File: whitedwarf.rb

package info (click to toggle)
ruby-gsl 2.1.0.3%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,604 kB
  • sloc: ansic: 62,050; ruby: 15,845; sh: 19; makefile: 10
file content (158 lines) | stat: -rwxr-xr-x 4,162 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env ruby
# This example solves Lane-Emden equation to calculate white dwarf
# structure, using Chandrasekhar's model, as a polytrope gas sphere
# of self-gravitating body supported by eletron degeneration pressure.

require("gsl")
include Math
include GSL::CONST::CGSM
include GSL::Odeiv

# Degenerated electron/neutron gas
# Reference: "Black holes, white dwarfs, and neutron stars"
#            S.L. Shapiro & S.A. Teukolsky, Willey, 1983
module Degenerate
  hbar = PLANCKS_CONSTANT_HBAR    # Planck's constant
  me = MASS_ELECTRON              # Electron mass
  mn = MASS_NEUTRON               # Neutron mass
  mu = UNIFIED_ATOMIC_MASS
  c = SPEED_OF_LIGHT
  ELambda = hbar/me/c             # Compton length of electron
  NLambda = hbar/mn/c
  MeC2 = me*c*c                   # Electron rest mass energy
  MnC2 = mn*c*c
  Factor_xe = GSL::pow(3.0*PI*PI/mu, 1.0/3.0)*ELambda
  Factor_xn = GSL::pow(3.0*PI*PI/mu, 1.0/3.0)*NLambda

# See Shapiro&Teukolsky Chapter 2
  def phi(x)
    tmp = sqrt(1.0 + x*x)
    (x*tmp*(2.0*x*x/3.0 - 1.0) + log(x + tmp))/8/PI/PI
  end

  def chi(x)
    tmp = sqrt(1.0 + x*x)
    (x*tmp*(1.0 + 2*x*x) - log(x + tmp))/8/PI/PI
  end

  def xe_rho_mue(rho, mue)
    Factor_xe*GSL::pow(rho/mue, 1.0/3.0)
  end

  def xn_rho(rho)
    Factor_xn*GSL::pow(rho, 1.0/3.0)
  end

end

# Polytrope gas sphere
module Polytrope

# Lane-Emden equation
#   n: polytrope index
  EmdenEq = Proc.new { |x, y, dydx, n|
    dydx[0] = y[1]
    dydx[1] = -GSL::pow(y[0], n) - 2.0/x*y[1]
  }

  def emden_xi(n)
    dim = 2
    y = GSL::Vector[1.0, 0.0]
    dydx = GSL::Vector.alloc(dim)

    solver = Solver.alloc(Step::RKF45, [1e-6, 0], EmdenEq, dim)
    solver.set_params(n)
    solver.reset

    vx = GSL::Vector.alloc(10000)
    vy = GSL::Vector.alloc(10000)
    vdy = GSL::Vector.alloc(10000)

    x = 0.0001
    xend = 10.0
    h = 1e-6

    file = File.open("polytrope.dat", "w")
    i = 0
    while x < xend
      x, h, status = solver.apply(x, xend, h, y)
      break if GSL::isnan?(y[0])
      break if GSL::isnan?(y[1])
      vx[i] = x
      vy[i] = y[0]
      vdy[i] = y[1]
      file.printf("%e %e %e %e\n", x, y[0], y[1], GSL::pow_3(y[0]))
      i += 1
      break if status != GSL::SUCCESS
      break if y[0] <= -0.1
    end
    file.close
#    p vx.size
#    p i
    vx2 = vx.subvector(0, i)
    vy2 = vy.subvector(0, i)
    vdy2 = vdy.subvector(0, i)
    spline = GSL::Spline.alloc(GSL::Interp::AKIMA, i)
    spline.init(vy2.reverse, vx2.reverse)

# Find star surface:
# Star sufrace is defined as the zero point of density structure function
    x1 = spline.eval(0.0)
    spline.init(vx2, vdy2)
    yx2 = spline.eval(x1).abs
    return [x1, yx2*x1*x1]

  end
end

# Chandrasekhar white dwarf model:
#   * Polytrope gas sphere
#   * Support its self gravity by electron degeneration pressure
class WhiteDwarf
  include Degenerate
  include Polytrope

  G = GRAVITATIONAL_CONSTANT
  @@x1 = nil
  @@x12 = nil

  def initialize(n, rhoc, mue)
    @n = n
    @gam = 1.0 + 1.0/n
    @rhoc = rhoc
    @mue = mue
    x = xe_rho_mue(@rhoc, mue)
    phix = phi(x)
    @K = MeC2*phix/GSL::pow_3(ELambda)/GSL::pow(@rhoc, @gam)
    @a = sqrt((@n + 1)*@K*GSL::pow(@rhoc, 1.0/@n - 1.0)/4/PI/G)
    if !@@x1
      @@x1, @@x12 = emden_xi(@n)
    end
    @Pc = MeC2*phix/GSL::pow_3(ELambda)*phix   # Electron Fermi pressure
    @radius = @a*@@x1                     # White dwarf radius
    @mass = 4.0*PI*GSL::pow_3(@a)*@rhoc*@@x12  # White dwarf mass
  end

  attr_accessor :radius
  attr_accessor :mass
  attr_accessor :rhoc    # Central density
  attr_accessor :Pc      # Central pressure
  attr_accessor :gam     # Adiabatic index
  attr_accessor :n       # Polytrope index
  attr_accessor :mue     # Mean eletron number per barion
  attr_accessor :K       # Normalization constant
  attr_accessor :a
end

file = File.open("whitedwarf.dat", "w")
rho = 1e6     # central density
while rho < 1e11
  wd = WhiteDwarf.new(3, rho, 2)
  file.printf("%e %e %e %e\n", rho, wd.Pc, wd.radius/1000/100, wd.mass/SOLAR_MASS)
  rho *= 1.2
end
file.close

system("gnuplot -persist whitedwarf.gp")
File.delete("polytrope.dat")
File.delete("whitedwarf.dat")