh, chi2;
@@ -1468,6 +1475,7 @@
   hh.binend = binend;
   n = binend - binstart + 1;
 
+  J = gsl_matrix_alloc(n, p);
   covar = gsl_matrix_alloc(p, p);
 
   f.f = xExponential_f;
@@ -1489,7 +1497,8 @@
   } while (status == GSL_CONTINUE);
   b = gsl_vector_get(s->x, 0);
   height = gsl_vector_get(s->x, 1);
-  gsl_multifit_covar(s->J, 0.0, covar);
+  gsl_multifit_fdfsolver_jac(s, J);
+  gsl_multifit_covar(J, 0.0, covar);
   chi2 = gsl_pow_2(gsl_blas_dnrm2(s->f));   /* not reduced chi-square */
   dof = n - p;
   errs = sqrt(chi2/dof*gsl_matrix_get(covar, 0, 0));
--- a/ext/gsl_native/multifit.c
+++ b/ext/gsl_native/multifit.c
@@ -324,6 +324,7 @@
 {
   gsl_multifit_fdfsolver *solver = NULL;
   gsl_vector *g = NULL;
+  gsl_matrix *J = NULL;
   int status;
   double epsabs;
   Data_Get_Struct(obj, gsl_multifit_fdfsolver, solver);
@@ -331,7 +332,9 @@
   case 1:
     Need_Float(argv[0]);
     g = gsl_vector_alloc(solver->x->size);
-    gsl_multifit_gradient(solver->J, solver->f, g);
+    J = gsl_matrix_alloc(solver->f->size, solver->x->size);
+    gsl_multifit_fdfsolver_jac(solver, J);
+    gsl_multifit_gradient(J, solver->f, g);
     epsabs = NUM2DBL(argv[0]);
     status = gsl_multifit_test_gradient(g, epsabs);
     gsl_vector_free(g);
@@ -353,15 +356,17 @@
 {
   gsl_multifit_fdfsolver *solver = NULL;
   gsl_vector *g = NULL;
+  gsl_matrix *J = gsl_matrix_alloc(solver->f->size, solver->x->size);
   // local variable "status" declared and set, but never used
   //int status;
   Data_Get_Struct(obj, gsl_multifit_fdfsolver, solver);
+  gsl_multifit_fdfsolver_jac(solver, J);
   if (argc == 1) {
     Data_Get_Vector(argv[0], g);
-    return INT2FIX(gsl_multifit_gradient(solver->J, solver->f, g));
+    return INT2FIX(gsl_multifit_gradient(J, solver->f, g));
   } else {
     g = gsl_vector_alloc(solver->x->size);
-    /*status =*/ gsl_multifit_gradient(solver->J, solver->f, g);
+    /*status =*/ gsl_multifit_gradient(J, solver->f, g);
     return Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, g);
   }
 }
@@ -377,15 +382,17 @@
   Need_Float(argv[0]);
   Data_Get_Struct(obj, gsl_multifit_fdfsolver, solver);
   epsrel = NUM2DBL(argv[0]);
+  gsl_matrix *J = gsl_matrix_alloc(solver->f->size, solver->x->size);
+  gsl_multifit_fdfsolver_jac(solver, J);
   switch (argc) {
   case 1:
     covar = gsl_matrix_alloc(solver->x->size, solver->x->size);
-    /*status =*/ gsl_multifit_covar(solver->J, epsrel, covar);
+    /*status =*/ gsl_multifit_covar(J, epsrel, covar);
     return Data_Wrap_Struct(cgsl_matrix, 0, gsl_matrix_free, covar);
     break;
   case 2:
     Data_Get_Matrix(argv[1], covar);
-    return INT2FIX(gsl_multifit_covar(solver->J, epsrel, covar));
+    return INT2FIX(gsl_multifit_covar(J, epsrel, covar));
     break;
   default:
     rb_raise(rb_eArgError, "wrong number of arguments");
@@ -418,7 +425,9 @@
 {
   gsl_multifit_fdfsolver *solver = NULL;
   Data_Get_Struct(obj, gsl_multifit_fdfsolver, solver);
-  return Data_Wrap_Struct(cgsl_matrix_view_ro, 0, NULL, solver->J);
+  gsl_matrix *J = gsl_matrix_alloc(solver->f->size, solver->x->size);
+  gsl_multifit_fdfsolver_jac(solver, J);
+  return Data_Wrap_Struct(cgsl_matrix_view_ro, 0, NULL, J);
 }
 
 /* singleton */
@@ -1699,7 +1708,9 @@
   covar = gsl_matrix_alloc(p, p);
   chi2 = gsl_pow_2(gsl_blas_dnrm2(solver->f));   /* not reduced chi-square */
   dof = n - p;
-  gsl_multifit_covar(solver->J, 0.0, covar);
+  gsl_matrix *J = gsl_matrix_alloc(n,p);
+  gsl_multifit_fdfsolver_jac(solver, J);
+  gsl_multifit_covar(J, 0.0, covar);
   for (i = 0; i < p; i++)
     gsl_vector_set(verr, i, sqrt(chi2/dof*gsl_matrix_get(covar, i, i)));
   gsl_matrix_free(covar);